Skip to main content
Erschienen in: Inflammation 5/2017

20.07.2017 | ORIGINAL ARTICLE

Intermediate Molecular Mass Hyaluronan and CD44 Receptor Interactions Enhance Neutrophil Phagocytosis and IL-8 Production via p38- and ERK1/2-MAPK Signalling Pathways

verfasst von: Cheng-Hsun Lu, Chia-Huei Lin, Ko-Jen Li, Chieh-Yu Shen, Cheng-Han Wu, Yu-Min Kuo, Ting-Syuan Lin, Chia-Li Yu, Song-Chou Hsieh

Erschienen in: Inflammation | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

CD44 is a common leukocyte adhesion molecule expressed on the surface of various cells. Hyaluronan (HA), the natural ligand of CD44, is a simple repeated disaccharide with variable molecular mass that is widely distributed on cell surfaces and the connective tissue matrix. The binding of small molecular mass HA (SMM-HA, MW < 80 kDa) to CD44 on immune-related cells elicits cell proliferation, differentiation, and cytokine production. However, the effects and molecular basis of intermediate molecular mass HA (IMM-HA, MW ≈ 500 kDa)-CD44 interactions on polymorphonuclear neutrophil (PMN) functions have not been elucidated. We hypothesised that IMM-HA would potentiate immune functions as well as SMM-HA. In the present study, we demonstrated IMM-HA and CD44 interactions enhanced normal PMN phagocytosis and IL-8 production compared to those with LPS or anti-CD45 treatment via F-actin cytoskeleton polymerization and subsequent ERK1/2- and p38-MAPK phosphorylation. Antibody-based inhibition of CD44 did not affect PMN function; however, F-actin aggregation was induced without MAPK phosphorylation. Enhanced PMN function via IMM-HA was determined to be CD44-dependent since this effect was abolished in DMSO-induced CD44(−) PMN-like cells obtained from HL-60 cells. In conclusion, we demonstrated that IMM-HA and CD44 interactions on PMNs potently elicit F-actin cytoskeleton polymerization and p38- and ERK1/2-MAPK phosphorylation to enhance PMN function.
Literatur
1.
Zurück zum Zitat Lesley, J., R. Hyman, and P.W. Kincade. 1993. CD44 and its interaction with extracellular matrix. Advances in Immunology 54: 271–335.CrossRefPubMed Lesley, J., R. Hyman, and P.W. Kincade. 1993. CD44 and its interaction with extracellular matrix. Advances in Immunology 54: 271–335.CrossRefPubMed
2.
Zurück zum Zitat Lesley, J., R. Hyman, N. English, J.B. Catterall, and G.A. Turner. 1997. CD44 in inflammation and metastasis. Glycoconjugate Journal 14: 611–622.CrossRefPubMed Lesley, J., R. Hyman, N. English, J.B. Catterall, and G.A. Turner. 1997. CD44 in inflammation and metastasis. Glycoconjugate Journal 14: 611–622.CrossRefPubMed
3.
Zurück zum Zitat Siegelman, M.H., H.C. DeGrendele, and P. Estess. 1999. Activation and interaction of CD44 and hyaluronan in immunological systems. Journal of Leukocyte Biology 66: 315–321.PubMed Siegelman, M.H., H.C. DeGrendele, and P. Estess. 1999. Activation and interaction of CD44 and hyaluronan in immunological systems. Journal of Leukocyte Biology 66: 315–321.PubMed
4.
Zurück zum Zitat Johnson, P., and B. Ruffell. CD44 and its role in inflammation and inflammatory diseases. Inflammation & Allergy Drug Targets 200 (8): 208–220. Johnson, P., and B. Ruffell. CD44 and its role in inflammation and inflammatory diseases. Inflammation & Allergy Drug Targets 200 (8): 208–220.
5.
