Skip to main content
Erschienen in:

Open Access 11.09.2024 | Regenerative Medicine (SM Wu, Section Editor)

Integrating Prime Editing and Cellular Reprogramming as Novel Strategies for Genetic Cardiac Disease Modeling and Treatment

verfasst von: Bing Yao, Zhiyong Lei, Manuel A. F. V. Gonçalves, Joost P. G. Sluijter

Erschienen in: Current Cardiology Reports | Ausgabe 11/2024

Abstract

Purpose of review

This review aims to evaluate the potential of CRISPR-based gene editing tools, particularly prime editors (PE), in treating genetic cardiac diseases. It seeks to answer how these tools can overcome current therapeutic limitations and explore the synergy between PE and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for personalized medicine.

Recent findings

Recent advancements in CRISPR technology, including CRISPR-Cas9, base editors, and PE, have demonstrated precise genome correction capabilities. Notably, PE has shown exceptional precision in correcting genetic mutations. Combining PE with iPSC-CMs has emerged as a robust platform for disease modeling and developing innovative treatments for genetic cardiac diseases.

Summary

The review finds that PE, when combined with iPSC-CMs, holds significant promise for treating genetic cardiac diseases by addressing their root causes. This approach could revolutionize personalized medicine, offering more effective and precise treatments. Future research should focus on refining these technologies and their clinical applications.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

In 2019, cardiovascular diseases (CVDs), including those caused by genetic and non-genetic factors, accounted for 17.9 million deaths worldwide. Genetic cardiac diseases, characterized by their familial inheritance patterns, lead to critical health issues, including heart failure, fatal arrhythmias, and sudden cardiac death [1, 2]. These diseases present significant health risks and impose broad socio-economic and psychological challenges, exacerbating stress, diminishing quality of life, and straining the financial resources of patients and their families. Current treatments primarily focus on symptom management, including both Implantable Cardioverter Defibrillator (ICD) and mechanical assistance devices [3], with heart transplantation being the only curative option in clinical practice. However, the limited availability of donor hearts makes waiting for a transplantation a significant challenge for patients. Given the complexity, difficulty in diagnosis, and limitations of current treatments for these genetic cardiac diseases, there is a demand for the development of precise and innovative therapeutic approaches that can fundamentally address the underlying causes of these disorders.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based gene editing represent a revolutionary set of methods that allow for targeted DNA manipulation of cells, plants, and animals, whose genetic change range includes insertions and deletions of varying sizes as well as specific base-pair substitutions [4, 5]. In the past decade, CRISPR-based gene editing tools, including different variant technologies like engineered CRISPR-Cas9 nucleases, base editors (e.g., cytidine and adenine base editors), and prime editors (PE), have been applied in cells, plants, and animals, offering as a result potentially effective treatment options for genetic cardiac diseases [6]. PE stands out for its precision and versatility, providing the potential for correcting a wide range of genetic anomalies with minimal off-target effects [7].
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and subsequently differentiating these reprogrammed cells into cardiomyocytes (iPSC-CMs) provides a robust “disease-in-a-dish” platform for modeling genetic cardiac diseases and exploring candidate therapeutic treatments such as those involving the screening and testing of small-molecule drugs or gene editing reagents [8, 9]. Combined with PE-mediated genome editing, this cellular reprogramming approach acquires enhanced capabilities for disease modeling as well as opportunities for addressing these genetic cardiac diseases. This review summarizes recent studies on CRISPR-based gene editing tools for directly modeling genetic cardiac diseases and explores their integration with reprogramming technologies. We propose that combining PE with iPSC-CM technologies offers novel perspectives for both the modeling and potentially treatment of genetic cardiac diseases.

CRISPR-Based Gene Editing Tools

CRISPR-Cas9

Engineered CRISPR-associated protein 9 (Cas9) nucleases form a powerful set of genome editing tools that originated from a natural bacterial defense mechanism against phage infections [10]. These CRISPR-Cas9 nucleases consist of a single guide RNA (gRNA)-Cas9 complex. The gRNA-Cas9 complex first recognizes short DNA tracts named protospacer adjacent motifs (PAM) via the PAM-interacting domain of the Cas9 protein. In the case of the prototypic Cas9 nuclease from Streptococcus pyogenes, the PAM reads as NGG where N stand for any nucleotide. Next, the gRNA, formed by linking an invariant trans-activating RNA to a sequence-tailored CRISPR RNA, anneals with specific DNA sequences of typically 20 base pairs (protospacer) complementary to its 5’ end (spacer). Complementarity between RNA spacer and DNA protospacer sequences triggers conformational changes of the two Cas9 nuclease domains (i.e., HNH and RuvC) that ultimately lead to catalytic activation and double-stranded DNA break (DSB) formation 3-bp away from the PAM. Once the DSB is induced, cellular DNA repair mechanisms are activated with, among these, non-homologous end joining (NHEJ) [11], homology-directed repair (HDR) [12], and microhomology-mediated end joining (MMEJ) [1316], are being actively exploited for genome editing purposes, e.g., for generating gene knockouts or gene knock-ins. The latter procedures require delivering into target cells DSB-repairing exogenous donor DNA templates encoding the edit(s) of interest.

Base Editing

Beyond genome editing based on engineered CRISPR-Cas9 nucleases, base editing is a technology that permits introducing single base-pair substitutions within a gRNA-defined target site without inducing DSBs and independent of donor DNA usage. Typically, base editor proteins consist of a catalytically disabled version of a Cas9 enzyme that trigger single-stranded DNA breaks, or nicks, rather than intrinsically mutagenic DSBs [1719]. Fusing these Cas9 nickases to effector moieties in the form of cytidine deaminases and adenosine deaminases, yields cytidine base editors (CBEs) and adenine base editors (ABEs), respectively [20]. Specifically, after gRNA-BE complex target site engagement, DNA denaturation and single-stranded DNA formation, facilitates local deamination by the effector domains. In the case of CBEs, cytosine (C) is deaminated into uracil (U) and via subsequent DNA repair or replication a target C·G base pair is converted into a T·A base pair. ABEs in turn deaminate adenine (A) into inosine (I) with the resulting base pair intermediates being subsequently converted via DNA repair or replication into a G·C base pair. Various CBE and ABE systems have been developed, each of which offering different editing windows and efficiencies [17, 18, 2123].

Prime Editing

PE is an advanced genome editing technology introduced at the end of 2019 [24] that offers increased precision and flexibility over that achieved with BEs and, importantly, with fewer undesired on-target and off-target effects when compared to those resulting from programmable nucleases, RNA-guided or otherwise. It is described as a “search-and-replace” method for precise DNA manipulations, mediating insertions, deletions, and all 12 base-pair conversions requiring in the process neither donor DNA templates nor DSBs [24].

