Skip to main content
Erschienen in: Journal of Digital Imaging 6/2010

01.12.2010

Interactive Modeling and Evaluation of Tumor Growth

verfasst von: Jacob Scharcanski, Luciano Silva da Silva, David Koff, Alexander Wong

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 6/2010

Einloggen, um Zugang zu erhalten

Abstract

This paper addresses the need to quantify tumor growth and detect changes as this information is relevant to manage the patient treatment and to aid biotechnological efforts to cure cancer (Silva et al. 2008). An interactive tumor segmentation technique is used to recover the shape and size of tumors without imposing shape constraints. This segmentation algorithm provides good convergence, is robust to the initialization conditions, and requires simple and intuitive user interactions. A parametric approach to model tumor growth analytically is proposed in this paper. The preliminary experimental results are encouraging. The segmentation method is shown to be robust and simple to use, even in situations where the tumor boundary definition is challenging. Also, the experiments indicate that the proposed model potentially can be used to extrapolate the available data and help predict the tumor size (assuming unconstrained growth). Additionally, the proposed method potentially can provide a quantitative reference to compare the tumor shrinkage rate in cancer treatments.
Literatur
1.
Zurück zum Zitat Silva LS, Gaviao W, Koff D, Scharcanski J: Interactive tumor growth evaluation using adaptive image segmentation, Proceedings of the 2008 Annual Meeting of the Society for Imaging Informatics in Medicine (SIIM), May 15–18, Seattle, USA, 2008 Silva LS, Gaviao W, Koff D, Scharcanski J: Interactive tumor growth evaluation using adaptive image segmentation, Proceedings of the 2008 Annual Meeting of the Society for Imaging Informatics in Medicine (SIIM), May 15–18, Seattle, USA, 2008
2.
Zurück zum Zitat Zacharaki EI, Hogea CS, Biros G, Davatzikos C: A comparative study of biomechanical simulators in deformable registration of brain tumor images. IEEE Trans Biomed Eng 55:1233–1236, 2008CrossRefPubMed Zacharaki EI, Hogea CS, Biros G, Davatzikos C: A comparative study of biomechanical simulators in deformable registration of brain tumor images. IEEE Trans Biomed Eng 55:1233–1236, 2008CrossRefPubMed
3.
Zurück zum Zitat Kyriacou SK, Davatzikos C, Zinreich SJ, Bryan N: Nonlinear elastic registration of brain images with tumor pathology using biomechanical model. IEEE Trans Med Imag 18(7):580–592, 1999CrossRef Kyriacou SK, Davatzikos C, Zinreich SJ, Bryan N: Nonlinear elastic registration of brain images with tumor pathology using biomechanical model. IEEE Trans Med Imag 18(7):580–592, 1999CrossRef
4.
Zurück zum Zitat Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N: Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imag 24:1334–1346, 2005CrossRef Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N: Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imag 24:1334–1346, 2005CrossRef
5.
Zurück zum Zitat Zacharaki EI, Matsopoulos GK, Nikita KS, Stamatakos GS: An application of multimodal image registration and fusion in a 3D tumor simulation model, Proceedings of the 25th. Int. Conf. of the IEEE EMBS, 2003 Zacharaki EI, Matsopoulos GK, Nikita KS, Stamatakos GS: An application of multimodal image registration and fusion in a 3D tumor simulation model, Proceedings of the 25th. Int. Conf. of the IEEE EMBS, 2003
6.
