Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2012

01.06.2012 | NON-THEMATIC REVIEW

Integrin-epigenetics: a system with imperative impact on cancer

verfasst von: Moonmoon Deb, Dipta Sengupta, Samir Kumar Patra

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2012

Einloggen, um Zugang zu erhalten

Abstract

Integrin-associated signaling is a crucial signaling network in mammalian cells. Thousands of molecules are involved in this signaling network. For example, the RTK, Src-family kinase, Ras, Wnt-, Notch-, and Raft/caveolae-mediated signaling pathways are related to integrin signaling. Integrin signaling is also associated with direct involvement of lipid rafts. Tumor formation, angiogenesis, metastasis, and attachment to distant tissues are largely associated with integrin signaling. Recent evidence has indicated that integrin expression and its functions are tightly regulated by epigenetic mechanisms (modifications of DNA and histones). Aberrations in these epigenetic regulation patterns are frequently associated with the development of various diseases, including cancer. In this review, we discuss influences of integrin signaling along with their epigenetic relationship on other signals of a normal functioning cell and its dysregulation in cancer.
Literatur
1.
Zurück zum Zitat Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.PubMedCrossRef Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.PubMedCrossRef
2.
3.
Zurück zum Zitat Springer, T. A. (1997). Folding of the N-terminal, ligand-binding region of integrin α-subunits into a b-propeller domain. PNAS, 94, 65–72.PubMedCrossRef Springer, T. A. (1997). Folding of the N-terminal, ligand-binding region of integrin α-subunits into a b-propeller domain. PNAS, 94, 65–72.PubMedCrossRef
4.
Zurück zum Zitat Luo, B. H., Carman, C. V., & Springer, T. A. (2007). Structural basis of integrin regulation and signaling. Annual Review of Immunology, 25, 619–647.PubMedCrossRef Luo, B. H., Carman, C. V., & Springer, T. A. (2007). Structural basis of integrin regulation and signaling. Annual Review of Immunology, 25, 619–647.PubMedCrossRef
5.
Zurück zum Zitat Arnaout, M. A., Mahalingam, B., & Xiong, J. P. (2005). Integrin structure, allostery, and bidirectional signaling. Annual Review of Cell and Developmental Biology, 21, 381–410.PubMedCrossRef Arnaout, M. A., Mahalingam, B., & Xiong, J. P. (2005). Integrin structure, allostery, and bidirectional signaling. Annual Review of Cell and Developmental Biology, 21, 381–410.PubMedCrossRef
6.
Zurück zum Zitat Springer, T. A. (2006). Complement and the multifaceted functions of VWA and integrin I domains. Structure, 14, 1611–1616.PubMedCrossRef Springer, T. A. (2006). Complement and the multifaceted functions of VWA and integrin I domains. Structure, 14, 1611–1616.PubMedCrossRef
8.
Zurück zum Zitat Wehrle-Haller, B., & Imhof, B. A. (2003). Integrin-dependent pathologies. The Journal of Pathology, 200, 481–487.PubMedCrossRef Wehrle-Haller, B., & Imhof, B. A. (2003). Integrin-dependent pathologies. The Journal of Pathology, 200, 481–487.PubMedCrossRef
9.
Zurück zum Zitat Schwartz, M. A., & Ginsberg, M. H. (2002). Networks and crosstalk: integrin signaling spreads. Nature Cell Biology, 4, E65–E68.PubMedCrossRef Schwartz, M. A., & Ginsberg, M. H. (2002). Networks and crosstalk: integrin signaling spreads. Nature Cell Biology, 4, E65–E68.PubMedCrossRef
10.
Zurück zum Zitat White, D. E., Kurpios, N. A., Zuo, D., Hassell, J. A., Blaess, S., Mueller, U., & Muller, W. J. (2004). Targeted disruption of beta-1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumour induction. Cancer Cell, 6, 159–170.PubMedCrossRef White, D. E., Kurpios, N. A., Zuo, D., Hassell, J. A., Blaess, S., Mueller, U., & Muller, W. J. (2004). Targeted disruption of beta-1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumour induction. Cancer Cell, 6, 159–170.PubMedCrossRef
11.
Zurück zum Zitat Leung, K. (2010). 64Cu-1,4,7,10-Tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid agouti-related protein-7 C. In: Molecular Imaging and Contrast Agent Database (MICAD) Leung, K. (2010). 64Cu-1,4,7,10-Tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid agouti-related protein-7 C. In: Molecular Imaging and Contrast Agent Database (MICAD)
12.
Zurück zum Zitat Kim, Y. B., Lee, S. Y., Ye, S. K., & Le, J. W. (2007). Epigenetic regulation of integrin-linked kinase expression depending on adhesion of gastric carcinoma cells. American Journal of Physiology—Cell Physiology, 292, C857–C866.PubMedCrossRef Kim, Y. B., Lee, S. Y., Ye, S. K., & Le, J. W. (2007). Epigenetic regulation of integrin-linked kinase expression depending on adhesion of gastric carcinoma cells. American Journal of Physiology—Cell Physiology, 292, C857–C866.PubMedCrossRef
13.
Zurück zum Zitat Yang, X., Pursell, B., Lu, S., Chang, T. K., & Mercurio, A. M. (2009). Regulation of β4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition. Journal of Cell Science, 122, 2473–2480.PubMedCrossRef Yang, X., Pursell, B., Lu, S., Chang, T. K., & Mercurio, A. M. (2009). Regulation of β4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition. Journal of Cell Science, 122, 2473–2480.PubMedCrossRef
14.
Zurück zum Zitat Gorlov, I. P., Byun, J., Gorlova, O. Y., Aparicio, A. M., Efstathiou, E., & Logothetis, C. J. (2009). Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data. BMC Medical Genomics, 2, 48.PubMedCrossRef Gorlov, I. P., Byun, J., Gorlova, O. Y., Aparicio, A. M., Efstathiou, E., & Logothetis, C. J. (2009). Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data. BMC Medical Genomics, 2, 48.PubMedCrossRef
15.
Zurück zum Zitat Fong, Y. C., Hsud, S. F., Wu, C. L., Li, T. M., Kao, S. T., Tsai, F. J., Chen, W. C., Liu, S. C., Wu, C. M., & Tang, C. H. (2009). Transforming growth factor-β1 increases cell migration and β1 integrin up-regulation in human lung cancer cells. Lung Cancer, 64, 13–21.PubMedCrossRef Fong, Y. C., Hsud, S. F., Wu, C. L., Li, T. M., Kao, S. T., Tsai, F. J., Chen, W. C., Liu, S. C., Wu, C. M., & Tang, C. H. (2009). Transforming growth factor-β1 increases cell migration and β1 integrin up-regulation in human lung cancer cells. Lung Cancer, 64, 13–21.PubMedCrossRef
16.
Zurück zum Zitat Fong, Y. C., Liu, S. C., Huang, C. Y., Li, T. M., Hsu, S. F., Kao, S. T., Tsai, F. J., Chen, W. C., Chen, C. Y., & Tang, C. H. (2009). Osteopontin increases lung cancer cells migration via activation of the αvβ3 integrin/FAK/Akt and NF-κB-dependent pathway. Lung Cancer, 64, 263–270.PubMedCrossRef Fong, Y. C., Liu, S. C., Huang, C. Y., Li, T. M., Hsu, S. F., Kao, S. T., Tsai, F. J., Chen, W. C., Chen, C. Y., & Tang, C. H. (2009). Osteopontin increases lung cancer cells migration via activation of the αvβ3 integrin/FAK/Akt and NF-κB-dependent pathway. Lung Cancer, 64, 263–270.PubMedCrossRef
17.
Zurück zum Zitat Lau, D., Guo, L., Liu, R., Marik, J., & Lam, K. (2006). Peptide ligands targeting integrin α3β1 in non-small cell lung cancer. Lung Cancer, 52, 291–297.PubMedCrossRef Lau, D., Guo, L., Liu, R., Marik, J., & Lam, K. (2006). Peptide ligands targeting integrin α3β1 in non-small cell lung cancer. Lung Cancer, 52, 291–297.PubMedCrossRef
18.