The Development of Prime Editing

PE1 is the original prime editing system, consisting of a prime editor protein and a prime editing gRNA (pegRNA), which besides the spacer and scaffold sequences of regular gRNAs it has (i) a primer binding site (PBS) that hybridizes with the DNA flap generated after target DNA nicking, (ii) the edit of interest, and (iii) a reverse transcriptase template (RTT). This prime editor is a fusion between the Streptococcus pyogenes Cas9 H840A nickase and the wild-type reverse transcriptase (RT) from the Moloney murine leukaemia virus (MMLV). An optimized PE2 variant was generated by substituting the wild-type for an engineered MMLV RT variant whose five mutations improve thermostability, RNA–DNA template affinity and DNA synthesis processivity [24]. Similar to the gRNA-Cas9 complex, the pegRNA-prime editor complex binds first to the PAM associated with the intended genomic target site and, after spacer-protospacer hybridization, nicking of the PAM-containing DNA strand by the Cas9.H840A moiety yields a 3’-ended flap that anneals with the PBS of the pegRNA. Subsequently, the annealed product creates a primer for RT-mediated DNA synthesis over the RTT sequence and encoded edit of interest, resulting in a 3' DNA flap that anneals to the complementary genomic DNA. Finally, through endogenous DNA repair mechanisms, the edit of interest is permanently installed at the genomic target site completing the prime editing process [24]. With the further demand for efficient editing, various PE systems have been developed in recent years as shown in Table 1 [25].
Table 1
Overview of representative prime editing systems and their main attributes
https://static-content.springer.com/image/art%3A10.1007%2Fs11886-024-02118-2/MediaObjects/11886_2024_2118_Tab1_HTML.png
Pink, NLS (Nuclear Localization Signal). Red, SpCas9 (Streptococcus pyogenes Cas9) and its variants. Light Blue, amino acid (aa) linkers. Brown, MMLV RT (Moloney murine leukemia virus reverse transcriptase) and its variants. Blue, other extra components, Rad51 DBD (DNA Binding Domain), IGF1p (Insulin-like Growth Factor 1 peptide), NFATC2IPp (Nuclear Factor of Activated T-Cells 2 Interacting Protein peptide), MLH1dn (dominant-negative variant of the mismatch repair protein MLH1) , La (La RNA-binding protein), BxbI  (BxbI serine site-specific recombinase)
Red segments: homologous sequences. Green segments: heterologous sequences. Orange and yellow segments: homologous sequences with different sequences
(Adapted with permission of Nature Research, from Chen PJ, Liu DR [25]; permission conveyed through Copyright Clearance Center, Inc.)
Beyond the aforementioned PE2 construct bearing an optimized MMLV RT region for improving the efficiency of reverse transcription [24], further and fast developments are yielding novel PE variants that include PE*, PEmax, and PEΔRnaseH. As previously shown for S. pyogenes Cas9 nucleases [26], prime editing can profit from the addition of nuclear localization signals (NLSs). For instance, PE* has enhanced nuclear localization, hence performance, owing to the addition of two extra NLSs to the both termini of PE2 [27]. PEmax has in turn a codon-optimized RT sequence and two additional mutations in its Cas9.H840A moiety for increased nicking activity [28]. Finally, via the removal of the prime editing-dispensable RNaseH domain, PEΔRNaseH displays a reduced size while maintaining editing efficiency [29, 30], which permits its delivery via carriers with limited cargo capacity, e.g., commonly used adeno-associated viral vectors [31].
In addition to optimizing the construction of PE proteins, adding extra components can further enhance their capabilities. For instance, HyPE2 incorporates the Rad51 DNA-binding domain that is hypothesized to promote DNA/RNA hybrid formation by binding to ssDNA and RNA and, in doing so, enhancing reverse transcription during prime editing. The HyPE2 construct improves PE efficiency by a median of 1.5-fold across various genomic sites and is particularly effective in genomic loci where PE2 demonstrates lower than 1% editing efficiency, achieving significant improvements at up to 34% of target sequences [32].
IN-PE2 enhances prime editing by including dual peptides, NFATC2IP and IGF1, thereby increasing prime editing outcomes across various cell lines and target sites. Velimirovic and co-researchers constructed two constructs, IN-GFP-PE2 and CTRL-GFP-PE2, and found that mESCs possess 1.58 fold higher amounts of IN-GFP-PE2 than of CTRL-GFP-PE2 with degradation occurring at a similar rate. These observations suggested that the two additional peptides increase either transcription or translation of the PE2 enzyme, offering an explanation for the increased activity of IN-PE2 [33]. The PE modality dubbed PE3 builds upon the PE2 system via the addition of a gRNA to direct the induction of another nick on the non-edited strand. This secondary gRNA-directed nick locates at an offset position from the primary nick directed by the pegRNA, enhancing in the process of editing efficiency by promoting the newly edited strand to serve as a template for DNA repair. PE3 and PE3b differ on the location of the additional secondary nick. In particular, in the latter approach, secondary nicking can only take place after edit incorporation as to minizine DSB formation via concomitant nicking of top and bottom DNA strands. Indeed, the PE3 modality can significantly enhance editing efficiency but, typically, it increases the rate of indels due to non-homologous end joining repair of DSBs created by concomitant nicking of top and bottom DNA strands, researchers thus need to consider the balance between editing efficiency and side-effects when selecting specific PE modalities [24]. The PE4 and PE5 systems build on PE2 and PE3 components, respectively, by incorporating a mismatch repair (MMR)-inhibiting protein consisting of a dominant-negative form of the human MLH1 protein (MLH1dn). By temporarily suppressing the cellular MMR pathway, MLH1dn enhances editing efficiency as this pathway tends to resolve mismatches in heteroduplex prime-editing intermediates consisting of edited and unedited strands [28].
Through Phage-Assisted Continuous Evolution (PACE) and protein engineering, smaller prime editor variants (516–810 bp coding sequences) were obtained, capable of yielding an editing efficiency improvement of up to 22-fold [34].The PE6 series employs PACE to significantly enhance the compactness of prime editing compared to PEmax and PEΔRnaseH.The PE6a-g variants have improved delivery vehicle compatibilities and editing efficacy in vivo, with one variant achieving a 24-fold improvement in loxP insertion efficiency in the murine brain cortex [34]. The PE7 system incorporates the RNA-binding protein La to enhance the interaction with pegRNAs, improving overall editing outcomes [35]. These diverse prime editors provide various options for achieving heightened genome editing efficiencies in different experimental contexts.
The development of paired or dual prime-editing systems, involving the use of two pegRNAs, represents a pivotal set of technologies offering precise and more versatile prime editing options. Indeed, these systems leverage the strengths of prime editing by incorporating dual pegRNAs that, by working in concert, expand the range of feasible genetic modifications from single base-pair substitutions and small insertions and deletions to larger-scale chromosomal edits. For instance, the Homologous 3′ Extensions Mediated Prime Editor (HOPE) uses paired pegRNAs encoding the same edits on both reverse transcribed DNA strands achieving efficient editing and improved product purity over that obtained with the PE3 system [36]. TwinPE employs two pegRNAs to template the synthesis of complementary DNA flaps on opposing strands of genomic DNA, enabling the programmable replacement or excision of DNA sequences at endogenous sites without double-strand breaks. TwinPE can also be combined with site-specific serine recombinases for targeted integration of large donor DNA into recombinase recognition sequences programmed by dual pegRNAs and, thereby, expand the range of precision exogenous gene insertion strategies. For instance, the combination of TwinPE and BxbI, a serine recombinase, successfully inserted a 5.6 kb DNA sequence into three genomic loci, exhibiting an editing efficiency of 2.5–6.8% [37]. Similarly, by fusing Cas9, reverse transcriptases and large serine integrases, Programmable Addition via Site-specific Targeting Elements (PASTE) achieves targeted gene insertions at efficiencies of ~ 4–5% for large cargos in primary human hepatocytes and T cells [38]. Moreover, GRAND, PRIME-Del, and Bi-PE employ a pair of pegRNAs with reverse transcription templates complementary to each other that are nonhomologous to the target DNA [3941]. PRIME-Del allows for deletions of up to 10 kb with significantly higher precision and fewer unintended off-target effects than that resulting from using the CRISPR-Cas9 system [40]. PE-Cas9-based deletion and repair (PEDAR) uses dual pegRNAs and a regular Cas9 nuclease fused to a reverse transcriptase for creating large genomic deletions and for replacing DNA fragments (1-10 kb) with an intended exogenous sequence (up to 60 bp). PEDAR was used in a tyrosinemia I mouse model derived by replacing a 19-bp sequence with a ~ 1.3-kb neo-expression cassette at exon 5 of the Fah gene. In particular, Jiang and co-researchers designed two pegRNAs, aimed at deleting the large insertion and inserting the missing 19-bp Fah gene fragment. One week later, they detected a 0.76 ± 0.25% correction rate in PEDAR-treated mice, but no correction in Cas9-treated mice [42]. Additionally, equally building on fusion constructs between Cas9 nucleases and reverse transcriptases, prime editor nuclease-mediated translocation and inversion (PETI) and WT-PE were shown to be capable of generating large genomic deletions and defined chromosomal translocations with efficiencies comparable to that achieve with regular Cas9 nuclease [43, 44].
The continuous innovation in prime editing systems highlights the rapid advancements in the field of gene editing. Each system offers distinct advantages tailored to specific editing requirements, showcasing a remarkable diversity in established and potential applications that can in principle extend to therapeutic gene correction and multiplexing genetic engineering of multicellular organisms.

