Skip to main content
Erschienen in: Journal of Clinical Immunology 5/2022

28.03.2022 | Original Article

Interpretation of Dihydrorhodamine-1,2,3 Flow Cytometry in Chronic Granulomatous Disease: an Atypical Exemplar

verfasst von: Agnes Donko, Douglas B. Kuhns, Margot A. Cousin, Matthew J. Smith, Keith A. Sacco, Eric W. Klee, Avni Y. Joshi, Ralitza H. Gavrilova, Steven M. Holland, Thomas L. Leto, Roshini S. Abraham

Erschienen in: Journal of Clinical Immunology | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This is a functional characterization of a novel CYBA variant associated with normal DHR flow cytometry. Chronic granulomatous disease (CGD) is an inborn error of immunity characterized by recurrent bacterial and fungal infections and dysregulated inflammatory responses due to defective phagocytic cell function leading to the formation of granulomas. CGD patients have pathogenic variants in any of the five components of the phagocytic NADPH oxidase, which transfers electrons through the phagosomal membrane and produces superoxide upon bacterial uptake. Here, we report a pediatric female patient with a novel homozygous missense variant (c.293C > T, p.(Ser98Leu)) in CYBA, encoding the p22phox protein, associated with autosomal recessive CGD.

Methods and Results

The patient presented with severe recurrent pneumonia. Specific pathogens identified included Burkholderia and Serratia species suggesting neutrophil functional abnormalities; however, the dihydrorhodamine-1,2,3 (DHR) flow cytometric and cytochrome c reduction assays for neutrophil respiratory burst fell within the low side of the normal range. Western blot and flow cytometric analysis of individual NADPH oxidase components revealed reduced levels of p22phox and gp91phoxphox proteins. The pathological consequence of the p.Ser98Leu variant was further evaluated in heterologous expression systems, which confirmed reduced p22phox protein stability and oxidase activity.