Zurück zum Zitat Bourguignon, L.Y. 2008. Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Seminars in Cancer Biology 18: 251–259.CrossRefPubMedPubMedCentral Bourguignon, L.Y. 2008. Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Seminars in Cancer Biology 18: 251–259.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Heldin, P., E. Karousou, B. Bernert, H. Porsch, K. Nishitsuka, and S.S. Skandalis. 2008. Importance of hyaluronan-CD44 interactions in inflammation and tumorigenesis. Connective Tissue Research 49: 215–218.CrossRefPubMed Heldin, P., E. Karousou, B. Bernert, H. Porsch, K. Nishitsuka, and S.S. Skandalis. 2008. Importance of hyaluronan-CD44 interactions in inflammation and tumorigenesis. Connective Tissue Research 49: 215–218.CrossRefPubMed
7.
Zurück zum Zitat Bourguignon, L.Y., M. Shiina, and J.J. Li. 2014. Hyaluronan-CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression. Advances in Cancer Research 123: 255–275.CrossRefPubMed Bourguignon, L.Y., M. Shiina, and J.J. Li. 2014. Hyaluronan-CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression. Advances in Cancer Research 123: 255–275.CrossRefPubMed
8.
Zurück zum Zitat Jordan, A.R., R.R. Racine, M.J. Hennig, and V.B. Lokeshwar. 2015. The role of CD44 in disease pathophysiology and targeted treatment. Frontiers in Immunology (6) Article 182. Jordan, A.R., R.R. Racine, M.J. Hennig, and V.B. Lokeshwar. 2015. The role of CD44 in disease pathophysiology and targeted treatment. Frontiers in Immunology (6) Article 182.
9.
Zurück zum Zitat Laurent, T.C., and J.R. Fraser. 1992. Hyaluronan. The FASEB Journal 6: 2397–2404.PubMed Laurent, T.C., and J.R. Fraser. 1992. Hyaluronan. The FASEB Journal 6: 2397–2404.PubMed
10.
Zurück zum Zitat Fraser, J.R., T.C. Laurent, and U.B. Laurent. 1997. Hyaluronan: Its nature, distribution, functions and turnover. Journal of Internal Medicine 242: 27–33.CrossRefPubMed Fraser, J.R., T.C. Laurent, and U.B. Laurent. 1997. Hyaluronan: Its nature, distribution, functions and turnover. Journal of Internal Medicine 242: 27–33.CrossRefPubMed
11.
Zurück zum Zitat Lee, J.Y., and A.P. Spicer. 2000. Hyaluronan: a multifunctional, megaDalton, stealth molecule. Current Opinion in Cell Biology 12: 581–586.CrossRefPubMed Lee, J.Y., and A.P. Spicer. 2000. Hyaluronan: a multifunctional, megaDalton, stealth molecule. Current Opinion in Cell Biology 12: 581–586.CrossRefPubMed
12.
Zurück zum Zitat Toole, B.P. 2004. Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews. Cancer 4: 528–539.CrossRefPubMed Toole, B.P. 2004. Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews. Cancer 4: 528–539.CrossRefPubMed
13.
Zurück zum Zitat Misra, S., V.C. Hascall, R.R. Markwald, and S. Ghatak. 2015. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Frontiers in Immunology 6 Article 201. Misra, S., V.C. Hascall, R.R. Markwald, and S. Ghatak. 2015. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Frontiers in Immunology 6 Article 201.
14.
Zurück zum Zitat Yamawaki, H., S. Hirohata, T. Miyoshi, K. Takahashi, H. Ogawa, R. Shinohata, K. Demircan, S. Kusachi, K. Yamamoto, and Y. Ninomiya. 2009. Hyaluronan receptors involved in cytokine induction in monocytes. Glycobiology 19: 83–92.CrossRefPubMed Yamawaki, H., S. Hirohata, T. Miyoshi, K. Takahashi, H. Ogawa, R. Shinohata, K. Demircan, S. Kusachi, K. Yamamoto, and Y. Ninomiya. 2009. Hyaluronan receptors involved in cytokine induction in monocytes. Glycobiology 19: 83–92.CrossRefPubMed
16.