The Advantages of Prime Editing

PE represents a significant advancement in the genome editing field, offering distinct advantages over other CRISPR-based tools (see Table 2). Firstly, unlike CRISPR-Cas9-based gene editing, PE achieves DNA editing without creating DSBs, thereby minimizing the risk of undesired outcomes at on-target and off-target sites. Such outcomes include deletions, duplications and translocations at the DNA level and aneuploidy and chromothripsis at the cellular level [25]. Secondly, as it is more flexible, PE is applicable to a broader range of genetic targets and diseases, particularly those requiring multiple edits beyond simple base-pair substitutions [45]. The precision of PE is enhanced by its unique mechanism, which involves the innovative combination of RTT and PBS sequences in a single pegRNA that license specific hybridization steps between RNA and DNA templates. Prime editing offers unprecedented specificity owing to the required multitier complementarity between pegRNA sequences (i.e., spacer, PBS and RTT) and target DNA. These multiple hybridization requirements ensure high-fidelity base incorporation and accurate gene correction [24]. In summary, the versatility, precision, and reduced off-target effects offered by PE enhance the safety and efficacy prospects of these technologies for therapeutic applications.
Table 2
Comparison between CRISPR-Cas9, base editors, and prime editors
https://static-content.springer.com/image/art%3A10.1007%2Fs11886-024-02118-2/MediaObjects/11886_2024_2118_Tab2_HTML.png
Green DNA represents the target sequences (protospacers) located next to the respective protospacer adjacent motif (PAM) sites (now indicated), red and blue sequences represent, respectively, the CRISPR RNA and trans-activating CRISPR RNA (normally fused, not shown here) of the gRNA with the portion hybridizing to the protospacer corresponding to the spacer sequence. In the case of prime editors, the gRNA is extended at the 3’ terminus with a prime binding site (PBS) and a reverse transcriptase template (RTT) encoding the edit of interest. This modified gRNA is named a prime editing gRNA (pegRNA)
The arrowheads indicated the RuvC and HNH  nuclease domains of Cas9. The scissors mark the positions of phosphodiester bond cleavage catalyzed by each of these nuclease domains

Current Applications of Prime Editing in CVD

PE has effectively corrected small insertions, deletions, and substitutions in various cell types. For correcting point mutation in the Duchenne muscular dystrophy (DMD) gene, PE efficiencies ranged from 21% to 38% in HEK293T cells and 22% in myoblasts [4649]. Introduction of prime editing complexes via high-capacity adenovector particles can further enhance the performance of the editing process [50], including at defective DMD alleles in human myoblasts and iPSC-derived cardiomyocytes [51]. Additionally, a large-scale deletion in the DMD gene, spanning from exon 17 through 55, was successfully achieved using WT-PE [44].
Lipid nanoparticles (LNPs) delivering chemically-modified pegRNA and prime editor mRNA were used in HAP1 reporter cells to achieve an editing efficiency of 54% [52]. PE-mediated gene editing was successful in iPSC-CMs, achieving notable editing endpoints in cardiomyocytes. For instance, in DMD exon 51–deleted human iPSCs (ΔEx51 iPSCs), PE3-mediated modification of splice donor sites in the dystrophin gene was used to complete a -GT insertion [53]. This approach achieved gene editing efficiencies of up to 54%. After differentiation, the edited ΔEx51 iPSC-CMs were confirmed to have restored dystrophin protein expression when compared to control iPSC-CMs. In the case of the RBM20 R636S mutation, up to 40% correction was observed, releasing hypertrophic cardiomyopathy (HCM) symptoms [54].
PE has been applied in vivo through viral vector delivery methods. Adenoviral vectors (Advs) delivered PE3 components into a phenylketonuria mouse model yielding up to 11.1% editing efficiencies resulting in 2.0%-6.0% of the wild-type Pah enzyme activity in treated mice [55]. Moreover, Liu and colleagues developed a dual-AAV (adeno-associated viral vector) encoding a split-PE system that retains 75% editing activity of that achieved with the full-length PE construct [56]. These findings underscore the robust capabilities of prime editing for targeted and precise genetic modifications both in vitro and in vivo, opening up new possibilities for treating a wide range of genetic cardiac diseases.

Genetic Cardiac Disease iPSC-CM Modeling by Reprogramming and Gene Editing

Some mutations of genetic cardiac diseases can lead to arrhythmias such as Long QT Syndrome (LQTS) and Short QT Syndrome (SQTS), as well as to structural abnormalities like HCM and dilated cardiomyopathy (DCM), arrhythmogenic cardiomyopathy (ACM). These conditions significantly increase the risk of heart failure and even sudden cardiac death. Developing models through reprogramming of human somatic cells into iPSCs and subsequently differentiate the resulting iPSCs into cardiomyocytes is a powerful approach for improving our understanding of the underlying genetic disease-causing mechanisms and, thereby, develop novel therapeutic approaches for these cardiac diseases [5759]. By introducing a set of defined transcription factors (e.g., the initial “Yamanaka cocktail” Oct4, Sox2, Klf4, and c-Myc) into somatic cells, mainly skin fibroblasts or blood cells, triggers cellular reprogramming into iPSCs [60, 61]. These reprogrammed iPSCs possess pluripotency, enabling them to differentiate into any human cell type, including cardiomyocytes [62]. These iPSC-CM models not only aid in investigating cardiac diseases caused by specific genetic mutations, and provide for cellular substrates for drug screening and therapy development. They also overcome the technical and ethical limitations of embryonic stem cell (ESC) use in animal model research and therapeutic development [57, 63].