Zurück zum Zitat Okamura, M., Yamaji, S., Nagashima, Y., Nishikawa, M., Yoshimoto, N., Kido, Y., Iemoto, Y., Aoki, I., & Ishigatsubo, Y. (2007). Prognostic value of integrin β1-ILK-pAkt signaling pathway in non-small cell lung cancer. Human Pathology, 32, 1081–1091.CrossRef Okamura, M., Yamaji, S., Nagashima, Y., Nishikawa, M., Yoshimoto, N., Kido, Y., Iemoto, Y., Aoki, I., & Ishigatsubo, Y. (2007). Prognostic value of integrin β1-ILK-pAkt signaling pathway in non-small cell lung cancer. Human Pathology, 32, 1081–1091.CrossRef
19.
Zurück zum Zitat Brown, K. E., & Yamada, K. M. (1995). The role of integrins during vertebrate development. Sem Dev Biol, 6, 69–77.CrossRef Brown, K. E., & Yamada, K. M. (1995). The role of integrins during vertebrate development. Sem Dev Biol, 6, 69–77.CrossRef
20.
Zurück zum Zitat Kim, H., Nakamura, F., Lee, W., Hong, C., Pérez-Sala, D., & McCulloch, C. A. (2010). Regulation of cell adhesion to collagen via β1 integrins is dependent on interactions of filamin A with vimentin and protein kinase C epsilon. Experimental Cell Research, 316, 1829–1844.PubMedCrossRef Kim, H., Nakamura, F., Lee, W., Hong, C., Pérez-Sala, D., & McCulloch, C. A. (2010). Regulation of cell adhesion to collagen via β1 integrins is dependent on interactions of filamin A with vimentin and protein kinase C epsilon. Experimental Cell Research, 316, 1829–1844.PubMedCrossRef
21.
Zurück zum Zitat Ivaska, J., Vuoriluoto, K., Huovinen, T., Izawa, I., Inagaki, M., & Parker, P. J. (2005). PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO Journal, 24, 3834–3845.PubMedCrossRef Ivaska, J., Vuoriluoto, K., Huovinen, T., Izawa, I., Inagaki, M., & Parker, P. J. (2005). PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO Journal, 24, 3834–3845.PubMedCrossRef
22.
Zurück zum Zitat Fortin, S., Mercier, M. L., Camby, I., Spiegl-Kreinecker, S., Berger, W., Lefranc, F., & Kiss, R. (2008). Galectin-1 is implicated in the protein kinase C epsilon/vimentin-controlled trafficking of integrin-beta1 in glioblastoma cells. Brain Pathology, 20, 36–49. Fortin, S., Mercier, M. L., Camby, I., Spiegl-Kreinecker, S., Berger, W., Lefranc, F., & Kiss, R. (2008). Galectin-1 is implicated in the protein kinase C epsilon/vimentin-controlled trafficking of integrin-beta1 in glioblastoma cells. Brain Pathology, 20, 36–49.
23.
Zurück zum Zitat Hemler, M. E. (1998). Integrin-associated proteins. Current Opinion in Cell Biology, 10, 578–585.PubMedCrossRef Hemler, M. E. (1998). Integrin-associated proteins. Current Opinion in Cell Biology, 10, 578–585.PubMedCrossRef
24.
Zurück zum Zitat Ginsberg, M. H., Partridge, A., & Shattil, S. J. (2005). Integrin regulation. Current Opinion in Cell Biology, 7, 509–516.CrossRef Ginsberg, M. H., Partridge, A., & Shattil, S. J. (2005). Integrin regulation. Current Opinion in Cell Biology, 7, 509–516.CrossRef
25.
Zurück zum Zitat Lu, Z. F., Zandieh Doulabi, B., Huang, C. L., Bank, R. A., & Helder, M. N. (2008). β1 integrins regulate chondrogenesis and rock signaling in adipose stem cells. Biochemical and Biophysical Research Communications, 372, 547–552.PubMedCrossRef Lu, Z. F., Zandieh Doulabi, B., Huang, C. L., Bank, R. A., & Helder, M. N. (2008). β1 integrins regulate chondrogenesis and rock signaling in adipose stem cells. Biochemical and Biophysical Research Communications, 372, 547–552.PubMedCrossRef
26.
Zurück zum Zitat Varas, L., Ohlsson, L. B., Honeth, G., Olsson, A., Bengtsson, T., Wiberg, C., Bockermann, R., Jarnum, S., Richter, J., Pennington, D., Johnstone, B., Lundgren-Akerlund, E., & Kjellman, C. (2007). Alpha10 integrin expression is up-regulated on fibroblast growth factor-2-treated mesenchymal stem cells with improved chondrogenic differentiation potential. Stem Cells and Development, 16, 965–978.PubMedCrossRef Varas, L., Ohlsson, L. B., Honeth, G., Olsson, A., Bengtsson, T., Wiberg, C., Bockermann, R., Jarnum, S., Richter, J., Pennington, D., Johnstone, B., Lundgren-Akerlund, E., & Kjellman, C. (2007). Alpha10 integrin expression is up-regulated on fibroblast growth factor-2-treated mesenchymal stem cells with improved chondrogenic differentiation potential. Stem Cells and Development, 16, 965–978.PubMedCrossRef
27.
Zurück zum Zitat Smith, J. A., Samayawardhena, L. A., & Craig, A. W. (2010). Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and β1 integrin receptors. Cellular Signalling, 22, 427–436.PubMedCrossRef Smith, J. A., Samayawardhena, L. A., & Craig, A. W. (2010). Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and β1 integrin receptors. Cellular Signalling, 22, 427–436.PubMedCrossRef
28.
Zurück zum Zitat Schwinn, M. K., Gonzalez, J. M., Jr., Gabelt, B. T., Sheibani, N., Kaufman, P. L., & Peters, D. M. (2010). Heparin II domain of fibronectin mediates contractility through an α4β1 co-signaling pathway. Experimental Cell Research, 316, 1500–1512.PubMedCrossRef Schwinn, M. K., Gonzalez, J. M., Jr., Gabelt, B. T., Sheibani, N., Kaufman, P. L., & Peters, D. M. (2010). Heparin II domain of fibronectin mediates contractility through an α4β1 co-signaling pathway. Experimental Cell Research, 316, 1500–1512.PubMedCrossRef
29.
Zurück zum Zitat Hehlgans, S., Haase, M., & Cordes, N. (2007). Signaling via integrins: implications for cell survival and anticancer strategies. Biochimica et Biophysica Acta, 1775, 163–180.PubMed Hehlgans, S., Haase, M., & Cordes, N. (2007). Signaling via integrins: implications for cell survival and anticancer strategies. Biochimica et Biophysica Acta, 1775, 163–180.PubMed
30.
Zurück zum Zitat Patra, S. K. (2008). Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochimica et Biophysica Acta, 1785, 182–206.PubMed Patra, S. K. (2008). Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochimica et Biophysica Acta, 1785, 182–206.PubMed
31.
Zurück zum Zitat Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer, 10, 9–22.PubMedCrossRef Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer, 10, 9–22.PubMedCrossRef
32.
Zurück zum Zitat Zutter, M. M., Santoro, S. A., Staatz, W. D., & Tsung, Y. L. (1995). Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. PNAS, 92, 7411–7415.PubMedCrossRef Zutter, M. M., Santoro, S. A., Staatz, W. D., & Tsung, Y. L. (1995). Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. PNAS, 92, 7411–7415.PubMedCrossRef
33.
Zurück zum Zitat Ribatti, D. (2007). The contribution of Harold F. Dvorak to the study of tumor angiogenesis and stroma generation mechanisms. Endothelium, 14, 131–135.PubMedCrossRef Ribatti, D. (2007). The contribution of Harold F. Dvorak to the study of tumor angiogenesis and stroma generation mechanisms. Endothelium, 14, 131–135.PubMedCrossRef
34.
