Skip to main content
Erschienen in: Inflammation 2/2018

01.12.2017 | ORIGINAL ARTICLE

Intermedin1–53 Protects Cardiac Fibroblasts by Inhibiting NLRP3 Inflammasome Activation During Sepsis

verfasst von: Di Wu, Lin Shi, Pengyang Li, Xianqiang Ni, Jinsheng Zhang, Qing Zhu, Yongfen Qi, Bin Wang

Erschienen in: Inflammation | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Sepsis is a disease that occurs as a result of systemic inflammatory response syndrome (SIRS) in response to an infection, contributing to multiple organ dysfunction and a high mortality rate. Interleukin-lβ (IL-1β) is a cytokine that plays critical roles in inflammation and cardiac dysfunction during severe sepsis. Intermedin1–53 (IMD1–53) has been recently discovered to possess potential endogenous anti-inflammatory and strong cardiovascular protective effects. To investigate whether IMD1–53 can inhibit the NLRP3/caspase-1/IL-1β pathway to alleviate cardiac injury and rescue heart function, sepsis was induced in vivo by caecal ligation and puncture (CLP) surgery, and lipopolysaccharides were used as septic stressors for cardiac fibroblasts (CFs) in vitro. The expressions of IMD1–53 receptors in sepsis rat heart were increased. After IMD1–53 treatment, inflammation caused by sepsis in vivo was greatly reduced, as shown by the downregulation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), nucleotide-binding domain and leucine-rich repeat containing family, pyrin containing 3 (NLRP3), pro-IL-1β, caspase 1, and nuclear translocation of nuclear factor-κB (NF-kB) protein levels. In addition, cardiac function was significantly improved and mean arterial blood pressure (MABP) increased by 34.8% (P < 0.05) which almost back to normal. Surprisingly, IMD1–53 inhibited cell apoptosis, as caspase 3 activity and Bax expression was significantly reduced in the heart upon IMD1–53 treatment. IMD1–53 abolished the upregulation of ASC, NLRP3, and caspase 1 protein levels in CFs induced by lipopolysaccharide (LPS). IMD1–53 increased cell survival rates and inhibited IL-1β production in the cell culture medium. IMD1–53 can protect against inflammation and heart injury during sepsis via attenuating the NLRP3/caspase-1/IL-1β pathway.
Literatur
2.
Zurück zum Zitat Bone, R.C., R.A. Balk, F.B. Cerra, R.P. Dellinger, A.M. Fein, W.A. Knaus, R. Schein, et al. 1992. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Critical Care Medicine 20 (6): 864–874.CrossRef Bone, R.C., R.A. Balk, F.B. Cerra, R.P. Dellinger, A.M. Fein, W.A. Knaus, R. Schein, et al. 1992. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Critical Care Medicine 20 (6): 864–874.CrossRef
3.
Zurück zum Zitat Chang, J.R., X.H. Duan, B.H. Zhang, X. Teng, Y.B. Zhou, Y. Liu, Y.R. Yu, Y. Zhu, C.S. Tang, and Y.F. Qi. 2013. Intermedin1-53 attenuates vascular smooth muscle cell calcification by inhibiting endoplasmic reticulum stress via cyclic adenosine monophosphate/protein kinase A pathway. Experimental Biology and Medicine (Maywood, N.J.) 238 (10): 1136–1146. https://doi.org/10.1177/1535370213502619.CrossRef Chang, J.R., X.H. Duan, B.H. Zhang, X. Teng, Y.B. Zhou, Y. Liu, Y.R. Yu, Y. Zhu, C.S. Tang, and Y.F. Qi. 2013. Intermedin1-53 attenuates vascular smooth muscle cell calcification by inhibiting endoplasmic reticulum stress via cyclic adenosine monophosphate/protein kinase A pathway. Experimental Biology and Medicine (Maywood, N.J.) 238 (10): 1136–1146. https://​doi.​org/​10.​1177/​1535370213502619​.CrossRef
4.
Zurück zum Zitat Fauvel, H., P. Marchetti, C. Chopin, P. Formstecher, and R. Neviere. 2001. Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. American Journal of Physiology. Heart and Circulatory Physiology 280 (4): H1608–H1614.CrossRefPubMed Fauvel, H., P. Marchetti, C. Chopin, P. Formstecher, and R. Neviere. 2001. Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. American Journal of Physiology. Heart and Circulatory Physiology 280 (4): H1608–H1614.CrossRefPubMed
5.