Patient-derived iPSC-CM Models

Patient-derived iPSC-CMs, which carry the genetic information of the donor, exhibit cardiac disease phenotypes, effectively creating disease-in-a-dish systems that enable investigations into the causes of these diseases. For example, the main characteristic of LQTS is a prolonged QT interval on the electrocardiogram (ECG) [64, 65], that increases the risk of sudden cardiac death. Models of iPSC-CMs from patients with mutations in the NAA10 gene have recreated the LQTS phenotype [66]. Electrophysiological studies have shown prolonged action potential duration (APD) and corrected field potential duration. Researchers have used ICaL blockers to correct the prolonged field potential duration in patient-derived iPSC-CMs, demonstrating their effectiveness as therapeutic models. Similarly, treating iPSC-CMs from patients carrying the KCNQ1/TRPM4 double mutations with verapamil and lidocaine significantly shortened the QT interval [67]. Conversely, SQTS is characterized by an abnormally short QT interval on the ECG, leading to fainting, palpitations, atrial and ventricular arrhythmias, and sudden cardiac death [68]. iPSC-CMs carrying the T618I mutation in KCNH2 successfully mimic the clinical manifestations of SQTS, such as shortened action potential duration and abnormally short QT intervals [69].
For cardiac diseases caused by structural abnormalities, tractable patient-derived iPSC-CM models have been developed. HCM is one of the most common genetic cardiac diseases, characterized by abnormal thickening of the left ventricular wall and ventricular septum, leading to heart failure, arrhythmias, and a high risk of sudden death [70]. Patient-derived iPSC-CMs with the MYL2-R58Q mutation were 30% larger than control iPSC-CMs at day 60, exhibited disarray in myofibrils, and had a higher percentage of irregularly beating cells, thereby accurately representing the HCM phenotype with reduced calcium transients [71]. In 2022 and 2023, iPSC-CMs with other HCM mutations like MYBPC3 R326Q [72], TNNT2 Δ160E [73], JPH2 Thr161Lys [74], and RAF1 [75] also exhibited abnormal calcium handling, leading to increased intracellular calcium concentrations. DCM is characterized by left ventricular or biventricular dilation and impaired systolic function, which occurs in the absence of external causes like hypertension, valvular, congenital, or ischemic heart disease [76, 77]. Studies on mutations TNNT2-R173W [78], and TNNT2-R92W [57] have shown that these disruptions interfere with the interactions within the troponin-tropomyosin complex and impair protein kinase A (PKA) binding to sarcomeric microdomains, thereby affecting calcium handling and contractility. Another iPSC-CMs model with mixed DCM/ACM phenotypes carries the PLN p.Arg14del mutation, which exhibit disrupted regulation of the sarcoplasmic/endoplasmic reticulum Ca2⁺-ATPase (SERCA2a), impairing calcium handling in cardiomyocytes [79]. Besides successfully replicating cardiac disease phenotypes for hypotheses-driven mechanistic studies, patient-derived iPSC-CM models are also facilitating unbiased high-throughput drug screens using large small-molecule libraries. However, there are some limitations with these models as the maturation status of the obtained iPSC-CMs can significantly hamper definitive conclusions as they normally display gene expression programs of fetal instead of bona fide adult or mature cardiomyocytes. In this regard, longer culture periods, mechanical and electrical stimulation, organoid assemblies, and the use of scaffolds, and exposure to defined small-molecule cocktails have, to different extents, shown to provide for further maturation of iPSC-CMs in vitro. Additionally, challenges include obtaining cells from patients with rare mutations or in determining how specific genetic abnormalities may lead to previously unidentified diseases.

Gene Edited Healthy Donor-derived iPSC-CM Models

To better establish genotype-phenotype associations, a new approach involves applying gene editing technologies to edit healthy donor-derived iPSCs and, in doing so, create isogenic pairs of mutant and wild-type iPSC-CMs that share the same genetic background. Indeed, unlike patient-derived iPSC-CM models, gene editing allows for the installation of specific mutations within normal, healthy iPSCs. This approach enables the creation of models unrestricted by patient-specific disease conditions, facilitating the construction of genetic mutation-specific disease models, including their isogenic controls, and providing a new platform to study the role and effects of SNPs, structural variants and mutations in specific loci. Recent applications of CRISPR-Cas9 technologies have introduced mutations associated with the CACNA1C [80], KCNH2 [81] and hERG genes [82] into healthy donor-derived iPSC-CMs, inducing LQTS1 and LQTS2. These models successfully replicated the LQTS phenotypes, including action potential prolongation and early afterdepolarizations (EADs), without altering the overall genomic expression profile, thereby validating the effectiveness and precision of genome editing techniques. Moreover, CRISPR-Cas9 has been used to investigate specific mutations in DCM. One study focused on the BAG3 R477H mutation, associated with DCM, and used CRISPR-Cas9 to introduce this mutation into iPSC-CMs derived from healthy donors [83]. This approach allowed researchers to examine the impact of the mutation on cellular structures and functions without the confounding effects of additional genetic variations that might be present in patient-derived cells. Similarly, a mutation TnT-R173W, known to destabilize interactions within the sarcomeric troponin-tropomyosin complex and affect heart contraction mechanics, was studied using CRISPR-Cas9 technology [78]. Gene edited iPSC-CMs derived from healthy donors displayed the same phenotype as that observed in patient-derived iPSC-CM models, offering flexible capabilities to directly study the impact of defined genetic alterations on cardiomyocyte function.

Genetic Cardiac Disease iPSC-CM Treatment by Gene Editing

With the rapid advancement of gene editing tools, e.g., CRISPR-Cas9, CBE, ABE, and PE, it has become realistic to treat genetic cardiac diseases in vivo via direct correction or modification of endogenous genes. Indeed, these tools offer a potential therapeutic approach by precisely correcting or altering specific genetic mutations that, as a result, significantly improve cardiac function and prolong life. In patient-derived iPSC-CM models, ABEs have achieved gene correction rates of over 90% for mutations such as RBM20 R634Q and MYH7 R403Q [84], indicating that gene editing is a very promising approach for treating genetic cardiac diseases [54]. The observed successes were extended beyond cellular studies to animal models. A dual-AAV delivered ABE system has demonstrated efficient editing of several mutations associated with HCM, including Lmna c.1621C > T [85], Rbm20 R634Q [54], Myh6 c.1211C > T [86], Myh6 R403Q [87], and MYH7 c.1208G > A (R403Q) [84]. In mouse models, this type of genetic intervention not only achieved high editing efficiency but also resulted in extended lifespans and release of cardiac symptoms, hence effectively correcting simultaneously both the genotype and pathogenic phenotypes.

The Integration of Prime Editing and Reprogramming for Genetic Cardiac Disease

The integration of PE and cellular reprogramming technologies represents a pivotal achievement in the field of genetic cardiac disease modeling and treatment. This innovative approach combines the high precision of PE in establishing targeted genetic alterations with the versatility of iPSC systems, creating as a consequence powerful platforms for mechanistic research and clinical treatment of these genetic cardiac diseases (see Fig. 1).
Prime editing of healthy donor-derived iPSC-CMs offers a flexible disease modelling approach especially in view of the aforementioned challenges associated with the exclusive use of patient-derived iPSC-CMs. In particular, the incomplete maturation status of iPSC-CMs under most culture conditions, the rare nature of certain genetic diseases, and the difficulty in understanding the disease mechanisms in different genetic backgrounds. For treatment, both ex vivo and in vivo prime editing strategies are possible based on previous studies [84, 85, 8790]. The former involves harvesting cells from patients, reprogramming them into iPSCs, and then correcting the mutations by prime editing before introducing corrected iPSC-CMs into the patient. This approach not only ensures that the modified cells are free from genetic defects but also reduces the risk of immunological rejection, offering a personalized therapeutic option. In vivo strategies explore the direct application of prime editing within the body of the patient. This approach employs advanced delivery systems to introduce genetic modifications directly in cells from the affected cardiac tissues. Together, these strategies enhance the appeal of using iPSC-CMs in conjunction with prime editing for flexible disease traits modeling and correction.