Zurück zum Zitat Avraamides, C. J., Garmy-Susini, B., & Varner, J. A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nature Reviews Cancer, 8, 604–617.PubMedCrossRef Avraamides, C. J., Garmy-Susini, B., & Varner, J. A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nature Reviews Cancer, 8, 604–617.PubMedCrossRef
35.
Zurück zum Zitat Conti, J. A., Kendall, T. J., Bateman, A., Amstrong, T. A., Papa-Adams, A., Xu, Q., Packham, G., Primrose, J. N., Benyon, R. C., & Iredale, J. P. (2008). The desmoplastic reaction surrounding hepatic colorectal adenocarcinoma metastases aids tumor growth and survival via αv integrin ligation. Clinical Cancer Research, 14, 6405–6413.PubMedCrossRef Conti, J. A., Kendall, T. J., Bateman, A., Amstrong, T. A., Papa-Adams, A., Xu, Q., Packham, G., Primrose, J. N., Benyon, R. C., & Iredale, J. P. (2008). The desmoplastic reaction surrounding hepatic colorectal adenocarcinoma metastases aids tumor growth and survival via αv integrin ligation. Clinical Cancer Research, 14, 6405–6413.PubMedCrossRef
36.
Zurück zum Zitat Garmy-Susini, B., Jin, H., Zhu, Y., Sung, R. J., Hwang, R., & Varner, J. (2005). Integrin α4β1-VCAM-1- mediated adhesion between endothelial and mural cells is required for blood vessel maturation. The Journal of Clinical Investigation, 115, 1542–1551.PubMedCrossRef Garmy-Susini, B., Jin, H., Zhu, Y., Sung, R. J., Hwang, R., & Varner, J. (2005). Integrin α4β1-VCAM-1- mediated adhesion between endothelial and mural cells is required for blood vessel maturation. The Journal of Clinical Investigation, 115, 1542–1551.PubMedCrossRef
37.
Zurück zum Zitat Guo, W., Pylayeva, Y., Pepe, A., Yoshioka, T., Muller, W. J., Inghirami, G., & Giancotti, F. G. (2006). β4 Integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell, 126, 489–502.PubMedCrossRef Guo, W., Pylayeva, Y., Pepe, A., Yoshioka, T., Muller, W. J., Inghirami, G., & Giancotti, F. G. (2006). β4 Integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell, 126, 489–502.PubMedCrossRef
38.
Zurück zum Zitat Macias-Perez, I., Borza, C., Chen, X., Yan, X., Ibanez, R., Mernaugh, G., Matrisian, L. M., Zent, R., & Pozzi, A. (2008). Loss of integrin α1β1 ameliorates Kras-induced lung cancer. Cancer Research, 68, 6127–6135.PubMedCrossRef Macias-Perez, I., Borza, C., Chen, X., Yan, X., Ibanez, R., Mernaugh, G., Matrisian, L. M., Zent, R., & Pozzi, A. (2008). Loss of integrin α1β1 ameliorates Kras-induced lung cancer. Cancer Research, 68, 6127–6135.PubMedCrossRef
39.
Zurück zum Zitat Ricono, J. M., Huang, M., Barnes, L. A., Lau, S. K., Weis, S. M., Schlaepfer, D. D., Hanks, S. K., & Cheresh, D. A. (2009). Specific cross-talk between epidermal growth factor receptor and integrin αvβ5 promotes carcinoma cell invasion and metastasis. Cancer Research, 69, 1383–1391.PubMedCrossRef Ricono, J. M., Huang, M., Barnes, L. A., Lau, S. K., Weis, S. M., Schlaepfer, D. D., Hanks, S. K., & Cheresh, D. A. (2009). Specific cross-talk between epidermal growth factor receptor and integrin αvβ5 promotes carcinoma cell invasion and metastasis. Cancer Research, 69, 1383–1391.PubMedCrossRef
40.
Zurück zum Zitat Pouliot, N., Nice, E. C., & Burgess, A. W. (2001). Laminin-10 mediates basal and EGF-stimulated motility of human colon carcinoma cells via α3β1 and α6β4 integrins. Experimental Cell Research, 266, 1–10.PubMedCrossRef Pouliot, N., Nice, E. C., & Burgess, A. W. (2001). Laminin-10 mediates basal and EGF-stimulated motility of human colon carcinoma cells via α3β1 and α6β4 integrins. Experimental Cell Research, 266, 1–10.PubMedCrossRef
41.
Zurück zum Zitat Yang, C., Zeisberg, M., Lively, J. C., Nyberg, P., Afdhal, N., & Kalluri, R. (2003). Integrin α1β1 and α2β1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Research, 63, 8312–8317.PubMed Yang, C., Zeisberg, M., Lively, J. C., Nyberg, P., Afdhal, N., & Kalluri, R. (2003). Integrin α1β1 and α2β1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Research, 63, 8312–8317.PubMed
42.
Zurück zum Zitat Bertotti, A., Comoglio, P. M., & Trusolino, L. (2005). β4 Integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis. Cancer Research, 65, 10674–10679.PubMedCrossRef Bertotti, A., Comoglio, P. M., & Trusolino, L. (2005). β4 Integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis. Cancer Research, 65, 10674–10679.PubMedCrossRef
43.
Zurück zum Zitat Crouch, S., Spidel, C. S., & Lindsey, J. S. (2004). HGF and ligation of αvβ5 integrin induce a novel, cancer cell-specific gene expression required for cell scattering. Experimental Cell Research, 292, 274–287.PubMedCrossRef Crouch, S., Spidel, C. S., & Lindsey, J. S. (2004). HGF and ligation of αvβ5 integrin induce a novel, cancer cell-specific gene expression required for cell scattering. Experimental Cell Research, 292, 274–287.PubMedCrossRef
44.
Zurück zum Zitat Trusolino, L., Bertotti, A., & Comoglio, P. M. (2001). A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell, 107, 643–654.PubMedCrossRef Trusolino, L., Bertotti, A., & Comoglio, P. M. (2001). A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell, 107, 643–654.PubMedCrossRef
45.
Zurück zum Zitat Galliher, A. J., & Schiemann, W. P. (2006). β3 Integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Research, 8, R42.PubMedCrossRef Galliher, A. J., & Schiemann, W. P. (2006). β3 Integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Research, 8, R42.PubMedCrossRef
46.
Zurück zum Zitat Mierke, C. T., Frey, B., Fellner, M., Herrmann, M., & Fabry, B. (2011). Integrin 5β1 facilitates cancer cell invasion through enhanced contractile forces. Journal of Cell Science, 124, 369–383.PubMedCrossRef Mierke, C. T., Frey, B., Fellner, M., Herrmann, M., & Fabry, B. (2011). Integrin 5β1 facilitates cancer cell invasion through enhanced contractile forces. Journal of Cell Science, 124, 369–383.PubMedCrossRef
47.
Zurück zum Zitat Huck, L., Pontier, S. M., Zuo, D. M., & Muller, W. J. (2010). Beta1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression. PNAS, 107, 15559–15564.PubMedCrossRef Huck, L., Pontier, S. M., Zuo, D. M., & Muller, W. J. (2010). Beta1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression. PNAS, 107, 15559–15564.PubMedCrossRef
48.
Zurück zum Zitat Patra, S. K., & Bettuzzi, S. (2007). Epigenetic DNA-methylation regulation of genes coding for lipid raft-associated components: a role for raft proteins in cell transformation and cancer progression (Review). Oncology Reports, 17, 1279–1290.PubMed Patra, S. K., & Bettuzzi, S. (2007). Epigenetic DNA-methylation regulation of genes coding for lipid raft-associated components: a role for raft proteins in cell transformation and cancer progression (Review). Oncology Reports, 17, 1279–1290.PubMed
49.
Zurück zum Zitat Parton, R. G., & Simons, K. (2007). The multiple faces of caveolae. Nature Reviews Molecular Cell Biology, 8, 185–194.PubMedCrossRef Parton, R. G., & Simons, K. (2007). The multiple faces of caveolae. Nature Reviews Molecular Cell Biology, 8, 185–194.PubMedCrossRef
50.