Zurück zum Zitat Chang, E.-J., H.J. Kim, J. Ha, H.J. Kim, J. Ryu, K.-H. Park, U.-H. Kim, Z.H. Lee, H.-M. Kim, D.E. Fisher, and H.-H. Kim. 2007. Hyaluronan inhibits osteoclast differentiation via Toll-like receptor 4. Journal of Cell Science 120: 166–176.CrossRefPubMed Chang, E.-J., H.J. Kim, J. Ha, H.J. Kim, J. Ryu, K.-H. Park, U.-H. Kim, Z.H. Lee, H.-M. Kim, D.E. Fisher, and H.-H. Kim. 2007. Hyaluronan inhibits osteoclast differentiation via Toll-like receptor 4. Journal of Cell Science 120: 166–176.CrossRefPubMed
17.
Zurück zum Zitat Noble, P.W. 2002. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biology 21: 25–29.CrossRefPubMed Noble, P.W. 2002. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biology 21: 25–29.CrossRefPubMed
18.
Zurück zum Zitat Cowman, M.K., H.G. Lee, K.L. Schwertfeger, J.B. McCarthy, and E.A. Turley. 2015. The content and size of hyaluronan in biological fluids and tissues. Frontiers in Immunology 6 Article 261. Cowman, M.K., H.G. Lee, K.L. Schwertfeger, J.B. McCarthy, and E.A. Turley. 2015. The content and size of hyaluronan in biological fluids and tissues. Frontiers in Immunology 6 Article 261.
19.
Zurück zum Zitat Wang, J.Y., and M.H. Roehrl. 2002. Glycosaminoglycans are a potential cause of rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America 99: 14362–14367.CrossRefPubMedPubMedCentral Wang, J.Y., and M.H. Roehrl. 2002. Glycosaminoglycans are a potential cause of rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America 99: 14362–14367.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Gyorgy, B., L. Tothfalusi, G. Nagy, M. Pasztoi, P. Geher, Z. Lorinc, A. Polgar, B. Rojkovich, I. Ujfalussy, G. Poor, P. Pocza, Z. Wiener, P. Misjak, A. Koncz, A. Falus, and E.I. Buzas. 2008. Natural autoantibodies reactive with glycosaminoglycans in rheumatoid arthritis. Arthritis Research & Therapy 10: R110.CrossRef Gyorgy, B., L. Tothfalusi, G. Nagy, M. Pasztoi, P. Geher, Z. Lorinc, A. Polgar, B. Rojkovich, I. Ujfalussy, G. Poor, P. Pocza, Z. Wiener, P. Misjak, A. Koncz, A. Falus, and E.I. Buzas. 2008. Natural autoantibodies reactive with glycosaminoglycans in rheumatoid arthritis. Arthritis Research & Therapy 10: R110.CrossRef
21.
Zurück zum Zitat Brawer, A.E., and N. Goel. 2016. The onset of rheumatoid arthritis following trauma. Open Access Rheumatology: Research and Reviews 8: 77–80.CrossRef Brawer, A.E., and N. Goel. 2016. The onset of rheumatoid arthritis following trauma. Open Access Rheumatology: Research and Reviews 8: 77–80.CrossRef
22.
Zurück zum Zitat Kerje, S., U. Hellman, L. Do, G. Larsson, O. Kampe, A. Engstrom-Laurent, and U. Lindqvist. 2016. Is low molecular weight hyaluronan an early indicator of disease in avian systemic sclerosis? Connective Tissue Research 57: 337–346.CrossRefPubMed Kerje, S., U. Hellman, L. Do, G. Larsson, O. Kampe, A. Engstrom-Laurent, and U. Lindqvist. 2016. Is low molecular weight hyaluronan an early indicator of disease in avian systemic sclerosis? Connective Tissue Research 57: 337–346.CrossRefPubMed
23.