Challenges of Prime editing in Genetic Cardiac Disease Treatment

Prime editing is a powerful gene editing technology, offering higher precision and fewer byproducts like undesired insertions or deletions. However, despite its potential, prime editing applications in genetic cardiac disease treatments remains restricted by several limitations, particularly in the aspects pertaining to the editing efficiency, off-target effects, off-target organ editing, and delivery efficacy.
Previous studies have demonstrated notable editing efficiency of PE in neonatal mice [55], a recent study evaluating editing efficiencies across 54,836 pegRNAs showed an editing efficiency of around 20%, with efficiencies decreasing in primary cells [91]. Additionally, the editing efficiency of PE is influenced by both the target loci and the specific cell types. For instance, the efficiencies of PE-mediated installation of point mutations and small fragment insertions at the HEK3 locus have demonstrated in various cell lines, including HEK293FT cells, K526 cells, U2OS cells, and HeLa cells [24]. Although PE is more precise than CRISPR-Cas9 nucleases, off-target effects at the genome and transcriptome levels will have to be carefully assessed in each individual clinical settings [24]. As aforementioned, it is also crucial that the prime editor and pegRNA operate in an efficient and precise manner at the intended targeted organ. Current delivery systems often lack the precision required to limit action to the target organs, which can lead to uncontrollable effects in other organs. To address this issue, the development of delivery vectors prioritized for heart tissue and the use of heart-specific promoters are promising strategies [9294]. The delivery efficiency of prime editing components into cells is another factor influencing editing efficiency. The components of PE are larger and more complex than those used in CRISPR-Cas9 and BEs [13, 17, 18, 24]. This complexity makes it difficult to package and deliver these components efficiently, particularly when using commonly used viral vectors, e.g., AAVs which have their packaging size limitations [29, 30, 56, 95]. Alternative viral vectors such as high-capacity adenovectors and baculoviral vectors possess the payload capacity for delivering all PE components in single particles in an efficient manner [50, 96, 97]. Moreover, non-viral delivery methods, such as LNPs and Virus-Like Particles (VLPs), are being explored but generally present lower delivery efficiencies [52, 98].

Conclusions

The integration of iPSC-CM and PE technologies represents a potential approach for genetic cardiac diseases, offering dual advantages of personalized disease modeling and creating therapeutic treatments. In addition, these technologies provide a robust platform for displaying disease mechanisms and drug screening, reflective of patient-specific cardiac phenotypes. Indeed, prime editing enhances disease modeling and treatment by allowing precise genomic modifications without the off-target effects and limitations of CRISPR-Cas9 and BEs.
However, the integration of PE and iPSC-CM technologies is, clearly, not without limitations. Chiefly amongst these, the variability regarding the efficiency and specificity of somatic cell reprogramming and subsequent iPSC differentiation into mature cardiomyocytes potentially affects the consistency and reproducibility of disease models. Moreover, the efficiency and specificity of prime editing can equally greatly vary depending on the target loci and cell types of interest. Importantly, these limitations are being addressed through the development and implementation of novel iPSC differentiation protocols [99], and PE delivery systems that, in in vivo contexts, should ideally display target-organ specificity.