Zurück zum Zitat Caswell, P. T., Vadrevu, S., & Norman, J. C. (2009). Integrins: masters and slaves of endocytic transport. Nature Reviews Molecular Cell Biology, 10, 843–853.PubMedCrossRef Caswell, P. T., Vadrevu, S., & Norman, J. C. (2009). Integrins: masters and slaves of endocytic transport. Nature Reviews Molecular Cell Biology, 10, 843–853.PubMedCrossRef
51.
Zurück zum Zitat Leitinger, B., & Hogg, N. (2002). The involvement of lipid rafts in the regulation of integrin function. Journal of Cell Science, 115, 963–972.PubMed Leitinger, B., & Hogg, N. (2002). The involvement of lipid rafts in the regulation of integrin function. Journal of Cell Science, 115, 963–972.PubMed
52.
Zurück zum Zitat Balasubramanian, N., Meier, J. A., Scott, D. W., Norambuena, A., White, M. A., & Schwartz, M. A. (2010). RalA-exocyst complex regulates integrin-dependent membrane raft exocytosis and growth signaling. Current Biology, 20, 75–79.PubMedCrossRef Balasubramanian, N., Meier, J. A., Scott, D. W., Norambuena, A., White, M. A., & Schwartz, M. A. (2010). RalA-exocyst complex regulates integrin-dependent membrane raft exocytosis and growth signaling. Current Biology, 20, 75–79.PubMedCrossRef
53.
Zurück zum Zitat Luftman, K., Hasan, N., Day, P., Hardee, D., & Hu, C. (2009). Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion. Biochemical and Biophysical Research Communications, 380, 65–70.PubMedCrossRef Luftman, K., Hasan, N., Day, P., Hardee, D., & Hu, C. (2009). Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion. Biochemical and Biophysical Research Communications, 380, 65–70.PubMedCrossRef
54.
Zurück zum Zitat Kato, T., Yagi, M., Yamagishi, A., Hosoya, N., Sakurai, T., Nishida, H., Naito, S., Tsukigi, M., Kawazoe, H., Muto, A., Nagaoka, A., & Tomita, Y. (2010). Direct antitumor effect of bacillus calmette-guerin in high grade urothelial cancer cells which express VLA5 (alpha 5 beta 1 integrin). Journal of Urology, 183, e445–e446.CrossRef Kato, T., Yagi, M., Yamagishi, A., Hosoya, N., Sakurai, T., Nishida, H., Naito, S., Tsukigi, M., Kawazoe, H., Muto, A., Nagaoka, A., & Tomita, Y. (2010). Direct antitumor effect of bacillus calmette-guerin in high grade urothelial cancer cells which express VLA5 (alpha 5 beta 1 integrin). Journal of Urology, 183, e445–e446.CrossRef
55.
Zurück zum Zitat Berry, M. G., Goode, A. W., Puddefoot, J. R., Vinson, G. P., & Carpenter, R. (2000). Integrin β1 up-regulation in MCF-7 breast cancer cells by angiotensin II. European Journal of Surgical Oncology, 26, 25–29.PubMedCrossRef Berry, M. G., Goode, A. W., Puddefoot, J. R., Vinson, G. P., & Carpenter, R. (2000). Integrin β1 up-regulation in MCF-7 breast cancer cells by angiotensin II. European Journal of Surgical Oncology, 26, 25–29.PubMedCrossRef
56.
Zurück zum Zitat Fujita, S., Watanabe, M., Kubota, T., Teramoto, T., & Kitajima, M. (1995). Alteration of expression in integrin β1-subunit correlates with invasion and metastasis in colorectal cancer. Cancer Letters, 91, 145–149.PubMedCrossRef Fujita, S., Watanabe, M., Kubota, T., Teramoto, T., & Kitajima, M. (1995). Alteration of expression in integrin β1-subunit correlates with invasion and metastasis in colorectal cancer. Cancer Letters, 91, 145–149.PubMedCrossRef
57.
Zurück zum Zitat Chakraborty, A., White, S. M., & Guha, S. (2006). Granulocyte colony-stimulating receptor promotes β1-integrin-mediated adhesion and invasion of bladder cancer cells. Urology, 68, 208–213.PubMedCrossRef Chakraborty, A., White, S. M., & Guha, S. (2006). Granulocyte colony-stimulating receptor promotes β1-integrin-mediated adhesion and invasion of bladder cancer cells. Urology, 68, 208–213.PubMedCrossRef
58.
Zurück zum Zitat Lee, M., Lee, H., Seo, W. D., Park, K. H., & Lee, Y. (2010). Sialylation of integrin β1 is involved in radiation-induced adhesion and migration in human colon cancer cells. International Journal of Radiation Oncology, Biology, Physics, 76, 1528–1536.PubMedCrossRef Lee, M., Lee, H., Seo, W. D., Park, K. H., & Lee, Y. (2010). Sialylation of integrin β1 is involved in radiation-induced adhesion and migration in human colon cancer cells. International Journal of Radiation Oncology, Biology, Physics, 76, 1528–1536.PubMedCrossRef
59.
Zurück zum Zitat Perks, C. M., Thomas, F., Persad, R., Bahl, A., & Holly, J. M. P. (2008). OR2,5 Fibronectin exposure reduces efficacy of chemotherapeutic agents on DU145 prostate cancer cells: an effect mediated via IGF-I and beta-1 integrins. Growth Hormone IGF Research, 18, S5.CrossRef Perks, C. M., Thomas, F., Persad, R., Bahl, A., & Holly, J. M. P. (2008). OR2,5 Fibronectin exposure reduces efficacy of chemotherapeutic agents on DU145 prostate cancer cells: an effect mediated via IGF-I and beta-1 integrins. Growth Hormone IGF Research, 18, S5.CrossRef
60.
Zurück zum Zitat Hasan, N., & Hu, C. (2010). Vesicle-associated membrane protein 2 mediates trafficking of α5β1 integrin to the plasma membrane. Experimental Cell Research, 316, 12–23.PubMedCrossRef Hasan, N., & Hu, C. (2010). Vesicle-associated membrane protein 2 mediates trafficking of α5β1 integrin to the plasma membrane. Experimental Cell Research, 316, 12–23.PubMedCrossRef
61.
Zurück zum Zitat Gupton, S. L., & Gertler, F. B. (2010). Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. Developmental Cell, 18, 725–736.PubMedCrossRef Gupton, S. L., & Gertler, F. B. (2010). Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. Developmental Cell, 18, 725–736.PubMedCrossRef
62.
Zurück zum Zitat Wang, C., Yoo, Y., Fan, H., Kim, E., Guan, K. L., & Guan, J. L. (2010). Regulation of integrin β1 recycling to lipid raft by Rab1a to promot cell migration. Journal of Biological Chemistry, 285, 29398–29405.PubMedCrossRef Wang, C., Yoo, Y., Fan, H., Kim, E., Guan, K. L., & Guan, J. L. (2010). Regulation of integrin β1 recycling to lipid raft by Rab1a to promot cell migration. Journal of Biological Chemistry, 285, 29398–29405.PubMedCrossRef
63.
Zurück zum Zitat Mitchell, J. S., Brown, W. S., Woodside, D. G., Vanderslice, P., & McIntyre, B. W. (2009). Clustering T-cell GM1 lipid rafts increases cellular resistance to shear on fibronectin through changes in integrin affinity and cytoskeletal dynamics. Immunology and Cell Biology, 87, 324–332.PubMedCrossRef Mitchell, J. S., Brown, W. S., Woodside, D. G., Vanderslice, P., & McIntyre, B. W. (2009). Clustering T-cell GM1 lipid rafts increases cellular resistance to shear on fibronectin through changes in integrin affinity and cytoskeletal dynamics. Immunology and Cell Biology, 87, 324–332.PubMedCrossRef
64.