Zurück zum Zitat Armato SG, Oxnard GR, Kocherginsky M, Vogelzang NJ, Kindler HL, MacMahon H: Evaluation of semiautomated measurements of mesothelioma tumor thickness on CT scans. Acad Radiol 12:1301–1309, 2005CrossRefPubMed Armato SG, Oxnard GR, Kocherginsky M, Vogelzang NJ, Kindler HL, MacMahon H: Evaluation of semiautomated measurements of mesothelioma tumor thickness on CT scans. Acad Radiol 12:1301–1309, 2005CrossRefPubMed
7.
Zurück zum Zitat Zhao B, Schwartz LH, Moskowitz CS, Ginsberg MS, Rizvi NA, Kris MG: Lung cancer: Computerized quantification of tumor response—initial results. Radiology 241:892–898, 2006CrossRefPubMed Zhao B, Schwartz LH, Moskowitz CS, Ginsberg MS, Rizvi NA, Kris MG: Lung cancer: Computerized quantification of tumor response—initial results. Radiology 241:892–898, 2006CrossRefPubMed
8.
Zurück zum Zitat Zhao B, Schwartz LH, Moskowitz CS, Ginsberg MS, Rizvi NA, Kris MG: Tracking tumor growth rates in patients with malignant gliomas: A test of two algorithms. Am J Neuroradiol 22:73–82, 2001 Zhao B, Schwartz LH, Moskowitz CS, Ginsberg MS, Rizvi NA, Kris MG: Tracking tumor growth rates in patients with malignant gliomas: A test of two algorithms. Am J Neuroradiol 22:73–82, 2001
9.
Zurück zum Zitat Xu C, Prince JL: Gradient vector flow: A new external force for snakes, Proc. of the IEEE Int. Conf. Computer Vision and Pattern Recognition, pp. 66–71, 1997 Xu C, Prince JL: Gradient vector flow: A new external force for snakes, Proc. of the IEEE Int. Conf. Computer Vision and Pattern Recognition, pp. 66–71, 1997
10.
Zurück zum Zitat Kass M, Witkin AP, Terzopoulos D: Snakes: Active contour models. Int J Comput Vis (1) 4:321–331, 1988CrossRef Kass M, Witkin AP, Terzopoulos D: Snakes: Active contour models. Int J Comput Vis (1) 4:321–331, 1988CrossRef
11.
Zurück zum Zitat Prince JL, Davatzikos C: Convexity analysis of active contour algorithms. Image Vis Comput 17(1):27–36, 1999CrossRef Prince JL, Davatzikos C: Convexity analysis of active contour algorithms. Image Vis Comput 17(1):27–36, 1999CrossRef
12.
Zurück zum Zitat Jain AK: Fundamentals of digital image processing, Englewood-Cliffs: Prentice Hall, 1989 Jain AK: Fundamentals of digital image processing, Englewood-Cliffs: Prentice Hall, 1989
13.
Zurück zum Zitat Dwight F: Mix random signal processing, Englewood-Cliffs: Prentice Hall, 1995, pp. 285–286 Dwight F: Mix random signal processing, Englewood-Cliffs: Prentice Hall, 1995, pp. 285–286
14.
Zurück zum Zitat Suzuki C, Jacobsson H, Hantschek T, Torkzad M, Boden K, Eriksson Y, Berg E, Fujii H, Kubo A, Blomquist L: Radiologic measurements of tumor response to treatment: Practical approaches and limitations. RagioGraphics 25(2):329–344, 2008CrossRef Suzuki C, Jacobsson H, Hantschek T, Torkzad M, Boden K, Eriksson Y, Berg E, Fujii H, Kubo A, Blomquist L: Radiologic measurements of tumor response to treatment: Practical approaches and limitations. RagioGraphics 25(2):329–344, 2008CrossRef
15.
Zurück zum Zitat Wong A, Bishop W: Efficient least squares fusion of MRI and CT images using a phase congruency model. Pattern Recogn Lett 29(3):173–180, 2008CrossRef Wong A, Bishop W: Efficient least squares fusion of MRI and CT images using a phase congruency model. Pattern Recogn Lett 29(3):173–180, 2008CrossRef
Metadaten
Titel
Interactive Modeling and Evaluation of Tumor Growth
verfasst von
Jacob Scharcanski
Luciano Silva da Silva
David Koff
Alexander Wong
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 6/2010
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-009-9234-4

Weitere Artikel der Ausgabe 6/2010

Journal of Digital Imaging 6/2010 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.