Declarations

Conflicts of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

No animal or human subjects by the authors were used in this study.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Literatur
2.
Zurück zum Zitat Tada H, et al. Human genetics and its impact on cardiovascular disease. J Cardiol. 2022;79(2):233–9.PubMedCrossRef Tada H, et al. Human genetics and its impact on cardiovascular disease. J Cardiol. 2022;79(2):233–9.PubMedCrossRef
3.
Zurück zum Zitat Rordorf R, et al. Real-world data of patients affected by advanced heart failure treated with implantable cardioverter defibrillator and left ventricular assist device: results of a multicenter observational study. Artif Organs. 2024;48(5):525–35.PubMedCrossRef Rordorf R, et al. Real-world data of patients affected by advanced heart failure treated with implantable cardioverter defibrillator and left ventricular assist device: results of a multicenter observational study. Artif Organs. 2024;48(5):525–35.PubMedCrossRef
5.
Zurück zum Zitat de la Fuente-Nunez C, Lu TK. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr Biol (Camb). 2017;9(2):109–22.PubMedCrossRef de la Fuente-Nunez C, Lu TK. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr Biol (Camb). 2017;9(2):109–22.PubMedCrossRef
7.
8.
Zurück zum Zitat Bizy A, Klos M. Optimizing the use of iPSC-CMs for cardiac regeneration in animal models. Animals (Basel). 2020;10(9):1561.PubMedCrossRef Bizy A, Klos M. Optimizing the use of iPSC-CMs for cardiac regeneration in animal models. Animals (Basel). 2020;10(9):1561.PubMedCrossRef
9.
Zurück zum Zitat Yamada Y, Sadahiro T, Ieda M. Development of direct cardiac reprogramming for clinical applications. J Mol Cell Cardiol. 2023;178:1–8.PubMedCrossRef Yamada Y, Sadahiro T, Ieda M. Development of direct cardiac reprogramming for clinical applications. J Mol Cell Cardiol. 2023;178:1–8.PubMedCrossRef
10.
Zurück zum Zitat Barrangou R, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.PubMedCrossRef Barrangou R, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.PubMedCrossRef
11.
Zurück zum Zitat Guo T, et al. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol. 2018;19:1–20.CrossRef Guo T, et al. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol. 2018;19:1–20.CrossRef
14.
Zurück zum Zitat Nakade S, et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. 2014;5:5560.PubMedCrossRef Nakade S, et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. 2014;5:5560.PubMedCrossRef
15.
Zurück zum Zitat Benitez EK, et al. Global and local manipulation of DNA repair mechanisms to alter site-specific gene editing outcomes in hematopoietic stem cells. Front Genome Edit. 2020;2:601541.CrossRef Benitez EK, et al. Global and local manipulation of DNA repair mechanisms to alter site-specific gene editing outcomes in hematopoietic stem cells. Front Genome Edit. 2020;2:601541.CrossRef
16.
Zurück zum Zitat Sakuma T, et al. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. 2016;11(1):118–33.PubMedCrossRef Sakuma T, et al. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. 2016;11(1):118–33.PubMedCrossRef
17.
19.
Zurück zum Zitat Nishida K, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353(6305):aaf8729.PubMedCrossRef Nishida K, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353(6305):aaf8729.PubMedCrossRef
20.
Zurück zum Zitat Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc. 2021;16(2):1089–128.PubMedCrossRef Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc. 2021;16(2):1089–128.PubMedCrossRef
21.
Zurück zum Zitat Komor AC, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: a base editors with higher efficiency and product purity. Sci Adv. 2017;3(8):eaao4774.PubMedPubMedCentralCrossRef Komor AC, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: a base editors with higher efficiency and product purity. Sci Adv. 2017;3(8):eaao4774.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Koblan LW, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. 2018;36(9):843–6.PubMedPubMedCentralCrossRef Koblan LW, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. 2018;36(9):843–6.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Gaudelli NM, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol. 2020;38(7):892–900.PubMedCrossRef Gaudelli NM, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol. 2020;38(7):892–900.PubMedCrossRef
25.
Zurück zum Zitat Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet. 2023;24(3):161–77.PubMedCrossRef Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet. 2023;24(3):161–77.PubMedCrossRef
26.
Zurück zum Zitat Maggio I, et al. Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Gene Ther. 2020;27(5):209–25.PubMedPubMedCentralCrossRef Maggio I, et al. Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Gene Ther. 2020;27(5):209–25.PubMedPubMedCentralCrossRef
27.
28.
30.
Zurück zum Zitat Zheng C, et al. A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver. Mol Ther. 2022;30(3):1343–51.PubMedPubMedCentralCrossRef Zheng C, et al. A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver. Mol Ther. 2022;30(3):1343–51.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Chen X, Gonçalves MAFV. Engineered viruses as genome editing devices. Mol Ther. 2016;24(3):447–57.PubMedCrossRef Chen X, Gonçalves MAFV. Engineered viruses as genome editing devices. Mol Ther. 2016;24(3):447–57.PubMedCrossRef
32.
34.
36.
Zurück zum Zitat Zhuang Y, et al. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat Chem Biol. 2022;18(1):29–37.PubMedCrossRef Zhuang Y, et al. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat Chem Biol. 2022;18(1):29–37.PubMedCrossRef
37.
Zurück zum Zitat Anzalone AV, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022;40(5):731–40.PubMedCrossRef Anzalone AV, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022;40(5):731–40.PubMedCrossRef
38.
Zurück zum Zitat Yarnall MTN, et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nature Biotechnology. 2023;41(4):500–12.PubMedCrossRef Yarnall MTN, et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nature Biotechnology. 2023;41(4):500–12.PubMedCrossRef
39.
Zurück zum Zitat Wang JL, et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nature Methods. 2022;19(3):331–40.PubMedCrossRef Wang JL, et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nature Methods. 2022;19(3):331–40.PubMedCrossRef
40.
Zurück zum Zitat Choi J, et al. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2022;40(2):218–26.PubMedCrossRef Choi J, et al. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2022;40(2):218–26.PubMedCrossRef
41.
42.
Zurück zum Zitat Jiang T, et al. Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol. 2022;40(2):227–34.PubMedCrossRef Jiang T, et al. Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol. 2022;40(2):227–34.PubMedCrossRef
43.
Zurück zum Zitat Kweon J, et al. Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol Ther. 2023;31(1):249–59.PubMedCrossRef Kweon J, et al. Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol Ther. 2023;31(1):249–59.PubMedCrossRef
44.
Zurück zum Zitat Tao R, et al. WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduct Target Ther. 2022;7(1):108.PubMedPubMedCentralCrossRef Tao R, et al. WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduct Target Ther. 2022;7(1):108.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38(7):824–44.PubMedCrossRef Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38(7):824–44.PubMedCrossRef
46.
Zurück zum Zitat HappiMbakam C, et al. Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Mol Ther Nucleic Acids. 2022;30:272–85.CrossRef HappiMbakam C, et al. Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Mol Ther Nucleic Acids. 2022;30:272–85.CrossRef
47.
Zurück zum Zitat HappiMbakam C, et al. Prime editing permits the introduction of specific mutations in the gene responsible for duchenne muscular dystrophy. Int J Mol Sci. 2022;23(11):6160.CrossRef HappiMbakam C, et al. Prime editing permits the introduction of specific mutations in the gene responsible for duchenne muscular dystrophy. Int J Mol Sci. 2022;23(11):6160.CrossRef
48.
Zurück zum Zitat Happi Mbakam C, et al. Prime editing strategies to mediate exon skipping in DMD gene. Front Med (Lausanne). 2023;10:1128557.PubMedCrossRef Happi Mbakam C, et al. Prime editing strategies to mediate exon skipping in DMD gene. Front Med (Lausanne). 2023;10:1128557.PubMedCrossRef
49.
Zurück zum Zitat Zhao X, et al. Comparison of in-frame deletion, homology-directed repair, and prime editing-based correction of duchenne muscular dystrophy mutations. Biomolecules. 2023;13(5):870.PubMedPubMedCentralCrossRef Zhao X, et al. Comparison of in-frame deletion, homology-directed repair, and prime editing-based correction of duchenne muscular dystrophy mutations. Biomolecules. 2023;13(5):870.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Wang Q, et al. Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Res. 2021;49(20):11986–2001.PubMedPubMedCentralCrossRef Wang Q, et al. Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Res. 2021;49(20):11986–2001.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Herrera-Barrera M, et al. Lipid nanoparticle-enabled intracellular delivery of prime editors. AAPS J. 2023;25(4):65.PubMedCrossRef Herrera-Barrera M, et al. Lipid nanoparticle-enabled intracellular delivery of prime editors. AAPS J. 2023;25(4):65.PubMedCrossRef
53.
Zurück zum Zitat Chemello F, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. 2021;7(18):eabg4910.PubMedPubMedCentralCrossRef Chemello F, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. 2021;7(18):eabg4910.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Nishiyama T, et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci Transl Med. 2022;14(672):eade1633.PubMedPubMedCentralCrossRef Nishiyama T, et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci Transl Med. 2022;14(672):eade1633.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Davis JR, et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat Biotechnol. 2024;42(2):253–64.PubMedCrossRef Davis JR, et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat Biotechnol. 2024;42(2):253–64.PubMedCrossRef
57.
Zurück zum Zitat Wu H, et al. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. Eur Heart J. 2019;40(45):3685–95.PubMedPubMedCentralCrossRef Wu H, et al. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. Eur Heart J. 2019;40(45):3685–95.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Rohani L, et al. Reversible mitochondrial fragmentation in iPSC-derived cardiomyocytes from children with DCMA, a mitochondrial cardiomyopathy. Can J Cardiol. 2020;36(4):554–63.PubMedCrossRef Rohani L, et al. Reversible mitochondrial fragmentation in iPSC-derived cardiomyocytes from children with DCMA, a mitochondrial cardiomyopathy. Can J Cardiol. 2020;36(4):554–63.PubMedCrossRef
59.
Zurück zum Zitat Shtrichman R, Germanguz I, Itskovitz-Eldor J. Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine. Curr Mol Med. 2013;13(5):792–805.PubMedCrossRef Shtrichman R, Germanguz I, Itskovitz-Eldor J. Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine. Curr Mol Med. 2013;13(5):792–805.PubMedCrossRef
60.
Zurück zum Zitat Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedCrossRef Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedCrossRef
61.
Zurück zum Zitat Yamanaka S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif. 2008;41(Suppl 1(Suppl 1)):51–6.PubMedCrossRef Yamanaka S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif. 2008;41(Suppl 1(Suppl 1)):51–6.PubMedCrossRef
62.
Zurück zum Zitat Lyra-Leite DM, et al. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc. 2022;3(3): 101560.PubMedPubMedCentralCrossRef Lyra-Leite DM, et al. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc. 2022;3(3): 101560.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Hausburg F, et al. (Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev. 2017;120:142–67.PubMedCrossRef Hausburg F, et al. (Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev. 2017;120:142–67.PubMedCrossRef
64.
Zurück zum Zitat Roden DM. Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med. 2006;259(1):59–69.PubMedCrossRef Roden DM. Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med. 2006;259(1):59–69.PubMedCrossRef
65.