Zurück zum Zitat Fearon, D.T., and R.M. Locksley. 1996. The instructive role of innate immunity in the acquired immune response. Science 272 (5258): 50–53.CrossRefPubMed Fearon, D.T., and R.M. Locksley. 1996. The instructive role of innate immunity in the acquired immune response. Science 272 (5258): 50–53.CrossRefPubMed
7.
Zurück zum Zitat Fisher, C.J., Jr., J.F. Dhainaut, S.M. Opal, J.P. Pribble, R.A. Balk, G.J. Slotman, T.J. Iberti, et al. 1994. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 271 (23): 1836–1843.CrossRefPubMed Fisher, C.J., Jr., J.F. Dhainaut, S.M. Opal, J.P. Pribble, R.A. Balk, G.J. Slotman, T.J. Iberti, et al. 1994. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 271 (23): 1836–1843.CrossRefPubMed
8.
Zurück zum Zitat Fisher, C.J., Jr., G.J. Slotman, S.M. Opal, J.P. Pribble, R.C. Bone, G. Emmanuel, D. Ng, D.C. Bloedow, M.A. Catalano, and Il-Ra Sepsis Syndrome Study Group. 1994. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. Critical Care Medicine 22 (1): 12–21.CrossRefPubMed Fisher, C.J., Jr., G.J. Slotman, S.M. Opal, J.P. Pribble, R.C. Bone, G. Emmanuel, D. Ng, D.C. Bloedow, M.A. Catalano, and Il-Ra Sepsis Syndrome Study Group. 1994. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. Critical Care Medicine 22 (1): 12–21.CrossRefPubMed
9.
Zurück zum Zitat Furian, T., C. Aguiar, K. Prado, R.V. Ribeiro, L. Becker, N. Martinelli, N. Clausell, L.E. Rohde, and A. Biolo. 2012. Ventricular dysfunction and dilation in severe sepsis and septic shock: relation to endothelial function and mortality. Journal of Critical Care 27 (3): 319 e319–319 e315. https://doi.org/10.1016/j.jcrc.2011.06.017.CrossRef Furian, T., C. Aguiar, K. Prado, R.V. Ribeiro, L. Becker, N. Martinelli, N. Clausell, L.E. Rohde, and A. Biolo. 2012. Ventricular dysfunction and dilation in severe sepsis and septic shock: relation to endothelial function and mortality. Journal of Critical Care 27 (3): 319 e319–319 e315. https://​doi.​org/​10.​1016/​j.​jcrc.​2011.​06.​017.CrossRef
12.
Zurück zum Zitat Hesse, D.G., K.J. Tracey, Y. Fong, K.R. Manogue, M.A. Palladino Jr., A. Cerami, G.T. Shires, and S.F. Lowry. 1988. Cytokine appearance in human endotoxemia and primate bacteremia. Surgery, Gynecology & Obstetrics 166 (2): 147–153. Hesse, D.G., K.J. Tracey, Y. Fong, K.R. Manogue, M.A. Palladino Jr., A. Cerami, G.T. Shires, and S.F. Lowry. 1988. Cytokine appearance in human endotoxemia and primate bacteremia. Surgery, Gynecology & Obstetrics 166 (2): 147–153.
14.
Zurück zum Zitat Hubbard, W.J., M. Choudhry, M.G. Schwacha, J.D. Kerby, L.W. Rue 3rd, K.I. Bland, and I.H. Chaudry. 2005. Cecal ligation and puncture. Shock 24 (Suppl 1): 52–57.CrossRefPubMed Hubbard, W.J., M. Choudhry, M.G. Schwacha, J.D. Kerby, L.W. Rue 3rd, K.I. Bland, and I.H. Chaudry. 2005. Cecal ligation and puncture. Shock 24 (Suppl 1): 52–57.CrossRefPubMed
20.
Zurück zum Zitat Makara, M.A., K.V. Hoang, L.P. Ganesan, E.D. Crouser, J.S. Gunn, J. Turner, L.S. Schlesinger, P.J. Mohler, and M.V. Rajaram. 2016. Cardiac electrical and structural changes during bacterial infection: an instructive model to study cardiac dysfunction in sepsis. Journal of the American Heart Association 5 (9). https://doi.org/10.1161/JAHA.116.003820. Makara, M.A., K.V. Hoang, L.P. Ganesan, E.D. Crouser, J.S. Gunn, J. Turner, L.S. Schlesinger, P.J. Mohler, and M.V. Rajaram. 2016. Cardiac electrical and structural changes during bacterial infection: an instructive model to study cardiac dysfunction in sepsis. Journal of the American Heart Association 5 (9). https://​doi.​org/​10.​1161/​JAHA.​116.​003820.
22.
Zurück zum Zitat McDonald, T.E., M.N. Grinman, C.M. Carthy, and K.R. Walley. 2000. Endotoxin infusion in rats induces apoptotic and survival pathways in hearts. American Journal of Physiology. Heart and Circulatory Physiology 279 (5): H2053–H2061.CrossRefPubMed McDonald, T.E., M.N. Grinman, C.M. Carthy, and K.R. Walley. 2000. Endotoxin infusion in rats induces apoptotic and survival pathways in hearts. American Journal of Physiology. Heart and Circulatory Physiology 279 (5): H2053–H2061.CrossRefPubMed