Zurück zum Zitat Lauer, M.E., A.K. Majors, S. Comhair, L.M. Ruple, B. Matuska, A. Subramanian, C. Farver, R. Dworski, D. Grandon, D. Laskowski, R.A. Dweik, S.C. Erzurum, V.C. Hascall, and M.A. Aronica. 2015. Hyaluronan and its heavy chain modification in asthma severity and experimental asthma exacerbation. The Journal of Biological Chemistry 290: 23124–23134.CrossRefPubMedPubMedCentral Lauer, M.E., A.K. Majors, S. Comhair, L.M. Ruple, B. Matuska, A. Subramanian, C. Farver, R. Dworski, D. Grandon, D. Laskowski, R.A. Dweik, S.C. Erzurum, V.C. Hascall, and M.A. Aronica. 2015. Hyaluronan and its heavy chain modification in asthma severity and experimental asthma exacerbation. The Journal of Biological Chemistry 290: 23124–23134.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Oh, J.H., Y.K. Kim, J.Y. Jung, J.E. Shin, and J.H. Chung. 2011. Changes in glycosaminoglycans and related proteoglycans in intrinsically aged human skin in vivo. Experimental Dermatology 20: 454–456.CrossRefPubMed Oh, J.H., Y.K. Kim, J.Y. Jung, J.E. Shin, and J.H. Chung. 2011. Changes in glycosaminoglycans and related proteoglycans in intrinsically aged human skin in vivo. Experimental Dermatology 20: 454–456.CrossRefPubMed
25.
Zurück zum Zitat Tashiro, K., M. Shishido, K. Fujimoto, Y. Hirota, K. Yo, T. Gomi, and Y. Tanaka. 2014. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components. Biochemical and Biophysical Research Communications 443: 167–172.CrossRefPubMed Tashiro, K., M. Shishido, K. Fujimoto, Y. Hirota, K. Yo, T. Gomi, and Y. Tanaka. 2014. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components. Biochemical and Biophysical Research Communications 443: 167–172.CrossRefPubMed
26.
Zurück zum Zitat Lee, D.H., J.H. Oh, and J.H. Chung. 2016. Glycosaminoglycan and proteoglycan in skin aging. Journal of Dermatological Science 83: 174–181.CrossRefPubMed Lee, D.H., J.H. Oh, and J.H. Chung. 2016. Glycosaminoglycan and proteoglycan in skin aging. Journal of Dermatological Science 83: 174–181.CrossRefPubMed
27.
Zurück zum Zitat Tammi, M., P.O. Seppala, A. Lehtonen, and M. Mottonen. 1978. Connective tissue components in normal and atherosclerotic human coronary arteries. Atherosclerosis 29: 191–194.CrossRefPubMed Tammi, M., P.O. Seppala, A. Lehtonen, and M. Mottonen. 1978. Connective tissue components in normal and atherosclerotic human coronary arteries. Atherosclerosis 29: 191–194.CrossRefPubMed
28.
Zurück zum Zitat Yla-Herttuala, S., H. Sumuvuori, K. Karkola, M. Mottonen, and T. Nikkari. 1986. Glycosaminoglycans in normal and atherosclerotic human coronary arteries. Laboratory Investigation 54: 402–407.PubMed Yla-Herttuala, S., H. Sumuvuori, K. Karkola, M. Mottonen, and T. Nikkari. 1986. Glycosaminoglycans in normal and atherosclerotic human coronary arteries. Laboratory Investigation 54: 402–407.PubMed
29.
Zurück zum Zitat Hauert, A.B., S. Martinelli, C. Marone, and V. Niggli. 2002. Differentiated HL-60 cells are valid model system for the analysis of human neutrophil migration and chemotaxis. The International Journal of Biochemistry & Cell Biology 34: 838–854.CrossRef Hauert, A.B., S. Martinelli, C. Marone, and V. Niggli. 2002. Differentiated HL-60 cells are valid model system for the analysis of human neutrophil migration and chemotaxis. The International Journal of Biochemistry & Cell Biology 34: 838–854.CrossRef
30.