Zurück zum Zitat Giudicessi JR, et al. Classification and reporting of potentially proarrhythmic common genetic variation in long QT syndrome genetic testing. Circulation. 2018;137(6):619–30.PubMedPubMedCentralCrossRef Giudicessi JR, et al. Classification and reporting of potentially proarrhythmic common genetic variation in long QT syndrome genetic testing. Circulation. 2018;137(6):619–30.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Belbachir N, et al. Studying long QT syndrome caused by NAA10 genetic variants using patient-derived induced pluripotent stem cells. Circulation. 2023;148(20):1598–601.PubMedPubMedCentralCrossRef Belbachir N, et al. Studying long QT syndrome caused by NAA10 genetic variants using patient-derived induced pluripotent stem cells. Circulation. 2023;148(20):1598–601.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Wang F, et al. In vitro drug screening using iPSC-derived cardiomyocytes of a long QT-syndrome patient carrying KCNQ1 & TRPM4 dual mutation: an experimental personalized treatment. Cells. 2022;11(16):2495.PubMedPubMedCentralCrossRef Wang F, et al. In vitro drug screening using iPSC-derived cardiomyocytes of a long QT-syndrome patient carrying KCNQ1 & TRPM4 dual mutation: an experimental personalized treatment. Cells. 2022;11(16):2495.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Bjerregaard P. Diagnosis and management of short QT syndrome. Heart Rhythm. 2018;15(8):1261–7.PubMedCrossRef Bjerregaard P. Diagnosis and management of short QT syndrome. Heart Rhythm. 2018;15(8):1261–7.PubMedCrossRef
69.
Zurück zum Zitat Guo F, et al. Patient-specific and gene-corrected induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of short QT syndrome. Circ Res. 2019;124(1):66–78.PubMedCrossRef Guo F, et al. Patient-specific and gene-corrected induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of short QT syndrome. Circ Res. 2019;124(1):66–78.PubMedCrossRef
70.
Zurück zum Zitat Arad M, Seidman JG, Seidman CE. Phenotypic diversity in hypertrophic cardiomyopathy. Hum Mol Genet. 2002;11(20):2499–506.PubMedCrossRef Arad M, Seidman JG, Seidman CE. Phenotypic diversity in hypertrophic cardiomyopathy. Hum Mol Genet. 2002;11(20):2499–506.PubMedCrossRef
71.
Zurück zum Zitat Zhou W, et al. Induced pluripotent stem cell-derived cardiomyocytes from a patient with MYL2-R58Q-mediated apical hypertrophic cardiomyopathy show hypertrophy, myofibrillar disarray, and calcium perturbations. J Cardiovasc Transl Res. 2019;12(5):394–403.PubMedCrossRef Zhou W, et al. Induced pluripotent stem cell-derived cardiomyocytes from a patient with MYL2-R58Q-mediated apical hypertrophic cardiomyopathy show hypertrophy, myofibrillar disarray, and calcium perturbations. J Cardiovasc Transl Res. 2019;12(5):394–403.PubMedCrossRef
72.
Zurück zum Zitat Dementyeva EV, et al. Applying patient-specific induced pluripotent stem cells to create a model of hypertrophic cardiomyopathy. Biochemistry (Mosc). 2019;84(3):291–8.PubMedCrossRef Dementyeva EV, et al. Applying patient-specific induced pluripotent stem cells to create a model of hypertrophic cardiomyopathy. Biochemistry (Mosc). 2019;84(3):291–8.PubMedCrossRef
73.
Zurück zum Zitat Kondo T, et al. Human-induced pluripotent stem cell-derived cardiomyocyte model for TNNT2 Delta160e-induced cardiomyopathy. Circ Genom Precis Med. 2022;15(5):e003522.PubMedPubMedCentralCrossRef Kondo T, et al. Human-induced pluripotent stem cell-derived cardiomyocyte model for TNNT2 Delta160e-induced cardiomyopathy. Circ Genom Precis Med. 2022;15(5):e003522.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Valtonen J, et al. The junctophilin-2 mutation p.(Thr161Lys) is associated with hypertrophic cardiomyopathy using patient-specific ips cardiomyocytes and demonstrates prolonged action potential and increased arrhythmogenicity. Biomedicines. 2023;11(6):1558.PubMedPubMedCentralCrossRef Valtonen J, et al. The junctophilin-2 mutation p.(Thr161Lys) is associated with hypertrophic cardiomyopathy using patient-specific ips cardiomyocytes and demonstrates prolonged action potential and increased arrhythmogenicity. Biomedicines. 2023;11(6):1558.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Nakhaei-Rad S, et al. Molecular and cellular evidence for the impact of a hypertrophic cardiomyopathy-associated RAF1 variant on the structure and function of contractile machinery in bioartificial cardiac tissues. Commun Biol. 2023;6(1):657.PubMedPubMedCentralCrossRef Nakhaei-Rad S, et al. Molecular and cellular evidence for the impact of a hypertrophic cardiomyopathy-associated RAF1 variant on the structure and function of contractile machinery in bioartificial cardiac tissues. Commun Biol. 2023;6(1):657.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Bozkurt B, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the american heart association. Circulation. 2016;134(23):e579–646.PubMedCrossRef Bozkurt B, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the american heart association. Circulation. 2016;134(23):e579–646.PubMedCrossRef
77.
Zurück zum Zitat Roura S, Bayes-Genis A. Vascular dysfunction in idiopathic dilated cardiomyopathy. Nat Rev Cardiol. 2009;6(9):590–8.PubMedCrossRef Roura S, Bayes-Genis A. Vascular dysfunction in idiopathic dilated cardiomyopathy. Nat Rev Cardiol. 2009;6(9):590–8.PubMedCrossRef
78.
Zurück zum Zitat Dai Y, et al. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients. Sci Rep. 2020;10(1):209.PubMedPubMedCentralCrossRef Dai Y, et al. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients. Sci Rep. 2020;10(1):209.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Badone B, et al. Characterization of the PLN p.Arg14del mutation in human induced pluripotent stem cell-derived cardiomyocytes. Int J Mol Sci. 2021;22(24):13500.PubMedPubMedCentralCrossRef Badone B, et al. Characterization of the PLN p.Arg14del mutation in human induced pluripotent stem cell-derived cardiomyocytes. Int J Mol Sci. 2021;22(24):13500.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Chavali NV, et al. Patient-independent human induced pluripotent stem cell model: a new tool for rapid determination of genetic variant pathogenicity in long QT syndrome. Heart Rhythm. 2019;16(11):1686–95.PubMedPubMedCentralCrossRef Chavali NV, et al. Patient-independent human induced pluripotent stem cell model: a new tool for rapid determination of genetic variant pathogenicity in long QT syndrome. Heart Rhythm. 2019;16(11):1686–95.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Maurissen TL, et al. Modeling mutation-specific arrhythmogenic phenotypes in isogenic human iPSC-derived cardiac tissues. Sci Rep. 2024;14(1):2586.PubMedPubMedCentralCrossRef Maurissen TL, et al. Modeling mutation-specific arrhythmogenic phenotypes in isogenic human iPSC-derived cardiac tissues. Sci Rep. 2024;14(1):2586.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Mesquita FCP, et al. R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome. Sci Rep. 2019;9(1):19203.PubMedPubMedCentralCrossRef Mesquita FCP, et al. R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome. Sci Rep. 2019;9(1):19203.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat McDermott-Roe C, et al. Investigation of a dilated cardiomyopathy-associated variant in BAG3 using genome-edited iPSC-derived cardiomyocytes. JCI Insight. 2019;4(22):e128799.PubMedPubMedCentralCrossRef McDermott-Roe C, et al. Investigation of a dilated cardiomyopathy-associated variant in BAG3 using genome-edited iPSC-derived cardiomyocytes. JCI Insight. 2019;4(22):e128799.PubMedPubMedCentralCrossRef
84.
85.
Zurück zum Zitat Yang L, et al. Adenine base editor-based correction of the cardiac pathogenic Lmna c.1621C > T mutation in murine hearts. J Cell Mol Med. 2024;28(4):e18145.PubMedPubMedCentralCrossRef Yang L, et al. Adenine base editor-based correction of the cardiac pathogenic Lmna c.1621C > T mutation in murine hearts. J Cell Mol Med. 2024;28(4):e18145.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Ma S, et al. Efficient correction of a hypertrophic cardiomyopathy mutation by ABEmax-NG. Circ Res. 2021;129(10):895–908.PubMedCrossRef Ma S, et al. Efficient correction of a hypertrophic cardiomyopathy mutation by ABEmax-NG. Circ Res. 2021;129(10):895–908.PubMedCrossRef
88.
Zurück zum Zitat Yu JK, et al. Assessment of arrhythmia mechanism and burden of the infarcted ventricles following remuscularization with pluripotent stem cell-derived cardiomyocyte patches using patient-derived models. Cardiovasc Res. 2022;118(5):1247–61.PubMedCrossRef Yu JK, et al. Assessment of arrhythmia mechanism and burden of the infarcted ventricles following remuscularization with pluripotent stem cell-derived cardiomyocyte patches using patient-derived models. Cardiovasc Res. 2022;118(5):1247–61.PubMedCrossRef
89.
Zurück zum Zitat Kawamura T, et al. Safety confirmation of induced pluripotent stem cell-derived cardiomyocyte patch transplantation for ischemic cardiomyopathy: first three case reports. Front Cardiovasc Med. 2023;10:1182209.PubMedPubMedCentralCrossRef Kawamura T, et al. Safety confirmation of induced pluripotent stem cell-derived cardiomyocyte patch transplantation for ischemic cardiomyopathy: first three case reports. Front Cardiovasc Med. 2023;10:1182209.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Miyagawa S, et al. Pre-clinical evaluation of the efficacy and safety of human induced pluripotent stem cell-derived cardiomyocyte patch. Stem Cell Res Ther. 2024;15(1):73.PubMedPubMedCentralCrossRef Miyagawa S, et al. Pre-clinical evaluation of the efficacy and safety of human induced pluripotent stem cell-derived cardiomyocyte patch. Stem Cell Res Ther. 2024;15(1):73.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Kim HK, et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat Biotechnol. 2021;39(2):198–206.PubMedCrossRef Kim HK, et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat Biotechnol. 2021;39(2):198–206.PubMedCrossRef
92.
Zurück zum Zitat Bish LT, et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther. 2008;19(12):1359–68.PubMedPubMedCentralCrossRef Bish LT, et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther. 2008;19(12):1359–68.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Chen BD, et al. Targeting transgene to the heart and liver with AAV9 by different promoters. Clin Exp Pharmacol Physiol. 2015;42(10):1108–17.PubMedCrossRef Chen BD, et al. Targeting transgene to the heart and liver with AAV9 by different promoters. Clin Exp Pharmacol Physiol. 2015;42(10):1108–17.PubMedCrossRef
94.
Zurück zum Zitat Cheng Q, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15(4):313–20.PubMedPubMedCentralCrossRef Cheng Q, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15(4):313–20.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Zhi S, et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Ther. 2022;30(1):283–94.PubMedCrossRef Zhi S, et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Ther. 2022;30(1):283–94.PubMedCrossRef
96.
Zurück zum Zitat Tasca F, et al. Large-scale genome editing based on high-capacity adenovectors and CRISPR-Cas9 nucleases rescues full-length dystrophin synthesis in DMD muscle cells. Nucleic Acids Res. 2022;50(13):7761–82.PubMedPubMedCentralCrossRef Tasca F, et al. Large-scale genome editing based on high-capacity adenovectors and CRISPR-Cas9 nucleases rescues full-length dystrophin synthesis in DMD muscle cells. Nucleic Acids Res. 2022;50(13):7761–82.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Aulicino F, et al. Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Res. 2022;50(13):7783–99.PubMedPubMedCentralCrossRef Aulicino F, et al. Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Res. 2022;50(13):7783–99.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat An M, et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol. 2024. An M, et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol. 2024.
99.
Zurück zum Zitat Chirico N, et al. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2022;13(1):531.PubMedPubMedCentralCrossRef Chirico N, et al. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2022;13(1):531.PubMedPubMedCentralCrossRef
Metadaten
Titel
Integrating Prime Editing and Cellular Reprogramming as Novel Strategies for Genetic Cardiac Disease Modeling and Treatment
verfasst von
Bing Yao
Zhiyong Lei
Manuel A. F. V. Gonçalves
Joost P. G. Sluijter
Publikationsdatum
11.09.2024
Verlag
Springer US
Erschienen in
Current Cardiology Reports / Ausgabe 11/2024
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-024-02118-2

