Skip to main content
Erschienen in: Medical Oncology 1/2021

01.01.2021 | Original Paper

Integration of gene expression data identifies key genes and pathways in colorectal cancer

verfasst von: Hossein Hozhabri, Ali Lashkari, Seyed-Morteza Razavi, Ali Mohammadian

Erschienen in: Medical Oncology | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Colorectal cancer (CRC) is one of the most common malignant tumor and prevalent cause of cancer-related death worldwide. In this study, we analyzed the gene expression profiles of patients with CRC with the aim of better understanding the molecular mechanism and key genes in CRC. Four gene expression profiles including, GSE9348, GSE41328, GSE41657, and GSE113513 were downloaded from GEO database. The data were processed using R programming language, in which 319 common differentially expressed genes including 94 up-regulated and 225 down-regulated were identified. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were conducted to find the most significant enriched pathways in CRC. Based on the GO and KEGG pathway analysis, the most important dysregulated pathways were regulation of cell proliferation, biocarbonate transport, Wnt, and IL-17 signaling pathways, and nitrogen metabolism. The protein–protein interaction (PPI) network of the DEGs was constructed using Cytoscape software and hub genes including MYC, CXCL1, CD44, MMP1, and CXCL12 were identified as the most critical hub genes. The present study enhances our understanding of the molecular mechanisms of the CRC, which might potentially be applied in the treatment strategies of CRC as molecular targets and diagnostic biomarkers.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145–64.PubMed Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145–64.PubMed
2.
Zurück zum Zitat Guo Y, Bao Y, Ma M, Yang W. Identification of key candidate genes and pathways in colorectal cancer by integrated bioinformatical analysis. Int J Mol Sci. 2017;18(4):722.PubMedCentral Guo Y, Bao Y, Ma M, Yang W. Identification of key candidate genes and pathways in colorectal cancer by integrated bioinformatical analysis. Int J Mol Sci. 2017;18(4):722.PubMedCentral
3.
Zurück zum Zitat Liang B, Li C, Zhao J. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis. Med Oncol. 2016;33(10):111.PubMed Liang B, Li C, Zhao J. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis. Med Oncol. 2016;33(10):111.PubMed
4.
Zurück zum Zitat Lv J, Li L. Hub genes and key pathway identification in colorectal cancer based on bioinformatic analysis. BioMed Res Int. 2019;2019:1545680.PubMedPubMedCentral Lv J, Li L. Hub genes and key pathway identification in colorectal cancer based on bioinformatic analysis. BioMed Res Int. 2019;2019:1545680.PubMedPubMedCentral
5.
Zurück zum Zitat Mohapatra SK, Krishnan A. Microarray data analysis. Plant reverse genetics. Totowa: Humana Press; 2011. p. 27–43. Mohapatra SK, Krishnan A. Microarray data analysis. Plant reverse genetics. Totowa: Humana Press; 2011. p. 27–43.
6.
Zurück zum Zitat Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.PubMed Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.PubMed
7.
Zurück zum Zitat Smyth GK. Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 397–420. Smyth GK. Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 397–420.
8.
Zurück zum Zitat Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.PubMedPubMedCentral Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.PubMedPubMedCentral
9.
10.
Zurück zum Zitat Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.PubMedPubMedCentral Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.PubMedPubMedCentral
11.
Zurück zum Zitat Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–52.PubMed Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–52.PubMed
12.
Zurück zum Zitat Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4(1):2. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4(1):2.
13.
Zurück zum Zitat Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BV, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.PubMedPubMedCentral Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BV, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.PubMedPubMedCentral
14.
Zurück zum Zitat Sakai E, Fukuyo M, Ohata K, Matsusaka K, Doi N, Mano Y, et al. Genetic and epigenetic aberrations occurring in colorectal tumors associated with serrated pathway. Int J Cancer. 2016;138(7):1634–44.PubMed Sakai E, Fukuyo M, Ohata K, Matsusaka K, Doi N, Mano Y, et al. Genetic and epigenetic aberrations occurring in colorectal tumors associated with serrated pathway. Int J Cancer. 2016;138(7):1634–44.PubMed
15.