Zurück zum Zitat Shalaby, M.R., B.B. Aggarwal, E. Rinderknecht, L.P. Svedersky, B.S. Finkle, and M.A. Palladino Jr. 1985. Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. Journal of Immunology 135: 2069–2073. Shalaby, M.R., B.B. Aggarwal, E. Rinderknecht, L.P. Svedersky, B.S. Finkle, and M.A. Palladino Jr. 1985. Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. Journal of Immunology 135: 2069–2073.
31.
Zurück zum Zitat Spertini, F., A.V. Wang, T. Chatila, and R.S. Geha. 1994. Engagement of the common leukocyte antigen CD45 induces homotypic adhesion of activated human T cells. Journal of Immunology 153: 1593–1602. Spertini, F., A.V. Wang, T. Chatila, and R.S. Geha. 1994. Engagement of the common leukocyte antigen CD45 induces homotypic adhesion of activated human T cells. Journal of Immunology 153: 1593–1602.
32.
Zurück zum Zitat Yu, C.L., H.S. Yu, K.H. Sun, S.C. Hsieh, and C.Y. Tsai. 2002. Anti-CD45 isoform antibodies enhance phagocytosis and gene expression of IL-8 and TNF-alpha in human neutrophils by differential suppression on protein tyrosine phosphorylation and p56lck tyrosine kinase. Clinical and Experimental Immunology 129: 78–85.CrossRefPubMedPubMedCentral Yu, C.L., H.S. Yu, K.H. Sun, S.C. Hsieh, and C.Y. Tsai. 2002. Anti-CD45 isoform antibodies enhance phagocytosis and gene expression of IL-8 and TNF-alpha in human neutrophils by differential suppression on protein tyrosine phosphorylation and p56lck tyrosine kinase. Clinical and Experimental Immunology 129: 78–85.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat May, R.C., and L.M. Machesky. 2001. Phagocytosis and the actin cytoskeleton. Journal of Cell Science 114: 1061–1077.PubMed May, R.C., and L.M. Machesky. 2001. Phagocytosis and the actin cytoskeleton. Journal of Cell Science 114: 1061–1077.PubMed
34.
Zurück zum Zitat Groves, E., A.E. Dart, V. Covarelli, and E. Caron. 2008. Molecular mechanisms of phagocytic uptake in mammalian cells. Cellular and Molecular Life Sciences 65: 1957–1976.CrossRefPubMed Groves, E., A.E. Dart, V. Covarelli, and E. Caron. 2008. Molecular mechanisms of phagocytic uptake in mammalian cells. Cellular and Molecular Life Sciences 65: 1957–1976.CrossRefPubMed
36.
Zurück zum Zitat Li, K.J., S.C. Siao, C.H. Wu, C.Y. Shen, T.H. Wu, C.Y. Tsai, S.C. Hsieh, and C.L. Yu. 2013. EGF receptor-dependent mechanism may be involved in the Tamm-Horsfall glycoprotein-enhanced PMN phagocytosis via activating Rho family and MAPK signaling pathway. Molecules 19: 1328–1343.CrossRef Li, K.J., S.C. Siao, C.H. Wu, C.Y. Shen, T.H. Wu, C.Y. Tsai, S.C. Hsieh, and C.L. Yu. 2013. EGF receptor-dependent mechanism may be involved in the Tamm-Horsfall glycoprotein-enhanced PMN phagocytosis via activating Rho family and MAPK signaling pathway. Molecules 19: 1328–1343.CrossRef
37.
Zurück zum Zitat Sherman, L., J. Sleeman, P. Herrlich, and H. Ponta. 1994. Hyaluronate receptors: Key players in growth, differentiation, migration and tumor progression. Current Opinion in Cell Biology 6: 726–733.CrossRefPubMed Sherman, L., J. Sleeman, P. Herrlich, and H. Ponta. 1994. Hyaluronate receptors: Key players in growth, differentiation, migration and tumor progression. Current Opinion in Cell Biology 6: 726–733.CrossRefPubMed
38.
