Skip to main content
Erschienen in: Metabolic Brain Disease 4/2018

07.03.2018 | Original Article

Interplay between adenosine receptor antagonist and cyclooxygenase inhibitor in haloperidol-induced extrapyramidal effects in mice

verfasst von: Devinder Arora, Jayesh Mudgal, Madhavan Nampoothiri, Sanchari Basu Mallik, Manas Kinra, Susan Hall, Shailendra Anoopkumar-Dukie, Gary D. Grant, Chamallamudi Mallikarjuna Rao

Erschienen in: Metabolic Brain Disease | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Antipsychotic drugs are the mainstay of psychotic disorders. The ‘typical’ antipsychotic agents are commonly employed for the positive symptoms of schizophrenia, though at an expense of extrapyramidal side effects (EPS). In the present study, we employed haloperidol (HP)-induced catalepsy model in mice to evaluate the role of adenosine receptor antagonist and cyclooxygenase (COX) enzyme inhibitor in the amelioration of EPS. HP produced a full blown catalepsy, akinesia and a significant impairment in locomotion and antioxidant status. Pre-treatment with COX inhibitor; naproxen (NPx) and adenosine receptor antagonist; caffeine (CAF), showed a significant impact on HP-induced cataleptic symptoms. Adenosine exerts pivotal control on dopaminergic receptors and is also involved in receptor internalization and recycling. On the other hand, prostaglandins (PGs) are implicated as neuro-inflammatory molecules released due to microglial activation in both Parkinson’s disease (PD) and antipsychotics-induced EPS. The involvement of these neuroeffector molecules has led to the possibility of use of CAF and COX inhibitors as therapeutic approaches to reduce the EPS burden of antipsychotic drugs. Both these pathways seem to be interlinked to each other, where adenosine modulates the formation of PGs through transcriptional modulation of COXs. We observed an additive effect with combined treatment of NPx and CAF against HP-induced movement disorder. These effects lead us to propose that neuromodulatory pathways of dopaminergic circuitry need to be explored for further understanding and utilizing the full therapeutic potential of antipsychotic agents.
Literatur
Zurück zum Zitat Aïd S, Bosetti F (2011) Targeting cyclooxygenases-1 and-2 in neuroinflammation: therapeutic implications. Biochimie 93:46–51CrossRefPubMed Aïd S, Bosetti F (2011) Targeting cyclooxygenases-1 and-2 in neuroinflammation: therapeutic implications. Biochimie 93:46–51CrossRefPubMed
Zurück zum Zitat Ascherio A, Zhang SM, Hernán MA et al (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63CrossRefPubMed Ascherio A, Zhang SM, Hernán MA et al (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63CrossRefPubMed
Zurück zum Zitat Baldessarini RJ, Tarsy D (1980) Dopamine and the pathophysiology of dyskinesias induced by antipsychotic drugs. Annu Rev Neurosci 3:23–39CrossRefPubMed Baldessarini RJ, Tarsy D (1980) Dopamine and the pathophysiology of dyskinesias induced by antipsychotic drugs. Annu Rev Neurosci 3:23–39CrossRefPubMed
Zurück zum Zitat Bartlett SE, Enquist J, Hopf FW et al (2005) Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci U S A 102:11521–11526CrossRefPubMedPubMedCentral Bartlett SE, Enquist J, Hopf FW et al (2005) Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci U S A 102:11521–11526CrossRefPubMedPubMedCentral
Zurück zum Zitat Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO et al (2011) On the existence of a possible A 2A–D 2–β-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced β-Arrestin2 recruitment. J Mol Biol 406:687–699CrossRefPubMed Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO et al (2011) On the existence of a possible A 2A–D 2–β-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced β-Arrestin2 recruitment. J Mol Biol 406:687–699CrossRefPubMed