Conclusions

Although this patient did not exhibit all the classic features of CGD, such as granulomas and skin infections, she had recurrent pneumonias with oxidant-sensitive pathognomonic organisms, resulting in appropriate targeted CGD testing. This case emphasizes the need to contextually interpret laboratory data, especially using clinical findings to direct additional assessments including genetic analysis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Med (Baltim). 2000;79(3):170–200.CrossRef Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Med (Baltim). 2000;79(3):170–200.CrossRef
2.
Zurück zum Zitat Arnold DE, Heimall JR. A review of chronic granulomatous disease. Adv Ther. 2017;34(12):2543–57.CrossRef Arnold DE, Heimall JR. A review of chronic granulomatous disease. Adv Ther. 2017;34(12):2543–57.CrossRef
3.
Zurück zum Zitat Arnadottir GA, Norddahl GL, Gudmundsdottir S, Agustsdottir AB, Sigurdsson S, Jensson BO, et al. A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun. 2018;9(1):4447.CrossRef Arnadottir GA, Norddahl GL, Gudmundsdottir S, Agustsdottir AB, Sigurdsson S, Jensson BO, et al. A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun. 2018;9(1):4447.CrossRef
4.
Zurück zum Zitat Thomas DC, Charbonnier LM, Schejtman A, Aldhekri H, Coomber EL, Dufficy ER, et al. EROS/CYBC1 mutations: decreased NADPH oxidase function and chronic granulomatous disease. J Allergy Clin Immunol. 2019;143(2):782-5.e1.CrossRef Thomas DC, Charbonnier LM, Schejtman A, Aldhekri H, Coomber EL, Dufficy ER, et al. EROS/CYBC1 mutations: decreased NADPH oxidase function and chronic granulomatous disease. J Allergy Clin Immunol. 2019;143(2):782-5.e1.CrossRef
5.
Zurück zum Zitat Berendes H, Bridges RA, Good RA. A fatal granulomatosus of childhood: the clinical study of a new syndrome. Minn Med. 1957;40(5):309–12.PubMed Berendes H, Bridges RA, Good RA. A fatal granulomatosus of childhood: the clinical study of a new syndrome. Minn Med. 1957;40(5):309–12.PubMed
6.
Zurück zum Zitat Holland SM. Chronic granulomatous disease. Hematol Oncol Clin North Am. 2013;27(1):89–99, viii. Holland SM. Chronic granulomatous disease. Hematol Oncol Clin North Am. 2013;27(1):89–99, viii.
7.
Zurück zum Zitat Kuhns DB. Diagnostic testing for chronic granulomatous disease. Methods Mol Biol. 2019;1982:543–71.CrossRef Kuhns DB. Diagnostic testing for chronic granulomatous disease. Methods Mol Biol. 2019;1982:543–71.CrossRef
8.
Zurück zum Zitat Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE, et al. Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med. 2010;363(27):2600–10.CrossRef Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE, et al. Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med. 2010;363(27):2600–10.CrossRef
9.
Zurück zum Zitat Yu JE, Azar AE, Chong HJ, Jongco AM 3rd, Prince BT. Considerations in the diagnosis of chronic granulomatous disease. J Pediatric Infect Dis Soc. 2018;7(suppl_1):S6-s11.CrossRef Yu JE, Azar AE, Chong HJ, Jongco AM 3rd, Prince BT. Considerations in the diagnosis of chronic granulomatous disease. J Pediatric Infect Dis Soc. 2018;7(suppl_1):S6-s11.CrossRef
10.
Zurück zum Zitat Abraham RS, Aubert G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clin Vaccine Immunol. 2016;23(4):254–71.CrossRef Abraham RS, Aubert G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clin Vaccine Immunol. 2016;23(4):254–71.CrossRef
11.
Zurück zum Zitat Sacco KA, Smith MJ, Bahna SL, Buchbinder D, Burkhardt J, Cooper MA, et al. NAPDH oxidase-specific flow cytometry allows for rapid genetic triage and classification of novel variants in chronic granulomatous disease. J Clin Immunol. 2020;40(1):191–202.CrossRef Sacco KA, Smith MJ, Bahna SL, Buchbinder D, Burkhardt J, Cooper MA, et al. NAPDH oxidase-specific flow cytometry allows for rapid genetic triage and classification of novel variants in chronic granulomatous disease. J Clin Immunol. 2020;40(1):191–202.CrossRef
12.