26.
Zurück zum Zitat Parrillo, J.E., M.M. Parker, C. Natanson, A.F. Suffredini, R.L. Danner, R.E. Cunnion, and F.P. Ognibene. 1990. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Annals of Internal Medicine 113 (3): 227–242.CrossRefPubMed Parrillo, J.E., M.M. Parker, C. Natanson, A.F. Suffredini, R.L. Danner, R.E. Cunnion, and F.P. Ognibene. 1990. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Annals of Internal Medicine 113 (3): 227–242.CrossRefPubMed
27.
Zurück zum Zitat Potz, B.A., F.W. Sellke, and M.R. Abid. 2016. Endothelial ROS and impaired myocardial oxygen consumption in sepsis-induced cardiac dysfunction. Journal of Intensive Critical Care 2 (1). Potz, B.A., F.W. Sellke, and M.R. Abid. 2016. Endothelial ROS and impaired myocardial oxygen consumption in sepsis-induced cardiac dysfunction. Journal of Intensive Critical Care 2 (1).
28.
Zurück zum Zitat Rattarasarn, C. 1997. Hypoglycemia in sepsis: risk factors and clinical characteristics. Journal of the Medical Association of Thailand 80 (12): 760–766.PubMed Rattarasarn, C. 1997. Hypoglycemia in sepsis: risk factors and clinical characteristics. Journal of the Medical Association of Thailand 80 (12): 760–766.PubMed
30.
Zurück zum Zitat Sarkar, A., M. Duncan, J. Hart, E. Hertlein, D.C. Guttridge, and M.D. Wewers. 2006. ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. Journal of Immunology 176 (8): 4979–4986.CrossRef Sarkar, A., M. Duncan, J. Hart, E. Hertlein, D.C. Guttridge, and M.D. Wewers. 2006. ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. Journal of Immunology 176 (8): 4979–4986.CrossRef
32.
Zurück zum Zitat Teng, X., J. Song, G. Zhang, Y. Cai, F. Yuan, J. Du, C. Tang, and Y. Qi. 2011. Inhibition of endoplasmic reticulum stress by intermedin(1-53) protects against myocardial injury through a PI3 kinase-Akt signaling pathway. Journal of Molecular Medicine (Berlin, Germany) 89 (12): 1195–1205. https://doi.org/10.1007/s00109-011-0808-5.CrossRef Teng, X., J. Song, G. Zhang, Y. Cai, F. Yuan, J. Du, C. Tang, and Y. Qi. 2011. Inhibition of endoplasmic reticulum stress by intermedin(1-53) protects against myocardial injury through a PI3 kinase-Akt signaling pathway. Journal of Molecular Medicine (Berlin, Germany) 89 (12): 1195–1205. https://​doi.​org/​10.​1007/​s00109-011-0808-5.CrossRef
33.
Zurück zum Zitat Tissier, S., S. Lancel, X. Marechal, S. Mordon, F. Depontieu, A. Scherpereel, C. Chopin, and R. Neviere. 2004. Calpain inhibitors improve myocardial dysfunction and inflammation induced by endotoxin in rats. Shock 21 (4): 352–357.CrossRefPubMed Tissier, S., S. Lancel, X. Marechal, S. Mordon, F. Depontieu, A. Scherpereel, C. Chopin, and R. Neviere. 2004. Calpain inhibitors improve myocardial dysfunction and inflammation induced by endotoxin in rats. Shock 21 (4): 352–357.CrossRefPubMed
42.
Zurück zum Zitat Zhang, J.S., Y.L. Hou, W.W. Lu, X.Q. Ni, F. Lin, Y.R. Yu, C.S. Tang, and Y.F. Qi. 2016. Intermedin1-53 protects against myocardial fibrosis by inhibiting endoplasmic reticulum stress and inflammation induced by homocysteine in apolipoprotein E-deficient mice. Journal of Atherosclerosis and Thrombosis 23 (11): 1294–1306. https://doi.org/10.5551/jat.34082.PubMedCentralCrossRefPubMed Zhang, J.S., Y.L. Hou, W.W. Lu, X.Q. Ni, F. Lin, Y.R. Yu, C.S. Tang, and Y.F. Qi. 2016. Intermedin1-53 protects against myocardial fibrosis by inhibiting endoplasmic reticulum stress and inflammation induced by homocysteine in apolipoprotein E-deficient mice. Journal of Atherosclerosis and Thrombosis 23 (11): 1294–1306. https://​doi.​org/​10.​5551/​jat.​34082.PubMedCentralCrossRefPubMed
Metadaten
Titel
Intermedin1–53 Protects Cardiac Fibroblasts by Inhibiting NLRP3 Inflammasome Activation During Sepsis
verfasst von
Di Wu
Lin Shi
Pengyang Li
Xianqiang Ni
Jinsheng Zhang
Qing Zhu
Yongfen Qi
Bin Wang
Publikationsdatum
01.12.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0706-2

Weitere Artikel der Ausgabe 2/2018

Inflammation 2/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.