Zurück zum Zitat Chen J-F, Xu K, Petze JP et al (2001) Neuroprotection by caffeine and A (2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC 143CrossRef Chen J-F, Xu K, Petze JP et al (2001) Neuroprotection by caffeine and A (2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC 143CrossRef
Zurück zum Zitat Costall B, Naylor RJ (1973) Neuroleptic and non-neuroleptic catalepsy. Arzneim Forsc 23:674–683 Costall B, Naylor RJ (1973) Neuroleptic and non-neuroleptic catalepsy. Arzneim Forsc 23:674–683
Zurück zum Zitat El Yacoubi M, Ledent C, Menard JF et al (2000) The stimulant effects of caffeine on locomotor hehaviour in mice are mediated through its blockage of adenosie A2A receptors. Bri J Pharmacol 129:1465–1473CrossRef El Yacoubi M, Ledent C, Menard JF et al (2000) The stimulant effects of caffeine on locomotor hehaviour in mice are mediated through its blockage of adenosie A2A receptors. Bri J Pharmacol 129:1465–1473CrossRef
Zurück zum Zitat Fiebich BL, Lieb K, Hull M et al (2000) Effects of caffeine and paracetamol alone or in combination with acetylsalicylic acid on prostaglandin E2 synthesis in rat microglial cells. Neuropharmacology 39:2205–2213CrossRefPubMed Fiebich BL, Lieb K, Hull M et al (2000) Effects of caffeine and paracetamol alone or in combination with acetylsalicylic acid on prostaglandin E2 synthesis in rat microglial cells. Neuropharmacology 39:2205–2213CrossRefPubMed
Zurück zum Zitat Fiebich BL, Biber K, Lieb K et al (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. GLIA 18:152–160CrossRefPubMed Fiebich BL, Biber K, Lieb K et al (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. GLIA 18:152–160CrossRefPubMed
Zurück zum Zitat Fujita KA, Ostaszewski M, Matsuoka Y et al (2014) Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol Neurobiol 49:88–102CrossRefPubMed Fujita KA, Ostaszewski M, Matsuoka Y et al (2014) Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol Neurobiol 49:88–102CrossRefPubMed
Zurück zum Zitat Glazer WM (2000) Extrapyramidal side effets, tardive dyskinesia, and the concept of atypicality. J Clin Psychiatry 61(Suppl 3):16–21PubMed Glazer WM (2000) Extrapyramidal side effets, tardive dyskinesia, and the concept of atypicality. J Clin Psychiatry 61(Suppl 3):16–21PubMed
Zurück zum Zitat Ginovart N, Wilson AA, Hussey D, Houle S, Kapur S (2009) D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacology 34:662–671CrossRefPubMed Ginovart N, Wilson AA, Hussey D, Houle S, Kapur S (2009) D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacology 34:662–671CrossRefPubMed
Zurück zum Zitat Hall S, Desbrow B, Anoopkumar-Dukie S et al (2015) A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responsed linked to depression. Food Res Int 76:626–636CrossRefPubMed Hall S, Desbrow B, Anoopkumar-Dukie S et al (2015) A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responsed linked to depression. Food Res Int 76:626–636CrossRefPubMed
Zurück zum Zitat Hall S, Arora D, Anoopkumar-Dukie S, Grant GD (2016) Effect of coffee in lipopolysaccharide-induced indoleamine 2,3-dioxygenase activation and depressive-like behavior in mice. J Agric Food Chem 64:8745–8754CrossRefPubMed Hall S, Arora D, Anoopkumar-Dukie S, Grant GD (2016) Effect of coffee in lipopolysaccharide-induced indoleamine 2,3-dioxygenase activation and depressive-like behavior in mice. J Agric Food Chem 64:8745–8754CrossRefPubMed