Zurück zum Zitat Lu W, Li N, Liao F. Identification of key genes and pathways in pancreatic cancer gene expression profile by integrative analysis. Genes. 2019;10(8):612.PubMedCentral Lu W, Li N, Liao F. Identification of key genes and pathways in pancreatic cancer gene expression profile by integrative analysis. Genes. 2019;10(8):612.PubMedCentral
16.
Zurück zum Zitat Huang Q, Wu L-Y, Wang Y, Zhang X-S. GOMA: functional enrichment analysis tool based on GO modules. Chin J Cancer. 2013;32(4):195.PubMedPubMedCentral Huang Q, Wu L-Y, Wang Y, Zhang X-S. GOMA: functional enrichment analysis tool based on GO modules. Chin J Cancer. 2013;32(4):195.PubMedPubMedCentral
17.
Zurück zum Zitat Perez R, Wu N, Klipfel AA, Beart RW. A better cell cycle target for gene therapy of colorectal cancer: cyclin G. J Gastrointest Surg. 2003;7(7):884–9.PubMed Perez R, Wu N, Klipfel AA, Beart RW. A better cell cycle target for gene therapy of colorectal cancer: cyclin G. J Gastrointest Surg. 2003;7(7):884–9.PubMed
18.
Zurück zum Zitat Tominaga O, Nita ME, Nagawa H, Fujii S, Tsuruo T, Muto T. Expressions of cell cycle regulators in human colorectal cancer cell lines. Jpn J Cancer Res. 1997;88(9):855–60.PubMedPubMedCentral Tominaga O, Nita ME, Nagawa H, Fujii S, Tsuruo T, Muto T. Expressions of cell cycle regulators in human colorectal cancer cell lines. Jpn J Cancer Res. 1997;88(9):855–60.PubMedPubMedCentral
19.
Zurück zum Zitat Djamgoz MB, Coombes RC, Schwab A. Ion transport and cancer: from initiation to metastasis. London: The Royal Society; 2014. Djamgoz MB, Coombes RC, Schwab A. Ion transport and cancer: from initiation to metastasis. London: The Royal Society; 2014.
20.
Zurück zum Zitat Han B, Feng D, Yu X, Zhang Y, Liu Y, Zhou L. Identification and interaction analysis of molecular markers in colorectal cancer by integrated bioinformatics analysis. Med Sci Monit. 2018;24:6067.PubMedCentral Han B, Feng D, Yu X, Zhang Y, Liu Y, Zhou L. Identification and interaction analysis of molecular markers in colorectal cancer by integrated bioinformatics analysis. Med Sci Monit. 2018;24:6067.PubMedCentral
21.
Zurück zum Zitat Chen S, Wang Y, Zhang L, Su Y, Zhang M, Wang J, et al. Exploration of the mechanism of colorectal cancer metastasis using microarray analysis. Oncol Lett. 2017;14(6):6671–7.PubMedPubMedCentral Chen S, Wang Y, Zhang L, Su Y, Zhang M, Wang J, et al. Exploration of the mechanism of colorectal cancer metastasis using microarray analysis. Oncol Lett. 2017;14(6):6671–7.PubMedPubMedCentral
22.
Zurück zum Zitat Al-Rawi M, Rmali K, Watkins G, Mansel R, Jiang W. Aberrant expression of interleukin-7 (IL-7) and its signalling complex in human breast cancer. Eur J Cancer. 2004;40(4):494–502.PubMed Al-Rawi M, Rmali K, Watkins G, Mansel R, Jiang W. Aberrant expression of interleukin-7 (IL-7) and its signalling complex in human breast cancer. Eur J Cancer. 2004;40(4):494–502.PubMed
23.
Zurück zum Zitat Wu D, Wu P, Huang Q, Liu Y, Ye J, Huang J. Interleukin-17: a promoter in colorectal cancer progression. Clin Dev Immunol. 2013;2013:436307.PubMedPubMedCentral Wu D, Wu P, Huang Q, Liu Y, Ye J, Huang J. Interleukin-17: a promoter in colorectal cancer progression. Clin Dev Immunol. 2013;2013:436307.PubMedPubMedCentral
24.