Zurück zum Zitat Baris HE, Ogulur I, Akcam B, Kiykim A, Karagoz D, Saraymen B, et al. Diagnostic modalities based on flow cytometry for chronic granulomatous disease: a multicenter study in a well-defined cohort. J Allergy Clin Immunol Pract. 2020;8(10):3525-34.e1.CrossRef Baris HE, Ogulur I, Akcam B, Kiykim A, Karagoz D, Saraymen B, et al. Diagnostic modalities based on flow cytometry for chronic granulomatous disease: a multicenter study in a well-defined cohort. J Allergy Clin Immunol Pract. 2020;8(10):3525-34.e1.CrossRef
13.
Zurück zum Zitat Kuhns DB, Hsu AP, Sun D, Lau K, Fink D, Griffith P, et al. NCF1 (p47(phox))-deficient chronic granulomatous disease: comprehensive genetic and flow cytometric analysis. Blood Adv. 2019;3(2):136–47.CrossRef Kuhns DB, Hsu AP, Sun D, Lau K, Fink D, Griffith P, et al. NCF1 (p47(phox))-deficient chronic granulomatous disease: comprehensive genetic and flow cytometric analysis. Blood Adv. 2019;3(2):136–47.CrossRef
14.
Zurück zum Zitat Chanock SJ, Roesler J, Zhan S, Hopkins P, Lee P, Barrett DT, et al. Genomic structure of the human p47-phox (NCF1) gene. Blood Cells Mol Dis. 2000;26(1):37–46.CrossRef Chanock SJ, Roesler J, Zhan S, Hopkins P, Lee P, Barrett DT, et al. Genomic structure of the human p47-phox (NCF1) gene. Blood Cells Mol Dis. 2000;26(1):37–46.CrossRef
15.
Zurück zum Zitat Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest. 1987;80(3):732–42.CrossRef Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest. 1987;80(3):732–42.CrossRef
16.
Zurück zum Zitat Stasia MJ. CYBA encoding p22(phox), the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiopathology. Gene. 2016;586(1):27–35.CrossRef Stasia MJ. CYBA encoding p22(phox), the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiopathology. Gene. 2016;586(1):27–35.CrossRef
17.
Zurück zum Zitat Parkos CA, Dinauer MC, Jesaitis AJ, Orkin SH, Curnutte JT. Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood. 1989;73(6):1416–20.CrossRef Parkos CA, Dinauer MC, Jesaitis AJ, Orkin SH, Curnutte JT. Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood. 1989;73(6):1416–20.CrossRef
18.
Zurück zum Zitat Dinauer MC. Insights into the NOX NADPH oxidases using heterologous whole cell assays. Methods Mol Biol. 2019;1982:139–51.CrossRef Dinauer MC. Insights into the NOX NADPH oxidases using heterologous whole cell assays. Methods Mol Biol. 2019;1982:139–51.CrossRef
19.
Zurück zum Zitat Klee EW, Cousin MA, Pinto EVF, Morales-Rosado JA, Macke EL, Jenkinson WG, et al. Impact of integrated translational research on clinical exome sequencing. Genet Med. 2021;23(3):498–507.CrossRef Klee EW, Cousin MA, Pinto EVF, Morales-Rosado JA, Macke EL, Jenkinson WG, et al. Impact of integrated translational research on clinical exome sequencing. Genet Med. 2021;23(3):498–507.CrossRef
20.
Zurück zum Zitat Vairo FP, Boczek NJ, Cousin MA, Kaiwar C, Blackburn PR, Conboy E, et al. The prevalence of diseases caused by lysosome-related genes in a cohort of undiagnosed patients. Mol Genet Metab Rep. 2017;13:46–51.CrossRef Vairo FP, Boczek NJ, Cousin MA, Kaiwar C, Blackburn PR, Conboy E, et al. The prevalence of diseases caused by lysosome-related genes in a cohort of undiagnosed patients. Mol Genet Metab Rep. 2017;13:46–51.CrossRef
21.
Zurück zum Zitat Köker MY, van Leeuwen K, de Boer M, Celmeli F, Metin A, Ozgür TT, et al. Six different CYBA mutations including three novel mutations in ten families from Turkey, resulting in autosomal recessive chronic granulomatous disease. Eur J Clin Invest. 2009;39(4):311–9.CrossRef Köker MY, van Leeuwen K, de Boer M, Celmeli F, Metin A, Ozgür TT, et al. Six different CYBA mutations including three novel mutations in ten families from Turkey, resulting in autosomal recessive chronic granulomatous disease. Eur J Clin Invest. 2009;39(4):311–9.CrossRef
22.
Zurück zum Zitat Segal AW. Absence of both cytochrome b-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nat. 1987;326(6108):88–91.CrossRef Segal AW. Absence of both cytochrome b-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nat. 1987;326(6108):88–91.CrossRef
23.