Zurück zum Zitat Sotobori, T., Ueda, T., Myoui, A., Yoshioka, K., Nakasaki, M., Yoshikawa, H., & Itoh, K. (2006). Bone morphogenetic protein-2 promotes the haptotactic migration of murine osteoblastic and osteosarcoma cells by enhancing incorporation of integrin β1 into lipid rafts. Experimental Cell Research, 312, 3927–3938.PubMedCrossRef Sotobori, T., Ueda, T., Myoui, A., Yoshioka, K., Nakasaki, M., Yoshikawa, H., & Itoh, K. (2006). Bone morphogenetic protein-2 promotes the haptotactic migration of murine osteoblastic and osteosarcoma cells by enhancing incorporation of integrin β1 into lipid rafts. Experimental Cell Research, 312, 3927–3938.PubMedCrossRef
65.
Zurück zum Zitat Yilmaz, M., & Christofori, G. (2010). Mechanisms of motility in metastasizing cells. Molecular Cancer Research, 8, 629–642.PubMedCrossRef Yilmaz, M., & Christofori, G. (2010). Mechanisms of motility in metastasizing cells. Molecular Cancer Research, 8, 629–642.PubMedCrossRef
66.
Zurück zum Zitat Vellón, L., Royo, F., Matthiesen, R., Torres-Fuenzalida, J., Lorenti, A., & Parada, L. A. (2010). Functional blockade of a5b1 integrin induces scattering and genomic landscape remodeling of hepatic progenitor cells. BMC Cell Biology, 11, 81.PubMedCrossRef Vellón, L., Royo, F., Matthiesen, R., Torres-Fuenzalida, J., Lorenti, A., & Parada, L. A. (2010). Functional blockade of a5b1 integrin induces scattering and genomic landscape remodeling of hepatic progenitor cells. BMC Cell Biology, 11, 81.PubMedCrossRef
67.
Zurück zum Zitat Till, K. J., Harris, R. J., Linford, A., Spiller, D. G., Zuzel, M., & Cawley, J. C. (2008). Cell motility in chronic lymphocytic leukemia: defective Rap1 and αLβ2 activation by chemokine. Cancer Research, 68, 8429.PubMedCrossRef Till, K. J., Harris, R. J., Linford, A., Spiller, D. G., Zuzel, M., & Cawley, J. C. (2008). Cell motility in chronic lymphocytic leukemia: defective Rap1 and αLβ2 activation by chemokine. Cancer Research, 68, 8429.PubMedCrossRef
68.
Zurück zum Zitat Patra, S. K. (2008). Ras regulation of DNA-methylation and cancer. Experimental Cell Research, 314, 1193–1201.PubMedCrossRef Patra, S. K. (2008). Ras regulation of DNA-methylation and cancer. Experimental Cell Research, 314, 1193–1201.PubMedCrossRef
69.
Zurück zum Zitat Patra, S. K., & Szyf, M. (2008). DNA methylation mediated nucleosome dynamics and oncogenic Ras signaling: insights from FAS, FASL and RASSF1A. FEBS Journal, 275, 5217–5235.PubMedCrossRef Patra, S. K., & Szyf, M. (2008). DNA methylation mediated nucleosome dynamics and oncogenic Ras signaling: insights from FAS, FASL and RASSF1A. FEBS Journal, 275, 5217–5235.PubMedCrossRef
70.
Zurück zum Zitat Patra, S. K., Deb, M., & Patra, A. (2011). Molecular marks for epigenetic identification of developmental and cancer stem cells. Clinical Epigenetics, 2, 27–53.CrossRef Patra, S. K., Deb, M., & Patra, A. (2011). Molecular marks for epigenetic identification of developmental and cancer stem cells. Clinical Epigenetics, 2, 27–53.CrossRef
71.
Zurück zum Zitat Patra, S. K., Patra, A., Rizi, F., Ghosh, T. C., & Bettuzzi, S. (2008). Demethylation of (cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer and Metastasis Reviews, 27, 315–334.PubMedCrossRef Patra, S. K., Patra, A., Rizi, F., Ghosh, T. C., & Bettuzzi, S. (2008). Demethylation of (cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer and Metastasis Reviews, 27, 315–334.PubMedCrossRef
72.
Zurück zum Zitat Janji, B., Melchior, C., Gouon, V., Vallar, L., & Kieffer, N. (1999). Autocrine TGF-β-regulated expression of adhesion receptors and integrin-linked kinase in HT-144 melanoma cells correlates with their metastatic phenotype. International Journal of Cancer, 83, 255–262.CrossRef Janji, B., Melchior, C., Gouon, V., Vallar, L., & Kieffer, N. (1999). Autocrine TGF-β-regulated expression of adhesion receptors and integrin-linked kinase in HT-144 melanoma cells correlates with their metastatic phenotype. International Journal of Cancer, 83, 255–262.CrossRef
73.
Zurück zum Zitat Luo, R. X., & Dean, D. C. (1999). Chromatin remodeling and transcriptional regulation. Journal of the National Cancer Institute, 91, 1288–1294.PubMedCrossRef Luo, R. X., & Dean, D. C. (1999). Chromatin remodeling and transcriptional regulation. Journal of the National Cancer Institute, 91, 1288–1294.PubMedCrossRef
74.
Zurück zum Zitat Lin, K., Yeh, S., Chen, D., Chen, P., & Jou, Y. (2005). Epigenetic activation of a4, b2 and b6 integrins involved in cell migration in trichostatin A-treated Hep3B cells. Journal of Biomedical Science, 12, 803–813.PubMedCrossRef Lin, K., Yeh, S., Chen, D., Chen, P., & Jou, Y. (2005). Epigenetic activation of a4, b2 and b6 integrins involved in cell migration in trichostatin A-treated Hep3B cells. Journal of Biomedical Science, 12, 803–813.PubMedCrossRef
75.
Zurück zum Zitat Yasui, W., Oue, N., Ono, S., Mitani, Y., Ito, R., & Nakayama, H. (2003). Histone acetylation and gastrointestinal carcinogenesis. Annals of the New York Academy of Sciences, 983, 220–231.PubMedCrossRef Yasui, W., Oue, N., Ono, S., Mitani, Y., Ito, R., & Nakayama, H. (2003). Histone acetylation and gastrointestinal carcinogenesis. Annals of the New York Academy of Sciences, 983, 220–231.PubMedCrossRef
76.
Zurück zum Zitat Xia, B., Joubert, A., Groves, B., Vo, K., Ashraf, D., Djavaherian, D., Awe, J., Xiong, Y., Cherfils, J., & Ma, D. (2010). Modulation of cell adhesion and migration by the histone methyltransferase subunit mDpy-30 and its interacting proteins. PLoS One, 5, e11771.PubMedCrossRef Xia, B., Joubert, A., Groves, B., Vo, K., Ashraf, D., Djavaherian, D., Awe, J., Xiong, Y., Cherfils, J., & Ma, D. (2010). Modulation of cell adhesion and migration by the histone methyltransferase subunit mDpy-30 and its interacting proteins. PLoS One, 5, e11771.PubMedCrossRef
77.
Zurück zum Zitat Frye M, Fisher AG, Watt FM (2007) Epidermal stem cells are defined by global histone modifications that are altered by Myc-induced differentiation, Plos One e763 Frye M, Fisher AG, Watt FM (2007) Epidermal stem cells are defined by global histone modifications that are altered by Myc-induced differentiation, Plos One e763
78.
Zurück zum Zitat Rose, J. L., Huang, H., Wray, S. F., & Hoyt, D. G. (2005). Integrin engagement increases histone H3 acetylation and reduces histone H1 association with DNA in murine lung endothelial cells. Molecular Pharmacology, 68, 439–446.PubMedCrossRef Rose, J. L., Huang, H., Wray, S. F., & Hoyt, D. G. (2005). Integrin engagement increases histone H3 acetylation and reduces histone H1 association with DNA in murine lung endothelial cells. Molecular Pharmacology, 68, 439–446.PubMedCrossRef
79.