Zurück zum Zitat Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol. 2005;175(9):6177–89.PubMed Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol. 2005;175(9):6177–89.PubMed
25.
Zurück zum Zitat Benevides L, Cardoso CR, Tiezzi DG, Marana HR, Andrade JM, Silva JS. Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 2013;43(6):1518–28.PubMed Benevides L, Cardoso CR, Tiezzi DG, Marana HR, Andrade JM, Silva JS. Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 2013;43(6):1518–28.PubMed
26.
Zurück zum Zitat Li C, Zeng X, Yu H, Gu Y, Zhang W. Identification of hub genes with diagnostic values in pancreatic cancer by bioinformatics analyses and supervised learning methods. World J Surg Oncol. 2018;16(1):223.PubMedPubMedCentral Li C, Zeng X, Yu H, Gu Y, Zhang W. Identification of hub genes with diagnostic values in pancreatic cancer by bioinformatics analyses and supervised learning methods. World J Surg Oncol. 2018;16(1):223.PubMedPubMedCentral
27.
Zurück zum Zitat Zhao ZW, Fan XX, Yang LL, Song JJ, Fang SJ, Tu JF, et al. The identification of a common different gene expression signature in patients with colorectal cancer. Math Biosci Eng. 2019;16(4):2942–58.PubMed Zhao ZW, Fan XX, Yang LL, Song JJ, Fang SJ, Tu JF, et al. The identification of a common different gene expression signature in patients with colorectal cancer. Math Biosci Eng. 2019;16(4):2942–58.PubMed
28.
Zurück zum Zitat Liu J, Li H, Sun L, Shen S, Zhou Q, Yuan Y, et al. Epigenetic alternations of MicroRNAs and DNA methylation contribute to liver metastasis of colorectal cancer. Dig Dis Sci. 2019;64(6):1523–34.PubMed Liu J, Li H, Sun L, Shen S, Zhou Q, Yuan Y, et al. Epigenetic alternations of MicroRNAs and DNA methylation contribute to liver metastasis of colorectal cancer. Dig Dis Sci. 2019;64(6):1523–34.PubMed
29.
Zurück zum Zitat Carter AB, Misyak SA, Hontecillas R, Bassaganya-Riera J. Dietary modulation of inflammation-induced colorectal cancer through PPAR. PPAR Res. 2009;2009:498352.PubMedPubMedCentral Carter AB, Misyak SA, Hontecillas R, Bassaganya-Riera J. Dietary modulation of inflammation-induced colorectal cancer through PPAR. PPAR Res. 2009;2009:498352.PubMedPubMedCentral
30.
Zurück zum Zitat Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y. CD44 in cancer. Crit Rev Clin Lab Sci. 2002;39(6):527–79.PubMed Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y. CD44 in cancer. Crit Rev Clin Lab Sci. 2002;39(6):527–79.PubMed
31.
Zurück zum Zitat Wang Z, Tang Y, Xie L, Huang A, Xue C, Gu Z, et al. The prognostic and clinical value of CD44 in colorectal cancer: a meta-analysis. Front Oncol. 2019;9:309.PubMedPubMedCentral Wang Z, Tang Y, Xie L, Huang A, Xue C, Gu Z, et al. The prognostic and clinical value of CD44 in colorectal cancer: a meta-analysis. Front Oncol. 2019;9:309.PubMedPubMedCentral
32.
Zurück zum Zitat Du L, Wang H, He L, Zhang J, Ni B, Wang X, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14(21):6751–60.PubMed Du L, Wang H, He L, Zhang J, Ni B, Wang X, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14(21):6751–60.PubMed
33.
Zurück zum Zitat Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem. 2004;279(26):26991–7007.PubMed Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem. 2004;279(26):26991–7007.PubMed
34.
Zurück zum Zitat Harada N, Mizoi T, Kinouchi M, Hoshi K, Ishii S, Shiiba K, et al. Introduction of antisense CD44s cDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int J Cancer. 2001;91(1):67–75.PubMed Harada N, Mizoi T, Kinouchi M, Hoshi K, Ishii S, Shiiba K, et al. Introduction of antisense CD44s cDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int J Cancer. 2001;91(1):67–75.PubMed
35.