Zurück zum Zitat Hornyckiewicz O (1973) Dopamine in the basal ganglia. Its role and therapeutic implications (including the clinical use of L-DOPA). Br Med Bull 29:172–178CrossRef Hornyckiewicz O (1973) Dopamine in the basal ganglia. Its role and therapeutic implications (including the clinical use of L-DOPA). Br Med Bull 29:172–178CrossRef
Zurück zum Zitat Hurley MJ, Mash DC, Jenner P (2000) Adenosine A(2A) receptor mRNA expression in Parkinson’s disease. Neurosci Lett 291:54–58CrossRefPubMed Hurley MJ, Mash DC, Jenner P (2000) Adenosine A(2A) receptor mRNA expression in Parkinson’s disease. Neurosci Lett 291:54–58CrossRefPubMed
Zurück zum Zitat Jackson MJ, Al-Barghouthy G, Pearce RK et al (2004) Effect of 5-HT 1B/D receptor agonist and antagonist administration on motor function in haloperidol and MPTP-treated common marmosets. Pharmacol Biochem Behav 79:391–400CrossRefPubMed Jackson MJ, Al-Barghouthy G, Pearce RK et al (2004) Effect of 5-HT 1B/D receptor agonist and antagonist administration on motor function in haloperidol and MPTP-treated common marmosets. Pharmacol Biochem Behav 79:391–400CrossRefPubMed
Zurück zum Zitat Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540CrossRefPubMed Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540CrossRefPubMed
Zurück zum Zitat Kafka SH, Corbett R (1996) Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. Eur J Pharmacol 295:147–154CrossRefPubMed Kafka SH, Corbett R (1996) Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. Eur J Pharmacol 295:147–154CrossRefPubMed
Zurück zum Zitat Kawano T, Anrather J, Zhou P et al (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12:225–229CrossRefPubMed Kawano T, Anrather J, Zhou P et al (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12:225–229CrossRefPubMed
Zurück zum Zitat Kikuchi T, Tottori K, Uwahodo Y et al (1995) 7-{4-[4-(2,3-Dichlorophenyl)-1-Piperazinyl]Butyloxy}-3,4-Dihydro-2(1H)-Quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 274:329–336PubMed Kikuchi T, Tottori K, Uwahodo Y et al (1995) 7-{4-[4-(2,3-Dichlorophenyl)-1-Piperazinyl]Butyloxy}-3,4-Dihydro-2(1H)-Quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 274:329–336PubMed
Zurück zum Zitat Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484CrossRefPubMed Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484CrossRefPubMed
Zurück zum Zitat Li Y, Roy BD, Wang W et al (2012) Identification of two functionally distinct endosomal recycling pathways for dopamine D2 receptor. J Neurosci 32:7178–7190CrossRefPubMed Li Y, Roy BD, Wang W et al (2012) Identification of two functionally distinct endosomal recycling pathways for dopamine D2 receptor. J Neurosci 32:7178–7190CrossRefPubMed
Zurück zum Zitat Lizuka Y, Sei Y, Weinberger DR, Straub RE (2007) Evidence that the BLOC-1 protein dysbindin modulates dopamine D2 receptor internalization and signaling but not D1 internalization. J Neurosci 27:12390–12395CrossRef Lizuka Y, Sei Y, Weinberger DR, Straub RE (2007) Evidence that the BLOC-1 protein dysbindin modulates dopamine D2 receptor internalization and signaling but not D1 internalization. J Neurosci 27:12390–12395CrossRef
Zurück zum Zitat Lucas G, Bonhomme N, De Deurwaerdère P, Le Moal M, Spampinato U (1997) 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 131:57–63CrossRefPubMed Lucas G, Bonhomme N, De Deurwaerdère P, Le Moal M, Spampinato U (1997) 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 131:57–63CrossRefPubMed
Zurück zum Zitat Luong C, Miller A, Barnett J et al (1996) Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat Struct Biol 3:927–933CrossRefPubMed Luong C, Miller A, Barnett J et al (1996) Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat Struct Biol 3:927–933CrossRefPubMed