Zurück zum Zitat Byrne, G. J., Ghellal, A., Iddon, J., Blann, A. D., Venizelos, V., Kumar, S., Howell, A., & Bundred, N. J. (2000). Serum soluble vascular cell adhesion molecule-1: role as a surrogate marker of angiogenesis. Journal of the National Cancer Institute, 92, 1329–1336.PubMedCrossRef Byrne, G. J., Ghellal, A., Iddon, J., Blann, A. D., Venizelos, V., Kumar, S., Howell, A., & Bundred, N. J. (2000). Serum soluble vascular cell adhesion molecule-1: role as a surrogate marker of angiogenesis. Journal of the National Cancer Institute, 92, 1329–1336.PubMedCrossRef
80.
Zurück zum Zitat Kocgozlu, L., Lavalle, P., Koenig, G., Senger, B., Haikel, Y., Schaaf, P., Voegel, J., Tenenbaum, H., & Vautier, D. (2010). Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription inepithelial cells. Journal of Cell Science, 123, 29–39.PubMedCrossRef Kocgozlu, L., Lavalle, P., Koenig, G., Senger, B., Haikel, Y., Schaaf, P., Voegel, J., Tenenbaum, H., & Vautier, D. (2010). Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription inepithelial cells. Journal of Cell Science, 123, 29–39.PubMedCrossRef
81.
Zurück zum Zitat Cruet-Hennequart, S., Maubant, S., Luis, J., Gauduchon, P., Staedel, C., & Dedhar, S. (2003). αv Integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene, 22, 1688–1702.PubMedCrossRef Cruet-Hennequart, S., Maubant, S., Luis, J., Gauduchon, P., Staedel, C., & Dedhar, S. (2003). αv Integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene, 22, 1688–1702.PubMedCrossRef
82.
Zurück zum Zitat Vellon, L., Menendez, J. A., & Lupu, R. (2005). α5β3 Integrin regulates heregulin (HRG)-induced cell proliferation and survival in breast cancer. Oncogene, 24, 3759–3773.PubMedCrossRef Vellon, L., Menendez, J. A., & Lupu, R. (2005). α5β3 Integrin regulates heregulin (HRG)-induced cell proliferation and survival in breast cancer. Oncogene, 24, 3759–3773.PubMedCrossRef
83.
Zurück zum Zitat Markovics, J. A., Araya, J., Cambier, S., Somanath, S., Gline, S., Jablons, D., Hill, A., Wolters, P. J., & Nishimura, S. L. (2011). Interleukin-1β induces increased transcriptional activation of the transforming growth factor-β-activating integrin subunit β8 through altering chromatin architecture. Journal of Biological Chemistry, 286, 36864–36874.PubMedCrossRef Markovics, J. A., Araya, J., Cambier, S., Somanath, S., Gline, S., Jablons, D., Hill, A., Wolters, P. J., & Nishimura, S. L. (2011). Interleukin-1β induces increased transcriptional activation of the transforming growth factor-β-activating integrin subunit β8 through altering chromatin architecture. Journal of Biological Chemistry, 286, 36864–36874.PubMedCrossRef
84.
Zurück zum Zitat Markovics, J. A., Araya, J., Cambier, S., Jablons, D., Hill, A., Wolters, P. J., & Nishimura, S. L. (2010). Transcription of the transforming growth factor β activating integrin β 8 subunit is regulated by SP3, AP-1, and the p38 pathway. Journal of Biological Chemistry, 285, 24695–24706.PubMedCrossRef Markovics, J. A., Araya, J., Cambier, S., Jablons, D., Hill, A., Wolters, P. J., & Nishimura, S. L. (2010). Transcription of the transforming growth factor β activating integrin β 8 subunit is regulated by SP3, AP-1, and the p38 pathway. Journal of Biological Chemistry, 285, 24695–24706.PubMedCrossRef
85.
Zurück zum Zitat Park, J., Song, S., Kim, T. Y., Choi, M., Jong, H., Kim, T., Lee, J. W., Kim, N. K., Kim, W., & Bang, Y. (2004). Aberrant methylation of integrin α4 gene in human gastric cancer cells. Oncogene, 23, 3474–3480.PubMedCrossRef Park, J., Song, S., Kim, T. Y., Choi, M., Jong, H., Kim, T., Lee, J. W., Kim, N. K., Kim, W., & Bang, Y. (2004). Aberrant methylation of integrin α4 gene in human gastric cancer cells. Oncogene, 23, 3474–3480.PubMedCrossRef
86.
Zurück zum Zitat Lee, E. J., Lee, B. B., Han, J., Cho, E. Y., Shim, Y. M., Park, J., & Kim, D. (2008). CpG island hypermethylation of E-cadherin (CDH1) and integrin α 4 is associated with recurrence of early stage esophageal squamous cell carcinoma. International Journal of Cancer, 123, 2073–2079.CrossRef Lee, E. J., Lee, B. B., Han, J., Cho, E. Y., Shim, Y. M., Park, J., & Kim, D. (2008). CpG island hypermethylation of E-cadherin (CDH1) and integrin α 4 is associated with recurrence of early stage esophageal squamous cell carcinoma. International Journal of Cancer, 123, 2073–2079.CrossRef
87.
Zurück zum Zitat Holmes, R. S., & Rout, U. K. (2011). Comparative studies of vertebrate beta integrin genes and proteins: ancient genes in vertebrate evolution. Biomolecules, 1, 3–31.CrossRef Holmes, R. S., & Rout, U. K. (2011). Comparative studies of vertebrate beta integrin genes and proteins: ancient genes in vertebrate evolution. Biomolecules, 1, 3–31.CrossRef
88.
Zurück zum Zitat Valastyan, S., & Weinberg, R. A. (2011). Roles for microRNAs in the regulation of cell adhesion molecules. Journal of Cell Science, 124, 999–1006.PubMedCrossRef Valastyan, S., & Weinberg, R. A. (2011). Roles for microRNAs in the regulation of cell adhesion molecules. Journal of Cell Science, 124, 999–1006.PubMedCrossRef
89.
Zurück zum Zitat Mohammad, H. P., & Baylin, S. B. (2010). Linking cell signaling and the epigenetic machinery. Nat Biotech, 28, 1033–1038.CrossRef Mohammad, H. P., & Baylin, S. B. (2010). Linking cell signaling and the epigenetic machinery. Nat Biotech, 28, 1033–1038.CrossRef
90.
Zurück zum Zitat Crampton, S. P., Wu, B., Park, E. J., Kim, J., Solomon, C., Waterman, M. L., & Hughes, C. C. W. (2009). Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2. PLoS One, 4, e7841.PubMedCrossRef Crampton, S. P., Wu, B., Park, E. J., Kim, J., Solomon, C., Waterman, M. L., & Hughes, C. C. W. (2009). Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2. PLoS One, 4, e7841.PubMedCrossRef
91.
Zurück zum Zitat Rallis, C., Pinchin, S. M., & Ish-Horowicz, D. (2010). Cell-autonomous integrin control of Wnt and Notch signaling during somitogenesis. Development, 137, 3591–3601.PubMedCrossRef Rallis, C., Pinchin, S. M., & Ish-Horowicz, D. (2010). Cell-autonomous integrin control of Wnt and Notch signaling during somitogenesis. Development, 137, 3591–3601.PubMedCrossRef
92.
Zurück zum Zitat Liu, Y., Chattopadhyay, N., Qin, S., Szekeres, C., Vasylyeva, T., Mahoney, Z. X., Taglienti, M., Bates, C. M., Chapman, H. A., Miner, J. H., & Kreidberg, J. A. (2009). Coordinate integrin and c-Met signaling regulate Wnt gene expression during epithelial morphogenesis. Development, 136, 843–853.PubMedCrossRef Liu, Y., Chattopadhyay, N., Qin, S., Szekeres, C., Vasylyeva, T., Mahoney, Z. X., Taglienti, M., Bates, C. M., Chapman, H. A., Miner, J. H., & Kreidberg, J. A. (2009). Coordinate integrin and c-Met signaling regulate Wnt gene expression during epithelial morphogenesis. Development, 136, 843–853.PubMedCrossRef
93.