Zurück zum Zitat Murray GI, Duncan ME, O’Neil P, Melvin WT, Fothergill JE. Matrix metalloproteinase–1 is associated with poor prognosis in colorectal cancer. Nat Med. 1996;2(4):461–2.PubMed Murray GI, Duncan ME, O’Neil P, Melvin WT, Fothergill JE. Matrix metalloproteinase–1 is associated with poor prognosis in colorectal cancer. Nat Med. 1996;2(4):461–2.PubMed
36.
37.
Zurück zum Zitat Melhem MF, Meisler AI, Finley GG, Bryce WH, Jones MO, Tribby II, et al. Distribution of cells expressing myc proteins in human colorectal epithelium, polyps, and malignant tumors. Cancer Res. 1992;52(21):5853–64.PubMed Melhem MF, Meisler AI, Finley GG, Bryce WH, Jones MO, Tribby II, et al. Distribution of cells expressing myc proteins in human colorectal epithelium, polyps, and malignant tumors. Cancer Res. 1992;52(21):5853–64.PubMed
38.
Zurück zum Zitat Satoh K, Yachida S, Sugimoto M, Oshima M, Nakagawa T, Akamoto S, et al. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc Natl Acad Sci. 2017;114(37):E7697–706.PubMedPubMedCentral Satoh K, Yachida S, Sugimoto M, Oshima M, Nakagawa T, Akamoto S, et al. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc Natl Acad Sci. 2017;114(37):E7697–706.PubMedPubMedCentral
39.
Zurück zum Zitat Gu L, Chu P, Lingeman R, McDaniel H, Kechichian S, Hickey RJ, et al. The mechanism by which MYCN amplification confers an enhanced sensitivity to a PCNA-derived cell permeable peptide in neuroblastoma cells. EBioMedicine. 2015;2(12):1923–31.PubMedPubMedCentral Gu L, Chu P, Lingeman R, McDaniel H, Kechichian S, Hickey RJ, et al. The mechanism by which MYCN amplification confers an enhanced sensitivity to a PCNA-derived cell permeable peptide in neuroblastoma cells. EBioMedicine. 2015;2(12):1923–31.PubMedPubMedCentral
41.
Zurück zum Zitat Kong D-J, Qin Y-F, Li G-M, Zhao Y-M, Hao J-P, Wang H. Identification of hub gene TIMP1 and relative ceRNAs regulatory network in colorectal cancer. 2020. Kong D-J, Qin Y-F, Li G-M, Zhao Y-M, Hao J-P, Wang H. Identification of hub gene TIMP1 and relative ceRNAs regulatory network in colorectal cancer. 2020.
42.
Zurück zum Zitat Hsu Y-L, Chen Y-J, Chang W-A, Jian S-F, Fan H-L, Wang J-Y, et al. Interaction between tumor-associated dendritic cells and colon cancer cells contributes to tumor progression via CXCL1. Int J Mol Sci. 2018;19(8):2427.PubMedCentral Hsu Y-L, Chen Y-J, Chang W-A, Jian S-F, Fan H-L, Wang J-Y, et al. Interaction between tumor-associated dendritic cells and colon cancer cells contributes to tumor progression via CXCL1. Int J Mol Sci. 2018;19(8):2427.PubMedCentral
43.
Zurück zum Zitat le Rolle A-F, Chiu TK, Fara M, Shia J, Zeng Z, Weiser MR, et al. The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. J Trans Med. 2015;13(1):1–12. le Rolle A-F, Chiu TK, Fara M, Shia J, Zeng Z, Weiser MR, et al. The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. J Trans Med. 2015;13(1):1–12.
44.
Zurück zum Zitat Nagasawa T. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med. 2014;92(5):433–9.PubMed Nagasawa T. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med. 2014;92(5):433–9.PubMed
45.