Zurück zum Zitat Verhoeven AJ, Bolscher BG, Meerhof LJ, van Zwieten R, Keijer J, Weening RS, et al. Characterization of two monoclonal antibodies against cytochrome b558 of human neutrophils. Blood. 1989;73(6):1686–94.CrossRef Verhoeven AJ, Bolscher BG, Meerhof LJ, van Zwieten R, Keijer J, Weening RS, et al. Characterization of two monoclonal antibodies against cytochrome b558 of human neutrophils. Blood. 1989;73(6):1686–94.CrossRef
24.
Zurück zum Zitat Zhu Y, Marchal CC, Casbon AJ, Stull N, von Löhneysen K, Knaus UG, et al. Deletion mutagenesis of p22phox subunit of flavocytochrome b558: identification of regions critical for gp91phox maturation and NADPH oxidase activity. J Biol Chem. 2006;281(41):30336–46.CrossRef Zhu Y, Marchal CC, Casbon AJ, Stull N, von Löhneysen K, Knaus UG, et al. Deletion mutagenesis of p22phox subunit of flavocytochrome b558: identification of regions critical for gp91phox maturation and NADPH oxidase activity. J Biol Chem. 2006;281(41):30336–46.CrossRef
25.
Zurück zum Zitat Dahan I, Issaeva I, Gorzalczany Y, Sigal N, Hirshberg M, Pick E. Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by “peptide walking.” J Biol Chem. 2002;277(10):8421–32.CrossRef Dahan I, Issaeva I, Gorzalczany Y, Sigal N, Hirshberg M, Pick E. Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by “peptide walking.” J Biol Chem. 2002;277(10):8421–32.CrossRef
26.
Zurück zum Zitat Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem. 2004;279(44):45935–41.CrossRef Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem. 2004;279(44):45935–41.CrossRef
27.
Zurück zum Zitat Nakano Y, Banfi B, Jesaitis AJ, Dinauer MC, Allen LA, Nauseef WM. Critical roles for p22phox in the structural maturation and subcellular targeting of Nox3. Biochem J. 2007;403(1):97–108.CrossRef Nakano Y, Banfi B, Jesaitis AJ, Dinauer MC, Allen LA, Nauseef WM. Critical roles for p22phox in the structural maturation and subcellular targeting of Nox3. Biochem J. 2007;403(1):97–108.CrossRef
28.
Zurück zum Zitat von Löhneysen K, Noack D, Wood MR, Friedman JS, Knaus UG. Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization. Mol Cell Biol. 2010;30(4):961–75.CrossRef von Löhneysen K, Noack D, Wood MR, Friedman JS, Knaus UG. Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization. Mol Cell Biol. 2010;30(4):961–75.CrossRef
29.
Zurück zum Zitat Zana M, Péterfi Z, Kovács HA, Tóth ZE, Enyedi B, Morel F, et al. Interaction between p22(phox) and Nox4 in the endoplasmic reticulum suggests a unique mechanism of NADPH oxidase complex formation. Free Radic Biol Med. 2018;116:41–9.CrossRef Zana M, Péterfi Z, Kovács HA, Tóth ZE, Enyedi B, Morel F, et al. Interaction between p22(phox) and Nox4 in the endoplasmic reticulum suggests a unique mechanism of NADPH oxidase complex formation. Free Radic Biol Med. 2018;116:41–9.CrossRef
30.
Zurück zum Zitat Zhang P, Bigio B, Rapaport F, Zhang SY, Casanova JL, Abel L, et al. PopViz: a webserver for visualizing minor allele frequencies and damage prediction scores of human genetic variations. Bioinforma. 2018;34(24):4307–9.CrossRef Zhang P, Bigio B, Rapaport F, Zhang SY, Casanova JL, Abel L, et al. PopViz: a webserver for visualizing minor allele frequencies and damage prediction scores of human genetic variations. Bioinforma. 2018;34(24):4307–9.CrossRef
31.
Zurück zum Zitat van de Geer A, Nieto-Patlán A, Kuhns DB, Tool AT, Arias AA, Bouaziz M, et al. Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest. 2018;128(9):3957–75.CrossRef van de Geer A, Nieto-Patlán A, Kuhns DB, Tool AT, Arias AA, Bouaziz M, et al. Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest. 2018;128(9):3957–75.CrossRef
32.
Zurück zum Zitat Vowells SJ, Fleisher TA, Sekhsaria S, Alling DW, Maguire TE, Malech HL. Genotype-dependent variability in flow cytometric evaluation of reduced nicotinamide adenine dinucleotide phosphate oxidase function in patients with chronic granulomatous disease. J Pediatr. 1996;128(1):104–7.CrossRef Vowells SJ, Fleisher TA, Sekhsaria S, Alling DW, Maguire TE, Malech HL. Genotype-dependent variability in flow cytometric evaluation of reduced nicotinamide adenine dinucleotide phosphate oxidase function in patients with chronic granulomatous disease. J Pediatr. 1996;128(1):104–7.CrossRef