Zurück zum Zitat Müller, D. W., & Bosserhoff, A. K. (2008). Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene, 27, 6698–6706.PubMedCrossRef Müller, D. W., & Bosserhoff, A. K. (2008). Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene, 27, 6698–6706.PubMedCrossRef
94.
Zurück zum Zitat Scotti, C. L., Laurence, D., Vardon, T., & William, S. (2006). Notch, epidermal growth factor receptor, and β1-integrin pathways are coordinated in neural stem cells. Journal of Biological Chemistry, 281, 5300–5309. Scotti, C. L., Laurence, D., Vardon, T., & William, S. (2006). Notch, epidermal growth factor receptor, and β1-integrin pathways are coordinated in neural stem cells. Journal of Biological Chemistry, 281, 5300–5309.
95.
Zurück zum Zitat Willert, K., & Jones, K. A. (2006). Wnt signaling: is the party in the nucleus? Genes and Development, 20, 1394–1404.PubMedCrossRef Willert, K., & Jones, K. A. (2006). Wnt signaling: is the party in the nucleus? Genes and Development, 20, 1394–1404.PubMedCrossRef
96.
Zurück zum Zitat Karsan, A. (2008). Notch and integrin affinity: a sticky situation. Science Signaling, 1, pe2.PubMedCrossRef Karsan, A. (2008). Notch and integrin affinity: a sticky situation. Science Signaling, 1, pe2.PubMedCrossRef
97.
Zurück zum Zitat Duprez, D., Lapointe, D., Edom-Vovard, F., Kostakopoulou, K., & Robson, L. (1999). Sonic hedgehog (SHH) specifies muscle pattern at tissue and cellular chick level, in the chick limb bud. Mechanisms of Development, 82, 151–163.PubMedCrossRef Duprez, D., Lapointe, D., Edom-Vovard, F., Kostakopoulou, K., & Robson, L. (1999). Sonic hedgehog (SHH) specifies muscle pattern at tissue and cellular chick level, in the chick limb bud. Mechanisms of Development, 82, 151–163.PubMedCrossRef
98.
Zurück zum Zitat Ulyanova, T., Jiang, Y., Padilla, S., Nakamoto, B., & Papayannopoulou, T. (2011). Combinatorial and distinct roles of α5 and α4 integrins in stress erythropoiesis in mice. Blood, 117, 975–985.PubMedCrossRef Ulyanova, T., Jiang, Y., Padilla, S., Nakamoto, B., & Papayannopoulou, T. (2011). Combinatorial and distinct roles of α5 and α4 integrins in stress erythropoiesis in mice. Blood, 117, 975–985.PubMedCrossRef
99.
Zurück zum Zitat Jenkins, D. (2009). Hedgehog signaling emerging evidence for non-canonical pathways. Cellular Signalling, 21, 1023–1034.PubMedCrossRef Jenkins, D. (2009). Hedgehog signaling emerging evidence for non-canonical pathways. Cellular Signalling, 21, 1023–1034.PubMedCrossRef
100.
Zurück zum Zitat Pellinen, T., & Ivaska, J. (2006). Integrin traffic. Journal of Cell Science, 119, 3723–3731.PubMedCrossRef Pellinen, T., & Ivaska, J. (2006). Integrin traffic. Journal of Cell Science, 119, 3723–3731.PubMedCrossRef
101.
Zurück zum Zitat Braun, J. E. A., & Madison, D. L. V. (2000). A novel SNAP25–caveolin complex correlates with the onset of persistent synaptic potentiation. The Journal of Neuroscience, 20, 5997–6006.PubMed Braun, J. E. A., & Madison, D. L. V. (2000). A novel SNAP25–caveolin complex correlates with the onset of persistent synaptic potentiation. The Journal of Neuroscience, 20, 5997–6006.PubMed
102.
Zurück zum Zitat Kim, M., Jang, H. R., Kim, J. H., Noh, S. M., Song, K. S., Cho, J. S., Jeong, H. Y., Norman, J. C., Caswell, P. T., Kang, G. H., Kim, S. Y., Yoo, H. S., & Kim, Y. S. (2008). Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis, 29, 629–637.PubMedCrossRef Kim, M., Jang, H. R., Kim, J. H., Noh, S. M., Song, K. S., Cho, J. S., Jeong, H. Y., Norman, J. C., Caswell, P. T., Kang, G. H., Kim, S. Y., Yoo, H. S., & Kim, Y. S. (2008). Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis, 29, 629–637.PubMedCrossRef
103.
Zurück zum Zitat Muller, P. A. J., Vousden, K. H., & Norman, J. C. (2011). p53 and its mutants in tumor cell migration and invasion. The Journal of Cell Biology, 192, 209–218.PubMedCrossRef Muller, P. A. J., Vousden, K. H., & Norman, J. C. (2011). p53 and its mutants in tumor cell migration and invasion. The Journal of Cell Biology, 192, 209–218.PubMedCrossRef
104.
Zurück zum Zitat Xu, Z., Gong, Q., Xia, B., Groves, B., Zimmermann, M., Mugler, C., Mu, D., Matsumoto, B., Seaman, M., & Ma, D. (2009). A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. The Journal of Cell Biology, 186, 343–353.PubMedCrossRef Xu, Z., Gong, Q., Xia, B., Groves, B., Zimmermann, M., Mugler, C., Mu, D., Matsumoto, B., Seaman, M., & Ma, D. (2009). A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. The Journal of Cell Biology, 186, 343–353.PubMedCrossRef
105.
Zurück zum Zitat Martinez-Garcia, E., Popovic, R., Min, D. J., Sweet, S. M. M., Thomas, P. M., Zamdborg, L., Heffner, A., Will, C., Lamy, L., Staudt, L. M., Levens, D. L., Kelleher, N. L., & Licht, J. D. (2011). The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood, 117(1), 211–220.PubMedCrossRef Martinez-Garcia, E., Popovic, R., Min, D. J., Sweet, S. M. M., Thomas, P. M., Zamdborg, L., Heffner, A., Will, C., Lamy, L., Staudt, L. M., Levens, D. L., Kelleher, N. L., & Licht, J. D. (2011). The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood, 117(1), 211–220.PubMedCrossRef
106.
Zurück zum Zitat Yang, L., Zhang, L., Wu, Q., & Boyd, D. D. (2008). Unbiased screening for transcriptional targets of ZKSCAN3 identifies integrin β4 and vascular endothelial growth factor as downstream targets. Journal of Biological Chemistry, 283, 35295–35304.PubMedCrossRef Yang, L., Zhang, L., Wu, Q., & Boyd, D. D. (2008). Unbiased screening for transcriptional targets of ZKSCAN3 identifies integrin β4 and vascular endothelial growth factor as downstream targets. Journal of Biological Chemistry, 283, 35295–35304.PubMedCrossRef
107.
Zurück zum Zitat Chen, M., Sinha, M., Luxon, B. A., Bresnick, A. R., & O'Connor, K. L. (2009). Integrin α6β4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. Journal of Biological Chemistry, 284, 1484–1494.PubMedCrossRef Chen, M., Sinha, M., Luxon, B. A., Bresnick, A. R., & O'Connor, K. L. (2009). Integrin α6β4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. Journal of Biological Chemistry, 284, 1484–1494.PubMedCrossRef
108.
Zurück zum Zitat Robinson, E. E., Zazzali, K. M., Corbett, S. A., & Foty, R. A. (2003). α5β1 Integrin mediates strong tissue cohesion. Journal of Cell Science, 116, 377–386.PubMedCrossRef Robinson, E. E., Zazzali, K. M., Corbett, S. A., & Foty, R. A. (2003). α5β1 Integrin mediates strong tissue cohesion. Journal of Cell Science, 116, 377–386.PubMedCrossRef
109.