Zurück zum Zitat Naor, D., R.V. Sionov, and D. Ish-Shalom. 1997. CD44: Structure, function, and association with the malignant process. Advances in Cancer Research 71: 241–319.CrossRefPubMed Naor, D., R.V. Sionov, and D. Ish-Shalom. 1997. CD44: Structure, function, and association with the malignant process. Advances in Cancer Research 71: 241–319.CrossRefPubMed
39.
Zurück zum Zitat Bourrguignon, L.Y., N. Lida, C.F. Welsh, D. ZHu, A. Krongrad, and D. Pasguale. 1995. Involvement of CD44 and its variant isoforms in membrane-cytoskeleton interaction, cell adhesion, and tumor metastasis. Journal of Neuro-Oncology 26: 201–208.CrossRefPubMed Bourrguignon, L.Y., N. Lida, C.F. Welsh, D. ZHu, A. Krongrad, and D. Pasguale. 1995. Involvement of CD44 and its variant isoforms in membrane-cytoskeleton interaction, cell adhesion, and tumor metastasis. Journal of Neuro-Oncology 26: 201–208.CrossRefPubMed
40.
Zurück zum Zitat Wittig, B., S. Seiter, N. Foger, C. Schwarzler, U. Gunthert, and M. Zoller. 1997. Functional activity of murine CD44 variant isoforms in allergic and delayed type hypersensitivity. Immunology Letters 57: 217–223.CrossRefPubMed Wittig, B., S. Seiter, N. Foger, C. Schwarzler, U. Gunthert, and M. Zoller. 1997. Functional activity of murine CD44 variant isoforms in allergic and delayed type hypersensitivity. Immunology Letters 57: 217–223.CrossRefPubMed
41.
Zurück zum Zitat Witting, B.M., A. Stallmach, M. Zeitz, and U. Gunthert. 2002. Functional involvement of CD44 variant 7 in gut immune response. Pathology 70: 184–189. Witting, B.M., A. Stallmach, M. Zeitz, and U. Gunthert. 2002. Functional involvement of CD44 variant 7 in gut immune response. Pathology 70: 184–189.
42.
Zurück zum Zitat Hoffmann, U., K. Heilmann, C. Hayford, A. Stallmach, U. Wahnschaffe, M. Zeitz, U. Gunthert, and B.M. Wittig. 2007. CD44v7 ligation downregulates the inflammatory immune response in Crohn's disease patients by apoptosis induction in mononuclear cells from the lamina propria. Cell Death and Differentiation 14: 1542–1551.CrossRefPubMed Hoffmann, U., K. Heilmann, C. Hayford, A. Stallmach, U. Wahnschaffe, M. Zeitz, U. Gunthert, and B.M. Wittig. 2007. CD44v7 ligation downregulates the inflammatory immune response in Crohn's disease patients by apoptosis induction in mononuclear cells from the lamina propria. Cell Death and Differentiation 14: 1542–1551.CrossRefPubMed
43.
Zurück zum Zitat Slevin, M., J. Krupinski, J. Gaffney, S. Matou, D. West, H. Delisser, R.C. Savani, and S. Kumar. 2007. Hyaluronan-mediated angiogenesis in vascular disease: Uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biology 26: 58–68.CrossRefPubMed Slevin, M., J. Krupinski, J. Gaffney, S. Matou, D. West, H. Delisser, R.C. Savani, and S. Kumar. 2007. Hyaluronan-mediated angiogenesis in vascular disease: Uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biology 26: 58–68.CrossRefPubMed
44.
Zurück zum Zitat Heldin, P., K. Basu, B. Olofsson, H. Porsch, I. Kozlova, and K. Kahata. 2013. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. Journal of Biochemistry 154: 395–408.CrossRefPubMed Heldin, P., K. Basu, B. Olofsson, H. Porsch, I. Kozlova, and K. Kahata. 2013. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. Journal of Biochemistry 154: 395–408.CrossRefPubMed
45.