Zurück zum Zitat Malec D (1996) Haloperidol-induced catalepsy is influenced by adenosine receptor antagonists. Pol J Pharmacol 49:323–327 Malec D (1996) Haloperidol-induced catalepsy is influenced by adenosine receptor antagonists. Pol J Pharmacol 49:323–327
Zurück zum Zitat Marshall JF, Berrios N (1979) Movement disorders of aged rats: reversal by dopamine receptor stimulation. Science 206:477–479CrossRefPubMed Marshall JF, Berrios N (1979) Movement disorders of aged rats: reversal by dopamine receptor stimulation. Science 206:477–479CrossRefPubMed
Zurück zum Zitat Miller DD, Caroff SN, Davis SM et al (2008) Extrapyramidal side-effects of antipsychotics in a randomised trial. B J Psych 193:279–288CrossRef Miller DD, Caroff SN, Davis SM et al (2008) Extrapyramidal side-effects of antipsychotics in a randomised trial. B J Psych 193:279–288CrossRef
Zurück zum Zitat Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78CrossRefPubMed Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78CrossRefPubMed
Zurück zum Zitat Moo-Puc RE, Góngora-Alfaro JL, Alvarez-Cervera FJ et al (2003) Caffeine and muscarinic antagonists act in synergy to inhibit haloperidol-induced catalepsy. Neuropharmacology 45:493–503CrossRefPubMed Moo-Puc RE, Góngora-Alfaro JL, Alvarez-Cervera FJ et al (2003) Caffeine and muscarinic antagonists act in synergy to inhibit haloperidol-induced catalepsy. Neuropharmacology 45:493–503CrossRefPubMed
Zurück zum Zitat Naidu PS, Kulkarni SK (2001) Possible involvment of prostaglandins in haliperidol-induced orofacial dyskinesia in rats. Eur J Pharmacol 430:295–298CrossRefPubMed Naidu PS, Kulkarni SK (2001) Possible involvment of prostaglandins in haliperidol-induced orofacial dyskinesia in rats. Eur J Pharmacol 430:295–298CrossRefPubMed
Zurück zum Zitat Naidu PS, Kulkarni SK (2002) Differential effects of cyclooxygenase inhibitors on haloperidol-induced catalepsy. Prog Neuro-Psychopharmacol Biol Psychiatry 26:819–822CrossRef Naidu PS, Kulkarni SK (2002) Differential effects of cyclooxygenase inhibitors on haloperidol-induced catalepsy. Prog Neuro-Psychopharmacol Biol Psychiatry 26:819–822CrossRef
Zurück zum Zitat O'Connor JC, Lawson MA, Andre A et al (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3 -dioxygenase activation in mice. Mol Psychiatry 14:511–522CrossRefPubMed O'Connor JC, Lawson MA, Andre A et al (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3 -dioxygenase activation in mice. Mol Psychiatry 14:511–522CrossRefPubMed
Zurück zum Zitat Ono N, Saito R, Abiru T, Kamiya HO, Furukawa T (1986) Possible involvement of prostaglandins in cataleptic behavior in rats. Pharmacol Biochem Behav 25:463–467CrossRefPubMed Ono N, Saito R, Abiru T, Kamiya HO, Furukawa T (1986) Possible involvement of prostaglandins in cataleptic behavior in rats. Pharmacol Biochem Behav 25:463–467CrossRefPubMed
Zurück zum Zitat Ono N, Abiru T, Sugiyama K, Kamiya H (1992) Influences of cyclooxygenase inhibitors on the cataleptic behavior induced by haloperidol in mice. Prostag Leukotr Ess Fatty Acids 46:59–63CrossRef Ono N, Abiru T, Sugiyama K, Kamiya H (1992) Influences of cyclooxygenase inhibitors on the cataleptic behavior induced by haloperidol in mice. Prostag Leukotr Ess Fatty Acids 46:59–63CrossRef
Zurück zum Zitat Ross GW, Abbott RD, Petrovitch H et al (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679CrossRefPubMed Ross GW, Abbott RD, Petrovitch H et al (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679CrossRefPubMed
Zurück zum Zitat Sanberg PR (1980) Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nature 284:472–473CrossRefPubMed Sanberg PR (1980) Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nature 284:472–473CrossRefPubMed