Zurück zum Zitat Toquet, C., Colson, A., Jarry, A., Bezieau, S., Volteau, C., Boisseau, P., Merlin, D., Laboisse, C.L., Mosnier, J.F. (2011). ADAM15 to α5β1 integrin switch in colon carcinoma cells: a late event in cancer progression associated with tumor dedifferentiation and poor prognosis, International Journal of Cancer (in press) Toquet, C., Colson, A., Jarry, A., Bezieau, S., Volteau, C., Boisseau, P., Merlin, D., Laboisse, C.L., Mosnier, J.F. (2011). ADAM15 to α5β1 integrin switch in colon carcinoma cells: a late event in cancer progression associated with tumor dedifferentiation and poor prognosis, International Journal of Cancer (in press)
110.
Zurück zum Zitat Mierke, C. T., Frey, B., Fellner, M., Herrmann, M., & Fabry, B. (2010). Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. Journal of Cell Science, 124, 369–383.CrossRef Mierke, C. T., Frey, B., Fellner, M., Herrmann, M., & Fabry, B. (2010). Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. Journal of Cell Science, 124, 369–383.CrossRef
111.
Zurück zum Zitat Fang, Z., Fu, Y., Liang, Y., Li, Z., Zhang, W., Jin, J., Yang, Y., & Zha, X. (2007). Increased expression of integrin beta1 subunit enhances p21WAF1/Cip1 transcription through the Sp1 sites and p300-mediated histone acetylation in human hepatocellular carcinoma cells. Journal of Cellular Biochemistry, 101, 654–664.PubMedCrossRef Fang, Z., Fu, Y., Liang, Y., Li, Z., Zhang, W., Jin, J., Yang, Y., & Zha, X. (2007). Increased expression of integrin beta1 subunit enhances p21WAF1/Cip1 transcription through the Sp1 sites and p300-mediated histone acetylation in human hepatocellular carcinoma cells. Journal of Cellular Biochemistry, 101, 654–664.PubMedCrossRef
112.
Zurück zum Zitat Chiba, T., Yokosuka, O., Fukai, K., Kojima, H., Tada, M., Arai, M., Imazeki, F., & Saisho, H. (2004). Cell growth inhibition and gene expression induced by the histone deacetylase inhibitor, trichostatin A, on human hepatoma cells. Oncology, 66, 481–491.PubMedCrossRef Chiba, T., Yokosuka, O., Fukai, K., Kojima, H., Tada, M., Arai, M., Imazeki, F., & Saisho, H. (2004). Cell growth inhibition and gene expression induced by the histone deacetylase inhibitor, trichostatin A, on human hepatoma cells. Oncology, 66, 481–491.PubMedCrossRef
113.
Zurück zum Zitat Goldsmith, M. E., Kitazono, M., Fok, P., Aikou, T., Bates, S., & Fojo, T. (2003). The histone deacetylase inhibitor FK228 preferentially enhances adenovirus transgene expression in malignant cells. Clinical Cancer Research, 9, 5394–5401.PubMed Goldsmith, M. E., Kitazono, M., Fok, P., Aikou, T., Bates, S., & Fojo, T. (2003). The histone deacetylase inhibitor FK228 preferentially enhances adenovirus transgene expression in malignant cells. Clinical Cancer Research, 9, 5394–5401.PubMed
114.
Zurück zum Zitat Uhm, K. O., Lee, J. O., Lee, Y. M., Lee, E. S., Kim, H. S., & Park, S. H. (2010). Aberrant DNA methylation of integrin α4: a potential novel role for metastasis of cholangiocarcinoma. Journal of Cancer Research and Clinical Oncology, 136, 187–194.PubMedCrossRef Uhm, K. O., Lee, J. O., Lee, Y. M., Lee, E. S., Kim, H. S., & Park, S. H. (2010). Aberrant DNA methylation of integrin α4: a potential novel role for metastasis of cholangiocarcinoma. Journal of Cancer Research and Clinical Oncology, 136, 187–194.PubMedCrossRef
115.
Zurück zum Zitat Verbisck, N. V., Costa, E. T., Costa, F. F., Cavalher, F. P., Costa, M. D. M., Muras, A., Paixaõ, V. A., Moura, R., Granato, M. F., Ierardi, D. F., Machado, T., Melo, F., Ribeiro, K. B., Cunha, I. W., Lima, V. C. C., Maciel, M. D. S., Carvalho, L., Soares, F. F., Zanata, S., Sogayar, M. C., Chammas, R., & Camargo, A. A. (2009). ADAM23 negatively modulates AvB3 integrin activation during metastasis. Cancer Research, 69, 5546–5552.PubMedCrossRef Verbisck, N. V., Costa, E. T., Costa, F. F., Cavalher, F. P., Costa, M. D. M., Muras, A., Paixaõ, V. A., Moura, R., Granato, M. F., Ierardi, D. F., Machado, T., Melo, F., Ribeiro, K. B., Cunha, I. W., Lima, V. C. C., Maciel, M. D. S., Carvalho, L., Soares, F. F., Zanata, S., Sogayar, M. C., Chammas, R., & Camargo, A. A. (2009). ADAM23 negatively modulates AvB3 integrin activation during metastasis. Cancer Research, 69, 5546–5552.PubMedCrossRef
116.
Zurück zum Zitat Min, C., Sinha, M., Luxon, B. A., Bresnick, A. R., & O’connor, K. L. (2009). Integrin α6β4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. Journal of Biological Chemistry, 284, 1484–1494. Min, C., Sinha, M., Luxon, B. A., Bresnick, A. R., & O’connor, K. L. (2009). Integrin α6β4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. Journal of Biological Chemistry, 284, 1484–1494.
117.
Zurück zum Zitat Luo, J. H. (2011). Oncogenic activity of MCM7 transforming cluster. World Journal of Clinical Oncology, 2, 120–124.PubMedCrossRef Luo, J. H. (2011). Oncogenic activity of MCM7 transforming cluster. World Journal of Clinical Oncology, 2, 120–124.PubMedCrossRef
118.
Zurück zum Zitat Valastyan, S., Chang, A., Benaich, N., Reinhardt, F., & Weinberg, R. A. (2010). Concurrent suppression of integrin α5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. AACR, 70, 5147–5154. Valastyan, S., Chang, A., Benaich, N., Reinhardt, F., & Weinberg, R. A. (2010). Concurrent suppression of integrin α5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. AACR, 70, 5147–5154.
119.
Zurück zum Zitat Brendle, A., Leil, H., Brandt, A., Johansson, R., Enquist, K., Henriksson, R., Hemminkil, K., Lenner, P., & Försti, A. (2008). Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis, 29, 1394–1399.PubMedCrossRef Brendle, A., Leil, H., Brandt, A., Johansson, R., Enquist, K., Henriksson, R., Hemminkil, K., Lenner, P., & Försti, A. (2008). Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis, 29, 1394–1399.PubMedCrossRef
120.
Zurück zum Zitat Hunt, S., Jones, A. V., Hinsley, E. E., Whawell, S. A., & Lambert, D. W. (2011). MicroRNA-124 suppresses oral squamous cell carcinoma motility by targeting ITGB1. FEBS Letters, 585, 187–192.PubMedCrossRef Hunt, S., Jones, A. V., Hinsley, E. E., Whawell, S. A., & Lambert, D. W. (2011). MicroRNA-124 suppresses oral squamous cell carcinoma motility by targeting ITGB1. FEBS Letters, 585, 187–192.PubMedCrossRef
121.
Zurück zum Zitat Li, G., Luna, C., Qiu, J., Epstein, D. L., & Gonzalez, P. (2009). Targeting of integrin β1 and kinesin 2α by microRNA 183. Journal of Biological Chemistry, 285, 5461–5471.PubMedCrossRef Li, G., Luna, C., Qiu, J., Epstein, D. L., & Gonzalez, P. (2009). Targeting of integrin β1 and kinesin 2α by microRNA 183. Journal of Biological Chemistry, 285, 5461–5471.PubMedCrossRef
Metadaten
Titel
Integrin-epigenetics: a system with imperative impact on cancer
verfasst von
Moonmoon Deb
Dipta Sengupta
Samir Kumar Patra
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2012
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9341-9

Weitere Artikel der Ausgabe 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.