Zurück zum Zitat Termeer, C.C., J. Hennies, U. Voith, T. Ahrens, J.M. Weiss, P. Prehm, and J.C. Simon. 2000. Oligosaccharides of hyaluronan are potent activators of dendritic cells. Journal of Immunology 165: 1863–1870.CrossRef Termeer, C.C., J. Hennies, U. Voith, T. Ahrens, J.M. Weiss, P. Prehm, and J.C. Simon. 2000. Oligosaccharides of hyaluronan are potent activators of dendritic cells. Journal of Immunology 165: 1863–1870.CrossRef
46.
Zurück zum Zitat Termeer, C., F. Benedix, J. Sleeman, C. Fieber, U. Voith, T. Ahrens, K. Miyake, M. Freudenberg, C. Galanos, and J.C. Simon. 2002. Oligosaccharides of hyaluronan activate dendritic cell via Toll-like receptor 4. The Journal of Experimental Medicine 195: 99–111.CrossRefPubMedPubMedCentral Termeer, C., F. Benedix, J. Sleeman, C. Fieber, U. Voith, T. Ahrens, K. Miyake, M. Freudenberg, C. Galanos, and J.C. Simon. 2002. Oligosaccharides of hyaluronan activate dendritic cell via Toll-like receptor 4. The Journal of Experimental Medicine 195: 99–111.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Orian-Rousseau, V., and M. Schmitt. 2015. CD44 regulates Wnt signaling at the level of LRP6. Molecular & Cellular Oncology 2: e995046.CrossRef Orian-Rousseau, V., and M. Schmitt. 2015. CD44 regulates Wnt signaling at the level of LRP6. Molecular & Cellular Oncology 2: e995046.CrossRef
48.
Zurück zum Zitat Lee, Y.-T., H.-J. Shao, J.-H. Wang, H.-C. Liu, S.-M. Hou, and T.-H. Young. 2010. Hyaluronic acid modulates gene expression of connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1), and vascular endothelial growth factor (VEGF) in human fibroblast-like synovial cells from advanced-stage osteoarthritis in vitro. Journal of Orthopaedic Research 28: 492–496.CrossRefPubMed Lee, Y.-T., H.-J. Shao, J.-H. Wang, H.-C. Liu, S.-M. Hou, and T.-H. Young. 2010. Hyaluronic acid modulates gene expression of connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1), and vascular endothelial growth factor (VEGF) in human fibroblast-like synovial cells from advanced-stage osteoarthritis in vitro. Journal of Orthopaedic Research 28: 492–496.CrossRefPubMed
49.
Zurück zum Zitat Hiraoka, N., K. Takahashi, Y. Arai, K. Sakao, O. Mazda, T. Kishida, K. Honjo, S. Tanaka, and T. Kubo. 2011. Intra-articular injection of hyaluronan restores the aberrant expression of matrix metalloproteinase-13 in osteoarthritic subchondral bone. Journal of Orthopaedic Research 29: 354–360.CrossRefPubMed Hiraoka, N., K. Takahashi, Y. Arai, K. Sakao, O. Mazda, T. Kishida, K. Honjo, S. Tanaka, and T. Kubo. 2011. Intra-articular injection of hyaluronan restores the aberrant expression of matrix metalloproteinase-13 in osteoarthritic subchondral bone. Journal of Orthopaedic Research 29: 354–360.CrossRefPubMed
50.
Zurück zum Zitat Bauer, C., E. Niculescu-Morzsa, V. Jeyakumar, D. Kern, S.S. Spath, and S. Nehrer. 2016. Chondroprotective effect of high molecular-weight hyaluronic acid on osteoarthritic chondrocytes in a co-cultivation inflammation model with M1 macrophages. Journal of Inflammation 13: 31–39.CrossRefPubMedPubMedCentral Bauer, C., E. Niculescu-Morzsa, V. Jeyakumar, D. Kern, S.S. Spath, and S. Nehrer. 2016. Chondroprotective effect of high molecular-weight hyaluronic acid on osteoarthritic chondrocytes in a co-cultivation inflammation model with M1 macrophages. Journal of Inflammation 13: 31–39.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Altman, R.D., A. Manjoo, A. Fierlinger, F. Niazi, and M. Nicholls. 2015. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: A systemic review. BMC Musculoskeletal Disorders 1: 321–330.CrossRef Altman, R.D., A. Manjoo, A. Fierlinger, F. Niazi, and M. Nicholls. 2015. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: A systemic review. BMC Musculoskeletal Disorders 1: 321–330.CrossRef
52.