33.
Zurück zum Zitat Roos D, van Leeuwen K, Hsu AP, Priel DL, Begtrup A, Brandon R, et al. Hematologically important mutations: the autosomal forms of chronic granulomatous disease (third update). Blood Cells Mol Dis. 2021;92:102596.CrossRef Roos D, van Leeuwen K, Hsu AP, Priel DL, Begtrup A, Brandon R, et al. Hematologically important mutations: the autosomal forms of chronic granulomatous disease (third update). Blood Cells Mol Dis. 2021;92:102596.CrossRef
34.
Zurück zum Zitat Leusen JH, Bolscher BG, Hilarius PM, Weening RS, Kaulfersch W, Seger RA, et al. 156Pro–>Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22-phox) leads to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Exp Med. 1994;180(6):2329–34.CrossRef Leusen JH, Bolscher BG, Hilarius PM, Weening RS, Kaulfersch W, Seger RA, et al. 156Pro–>Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22-phox) leads to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Exp Med. 1994;180(6):2329–34.CrossRef
35.
Zurück zum Zitat Leto TL, Adams AG, de Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A. 1994;91(22):10650–4.CrossRef Leto TL, Adams AG, de Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A. 1994;91(22):10650–4.CrossRef
36.
Zurück zum Zitat Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y, et al. Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem. 1996;271(36):22152–8.CrossRef Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y, et al. Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem. 1996;271(36):22152–8.CrossRef
37.
Zurück zum Zitat Jakobsen MA, Katzenstein TL, Valerius NH, Roos D, Fisker N, Mogensen TH, et al. Genetical analysis of all Danish patients diagnosed with chronic granulomatous disease. Scand J Immunol. 2012;76(5):505–11.CrossRef Jakobsen MA, Katzenstein TL, Valerius NH, Roos D, Fisker N, Mogensen TH, et al. Genetical analysis of all Danish patients diagnosed with chronic granulomatous disease. Scand J Immunol. 2012;76(5):505–11.CrossRef
38.
Zurück zum Zitat Köker MY, Camcıoğlu Y, van Leeuwen K, Kılıç S, Barlan I, Yılmaz M, et al. Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients. J Allergy Clin Immunol. 2013;132(5):1156-63.e5.CrossRef Köker MY, Camcıoğlu Y, van Leeuwen K, Kılıç S, Barlan I, Yılmaz M, et al. Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients. J Allergy Clin Immunol. 2013;132(5):1156-63.e5.CrossRef
39.
Zurück zum Zitat Teimourian S, Zomorodian E, Badalzadeh M, Pouya A, Kannengiesser C, Mansouri D, et al. Characterization of six novel mutations in CYBA: the gene causing autosomal recessive chronic granulomatous disease. Br J Haematol. 2008;141(6):848–51.CrossRef Teimourian S, Zomorodian E, Badalzadeh M, Pouya A, Kannengiesser C, Mansouri D, et al. Characterization of six novel mutations in CYBA: the gene causing autosomal recessive chronic granulomatous disease. Br J Haematol. 2008;141(6):848–51.CrossRef
40.
Zurück zum Zitat Xu Q, Yuan F, Shen X, Wen H, Li W, Cheng B, et al. Polymorphisms of C242T and A640G in CYBA gene and the risk of coronary artery disease: a meta-analysis. PLoS One. 2014;9(1):e84251.CrossRef Xu Q, Yuan F, Shen X, Wen H, Li W, Cheng B, et al. Polymorphisms of C242T and A640G in CYBA gene and the risk of coronary artery disease: a meta-analysis. PLoS One. 2014;9(1):e84251.CrossRef
Metadaten
Titel
Interpretation of Dihydrorhodamine-1,2,3 Flow Cytometry in Chronic Granulomatous Disease: an Atypical Exemplar
verfasst von
Agnes Donko
Douglas B. Kuhns
Margot A. Cousin
Matthew J. Smith
Keith A. Sacco
Eric W. Klee
Avni Y. Joshi
Ralitza H. Gavrilova
Steven M. Holland
Thomas L. Leto
Roshini S. Abraham
Publikationsdatum
28.03.2022
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 5/2022
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-022-01217-5

Weitere Artikel der Ausgabe 5/2022

Journal of Clinical Immunology 5/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.