Weitere Artikel der Ausgabe 11/2024

Acute Pulmonary Embolism: Evidence, Innovation, and Horizons

  • Peripheral Vascular Disease (S Kinlay, Section Editor)

Chronic Venous Insufficiency Evaluation and Medical Management

  • Peripheral Vascular Disease (S Kinlay, Section Editor)

Healthy Lifestyle and Cardiac Rehabilitation for Weight Loss

  • Cardiometabolic Disease (DM and CV) (CJ Lavie, Section Editor)

Tackling the Disproportionate Burden of Resistant Hypertension in US Black Adults

  • Open Access
  • Hypertension (DS Geller and DL Cohen, Section Editors)

Echocardiography in Systemic Lupus Erythematosus

  • Echocardiography (JM Gardin and AH Waller, Section Editors)

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Kardiologie

Lp(a) zur Risikoeinschätzung bei Thoraxschmerzen

Der Lp(a)-Wert kann dazu beitragen, bei stabilen Patienten mit neu aufgetretenen Thoraxschmerzen und ohne KHK-Diagnose die Wahrscheinlichkeit für das Vorliegen von Koronarstenosen abzuschätzen.

Finerenon bei eGFR-Verlust nicht gleich absetzen!

Der Mineralokortikoid-Rezeptor-Antagonist Finerenon verbessert die Prognose bei Herzinsuffizienz mit leicht reduzierter oder erhaltener Ejektionsfraktion. Ein Rückgang der eGFR zu Beginn der Therapie scheint diese Wirkung nicht wesentlich zu mindern.

LVAD auch bei kalt-trockener terminaler Herzinsuffizienz wirksam

Auch Personen mit kalt-trockener terminaler Herzinsuffizienz profitieren von einem linksventrikulären Unterstützungssystem (LVAD), wie Daten aus einem US-Register nahelegen. Doch es gibt Besonderheiten.     

Koronare Herzkrankheit: Das waren die Top-Studien 2024

Zum Thema Koronare Herzkrankheit gab es 2024 wichtige neue Studien. Beleuchtet wurden darin unter anderem der Stellenwert von Betablockern nach Herzinfarkt, neue Optionen für eine Lipidsenkung sowie die Therapie bei infarktbedingtem kardiogenem Schock.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.