Zurück zum Zitat Wendt MK, Johanesen PA, Kang-Decker N, Binion DG, Shah V, Dwinell MB. Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene. 2006;25(36):4986–97.PubMedPubMedCentral Wendt MK, Johanesen PA, Kang-Decker N, Binion DG, Shah V, Dwinell MB. Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene. 2006;25(36):4986–97.PubMedPubMedCentral
46.
Zurück zum Zitat Chen L, Pan X, Hu X, Zhang YH, Wang S, Huang T, et al. G ene expression differences among different MSI statuses in colorectal cancer. Int J Cancer. 2018;143(7):1731–40.PubMed Chen L, Pan X, Hu X, Zhang YH, Wang S, Huang T, et al. G ene expression differences among different MSI statuses in colorectal cancer. Int J Cancer. 2018;143(7):1731–40.PubMed
47.
Zurück zum Zitat Ma Y-S, Huang T, Zhong X-M, Zhang H-W, Cong X-L, Xu H, et al. Proteogenomic characterization and comprehensive integrative genomic analysis of human colorectal cancer liver metastasis. Mol Cancer. 2018;17(1):139.PubMedPubMedCentral Ma Y-S, Huang T, Zhong X-M, Zhang H-W, Cong X-L, Xu H, et al. Proteogenomic characterization and comprehensive integrative genomic analysis of human colorectal cancer liver metastasis. Mol Cancer. 2018;17(1):139.PubMedPubMedCentral
48.
Zurück zum Zitat Zhang G-L, Pan L-L, Huang T, Wang J-H. The transcriptome difference between colorectal tumor and normal tissues revealed by single-cell sequencing. J Cancer. 2019;10(23):5883.PubMedPubMedCentral Zhang G-L, Pan L-L, Huang T, Wang J-H. The transcriptome difference between colorectal tumor and normal tissues revealed by single-cell sequencing. J Cancer. 2019;10(23):5883.PubMedPubMedCentral
49.
Zurück zum Zitat Zhang TM, Huang T, Wang RF. Cross talk of chromosome instability, CpG island methylator phenotype and mismatch repair in colorectal cancer. Oncol Lett. 2018;16(2):1736–46.PubMedPubMedCentral Zhang TM, Huang T, Wang RF. Cross talk of chromosome instability, CpG island methylator phenotype and mismatch repair in colorectal cancer. Oncol Lett. 2018;16(2):1736–46.PubMedPubMedCentral
50.
Zurück zum Zitat Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330.
51.
Zurück zum Zitat Li B-Q, Huang T, Liu L, Cai Y-D, Chou K-C. Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network. PLoS ONE. 2012;7(4):e33393.PubMedPubMedCentral Li B-Q, Huang T, Liu L, Cai Y-D, Chou K-C. Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network. PLoS ONE. 2012;7(4):e33393.PubMedPubMedCentral
52.
Zurück zum Zitat Jiang Y, Huang T, Chen L, Gao Y-F, Cai Y, Chou K-C. Signal propagation in protein interaction network during colorectal cancer progression. BioMed Res Int. 2013;2013:287019.PubMedPubMedCentral Jiang Y, Huang T, Chen L, Gao Y-F, Cai Y, Chou K-C. Signal propagation in protein interaction network during colorectal cancer progression. BioMed Res Int. 2013;2013:287019.PubMedPubMedCentral
53.
Zurück zum Zitat Li B-Q, Huang T, Zhang J, Zhang N, Huang G-H, Liu L, et al. An ensemble prognostic model for colorectal cancer. PLoS ONE. 2013;8(5):e63494.PubMedPubMedCentral Li B-Q, Huang T, Zhang J, Zhang N, Huang G-H, Liu L, et al. An ensemble prognostic model for colorectal cancer. PLoS ONE. 2013;8(5):e63494.PubMedPubMedCentral
Metadaten
Titel
Integration of gene expression data identifies key genes and pathways in colorectal cancer
verfasst von
Hossein Hozhabri
Ali Lashkari
Seyed-Morteza Razavi
Ali Mohammadian
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 1/2021
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-020-01448-9

Weitere Artikel der Ausgabe 1/2021

Medical Oncology 1/2021 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.