Zurück zum Zitat Salin-Pascual RJ (2012) Sleep, adenosine and caffeine as tools for the early diagnosis of Parkinson disease. Open Sleep J 5:59–66CrossRef Salin-Pascual RJ (2012) Sleep, adenosine and caffeine as tools for the early diagnosis of Parkinson disease. Open Sleep J 5:59–66CrossRef
Zurück zum Zitat Stayte S, Vissel B (2014) Advances in non-dopaminergic treatments for Parkinson’s disease. Front Neurosci 8:113PubMedPubMedCentral Stayte S, Vissel B (2014) Advances in non-dopaminergic treatments for Parkinson’s disease. Front Neurosci 8:113PubMedPubMedCentral
Zurück zum Zitat Tanaka Y, Furuyashiki T, Momiyama T et al (2009) Prostaglandin E receptor EP1 enhances GABA-mediated inhibition of dopaminergic neurons in the substantia nigra pars compacta and regulates dopamine level in the dorsal striatum. Eur J Neurosci 30:2338–2346CrossRefPubMed Tanaka Y, Furuyashiki T, Momiyama T et al (2009) Prostaglandin E receptor EP1 enhances GABA-mediated inhibition of dopaminergic neurons in the substantia nigra pars compacta and regulates dopamine level in the dorsal striatum. Eur J Neurosci 30:2338–2346CrossRefPubMed
Zurück zum Zitat Teismann P, Tieu K, Choi DK et al (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci 29:5473–5478CrossRef Teismann P, Tieu K, Choi DK et al (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci 29:5473–5478CrossRef
Zurück zum Zitat Trevitt J, Vallance C, Harris A, Goode T (2009) Adenosine antagonists reverse the cataleptic effects of haloperidol: implications for the treatment of Parkinson’s disease. Pharmacol Biochem Behav 92:521–527CrossRefPubMed Trevitt J, Vallance C, Harris A, Goode T (2009) Adenosine antagonists reverse the cataleptic effects of haloperidol: implications for the treatment of Parkinson’s disease. Pharmacol Biochem Behav 92:521–527CrossRefPubMed
Zurück zum Zitat Wang S, Hu LF, Yang Y, Ding JH, Hu G (2005) Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson’s disease: implications for treating Parkinson’s disease? Neuropharmacology 48:984–992CrossRefPubMed Wang S, Hu LF, Yang Y, Ding JH, Hu G (2005) Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson’s disease: implications for treating Parkinson’s disease? Neuropharmacology 48:984–992CrossRefPubMed
Zurück zum Zitat Wanibuchi F, Usuda S (1990) Synergistic effects between D-1 and D-2 dopamine antagonists on catalepsy in rats. Psychopharmacology 102:339–342CrossRefPubMed Wanibuchi F, Usuda S (1990) Synergistic effects between D-1 and D-2 dopamine antagonists on catalepsy in rats. Psychopharmacology 102:339–342CrossRefPubMed
Zurück zum Zitat Weihmuller FB, Hadjiconstantinou M, Bruno JP (1989) Dissociation between biochemical and behavioral recovery in MPTP-treated mice. Pharmacol Biochem Behav 34:113–117CrossRefPubMed Weihmuller FB, Hadjiconstantinou M, Bruno JP (1989) Dissociation between biochemical and behavioral recovery in MPTP-treated mice. Pharmacol Biochem Behav 34:113–117CrossRefPubMed
Metadaten
Titel
Interplay between adenosine receptor antagonist and cyclooxygenase inhibitor in haloperidol-induced extrapyramidal effects in mice
verfasst von
Devinder Arora
Jayesh Mudgal
Madhavan Nampoothiri
Sanchari Basu Mallik
Manas Kinra
Susan Hall
Shailendra Anoopkumar-Dukie
Gary D. Grant
Chamallamudi Mallikarjuna Rao
Publikationsdatum
07.03.2018
Verlag
Springer US
Erschienen in
Metabolic Brain Disease / Ausgabe 4/2018
Print ISSN: 0885-7490
Elektronische ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-018-0201-y

Weitere Artikel der Ausgabe 4/2018

Metabolic Brain Disease 4/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.