Zurück zum Zitat Brzusek, D., and D. Petron. 2008. Treating knee osteoarthritis with intra-articular hyaluronans. Current Medical Research and Opinion 24: 3307–3322.CrossRefPubMed Brzusek, D., and D. Petron. 2008. Treating knee osteoarthritis with intra-articular hyaluronans. Current Medical Research and Opinion 24: 3307–3322.CrossRefPubMed
53.
Zurück zum Zitat Puttick, M.P., J.P. Wade, A. Chalmers, D.G. Connell, and K.K. Rangno. 1995. Acute local reactions after intraarticular hylan for osteoarthritis of the knee. The Journal of Rheumatology 22: 1311–1314.PubMed Puttick, M.P., J.P. Wade, A. Chalmers, D.G. Connell, and K.K. Rangno. 1995. Acute local reactions after intraarticular hylan for osteoarthritis of the knee. The Journal of Rheumatology 22: 1311–1314.PubMed
54.
Zurück zum Zitat Refsnes, M., T. Skuland, P.E. Schwarze, J. Ovrevik, and M. Lag. 2008. Fluoride-induced IL-8 release in human epithelial lung cells: Relationship to EGF-receptor-, SRC- and MAP-kinase activation. Toxicology and Applied Pharmacology 227: 56–67.CrossRefPubMed Refsnes, M., T. Skuland, P.E. Schwarze, J. Ovrevik, and M. Lag. 2008. Fluoride-induced IL-8 release in human epithelial lung cells: Relationship to EGF-receptor-, SRC- and MAP-kinase activation. Toxicology and Applied Pharmacology 227: 56–67.CrossRefPubMed
55.
Zurück zum Zitat Zhang, Y., L. Wang, M. Zhang, M. Jin, C. Bai, and X. Wang. 2012. Potential mechanism of interleukin-8 production from lung cancer cells: An involvement of EGF-EGFR-PI3K-Akt-Erk pathway. Journal of Cellular Physiology 227: 35–43.CrossRefPubMed Zhang, Y., L. Wang, M. Zhang, M. Jin, C. Bai, and X. Wang. 2012. Potential mechanism of interleukin-8 production from lung cancer cells: An involvement of EGF-EGFR-PI3K-Akt-Erk pathway. Journal of Cellular Physiology 227: 35–43.CrossRefPubMed
57.
Zurück zum Zitat Hanabayashi, M., N. Takahashi, Y. Sobue, S. Hirabara, N. Ishiguro, and T. Kojima. 2016. Hyaluronan oligosaccharides induce MMP-1 and -3 via transcriptional activation of NF-κB and p38 MAPK in rheumatoid synovial fibroblasts. PLoS One 11: e0161875.CrossRefPubMedPubMedCentral Hanabayashi, M., N. Takahashi, Y. Sobue, S. Hirabara, N. Ishiguro, and T. Kojima. 2016. Hyaluronan oligosaccharides induce MMP-1 and -3 via transcriptional activation of NF-κB and p38 MAPK in rheumatoid synovial fibroblasts. PLoS One 11: e0161875.CrossRefPubMedPubMedCentral
Metadaten
Titel
Intermediate Molecular Mass Hyaluronan and CD44 Receptor Interactions Enhance Neutrophil Phagocytosis and IL-8 Production via p38- and ERK1/2-MAPK Signalling Pathways
verfasst von
Cheng-Hsun Lu
Chia-Huei Lin
Ko-Jen Li
Chieh-Yu Shen
Cheng-Han Wu
Yu-Min Kuo
Ting-Syuan Lin
Chia-Li Yu
Song-Chou Hsieh
Publikationsdatum
20.07.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0622-5

Weitere Artikel der Ausgabe 5/2017

Inflammation 5/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.