Skip to main content
Erschienen in: Medical Microbiology and Immunology 3-4/2019

16.03.2019 | Review

Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies

verfasst von: Catharina Majer, Jan Moritz Schüssler, Renate König

Erschienen in: Medical Microbiology and Immunology | Ausgabe 3-4/2019

Einloggen, um Zugang zu erhalten

Abstract

SAMHD1 was initially described for its ability to efficiently restrict HIV-1 replication in myeloid cells and resting CD4+ T cells. However, a growing body of evidence suggests that SAMHD1-mediated restriction is by far not limited to lentiviruses, but seems to be a general concept that applies to most retroviruses and at least a number of DNA viruses. SAMHD1 anti-viral activity was long believed to be solely due to its ability to deplete cellular dNTPs by enzymatic degradation. However, since its discovery, several new functions have been attributed to SAMHD1. It has been demonstrated to bind nucleic acids, to modulate innate immunity, as well as to participate in the DNA damage response and resolution of stalled replication forks. Consequently, it is likely that SAMHD1-mediated anti-viral activity is not or not exclusively mediated through its dNTPase activity. Therefore, in this review, we summarize current knowledge on SAMHD1 cellular functions and systematically discuss how these functions could contribute to the restriction of a broad range of viruses besides retroviruses: herpesviruses, poxviruses and hepatitis B virus. Furthermore, we aim to highlight different ways how viruses counteract SAMHD1-mediated restriction to bypass the SAMHD1-mediated block to viral infection.
Literatur
32.
Zurück zum Zitat Buller RM, Smith GL, Cremer K et al (1985) Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317(6040):813–815CrossRefPubMed Buller RM, Smith GL, Cremer K et al (1985) Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317(6040):813–815CrossRefPubMed
86.
Zurück zum Zitat Gao WY, Cara A, Gallo RC et al (1993) Low levels of deoxynucleotides in peripheral blood lymphocytes: A strategy to inhibit human immunodeficiency virus type 1 replication. Proc Natl Acad Sci USA 90(19):8925–8928CrossRefPubMedPubMedCentral Gao WY, Cara A, Gallo RC et al (1993) Low levels of deoxynucleotides in peripheral blood lymphocytes: A strategy to inhibit human immunodeficiency virus type 1 replication. Proc Natl Acad Sci USA 90(19):8925–8928CrossRefPubMedPubMedCentral
87.
Zurück zum Zitat Korin YD, Zack JA (1999) Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol 73(8):6526–6532CrossRefPubMedPubMedCentral Korin YD, Zack JA (1999) Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol 73(8):6526–6532CrossRefPubMedPubMedCentral
110.
Zurück zum Zitat Daniel R, Katz RA, Skalka AM (1999) A role for DNA-PK in retroviral DNA integration. Science 284(5414):644–647CrossRefPubMed Daniel R, Katz RA, Skalka AM (1999) A role for DNA-PK in retroviral DNA integration. Science 284(5414):644–647CrossRefPubMed
113.
Zurück zum Zitat Hu WS, Temin HM (1990) Retroviral recombination and reverse transcription. Science 250(4985):1227–1233CrossRefPubMed Hu WS, Temin HM (1990) Retroviral recombination and reverse transcription. Science 250(4985):1227–1233CrossRefPubMed
120.
Zurück zum Zitat Chabes A, Georgieva B, Domkin V et al (2003) Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112(3):391–401CrossRefPubMed Chabes A, Georgieva B, Domkin V et al (2003) Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112(3):391–401CrossRefPubMed
139.
Zurück zum Zitat Tuttleman JS, Pourcel C, Summers J (1986) Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47(3):451–460CrossRefPubMed Tuttleman JS, Pourcel C, Summers J (1986) Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47(3):451–460CrossRefPubMed
143.
Zurück zum Zitat Wu TT, Coates L, Aldrich CE et al (1990) In hepatocytes infected with duck hepatitis B virus, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology 175(1):255–261CrossRefPubMed Wu TT, Coates L, Aldrich CE et al (1990) In hepatocytes infected with duck hepatitis B virus, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology 175(1):255–261CrossRefPubMed
155.
Zurück zum Zitat Accola MA, Bukovsky AA, Jones MS et al (1999) A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 73(12):9992–9999CrossRefPubMedPubMedCentral Accola MA, Bukovsky AA, Jones MS et al (1999) A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 73(12):9992–9999CrossRefPubMedPubMedCentral
163.
Zurück zum Zitat Goldstein DJ, Weller SK (1988) Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: Isolation and characterization of an ICP6 lacZ insertion mutant. J Virol 62(1):196–205CrossRefPubMedPubMedCentral Goldstein DJ, Weller SK (1988) Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: Isolation and characterization of an ICP6 lacZ insertion mutant. J Virol 62(1):196–205CrossRefPubMedPubMedCentral
164.
Zurück zum Zitat Jacobson JG, Leib DA, Goldstein DJ et al (1989) A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173(1):276–283CrossRefPubMed Jacobson JG, Leib DA, Goldstein DJ et al (1989) A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173(1):276–283CrossRefPubMed
165.
Zurück zum Zitat Mineta T, Rabkin SD, Yazaki T et al (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1(9):938–943CrossRefPubMed Mineta T, Rabkin SD, Yazaki T et al (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1(9):938–943CrossRefPubMed
167.
Zurück zum Zitat Kit S, Qavi H, Dubbs DR et al (1983) Attenuated marmoset herpesvirus isolated from recombinants of virulent marmoset herpesvirus and hybrid plasmids. J Med Virol 12(1):25–36CrossRefPubMed Kit S, Qavi H, Dubbs DR et al (1983) Attenuated marmoset herpesvirus isolated from recombinants of virulent marmoset herpesvirus and hybrid plasmids. J Med Virol 12(1):25–36CrossRefPubMed
169.
Zurück zum Zitat Jowett JB, Planelles V, Poon B et al (1995) The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol 69(10):6304–6313CrossRefPubMedPubMedCentral Jowett JB, Planelles V, Poon B et al (1995) The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol 69(10):6304–6313CrossRefPubMedPubMedCentral
171.
Zurück zum Zitat He J, Choe S, Walker R et al (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69(11):6705–6711CrossRefPubMedPubMedCentral He J, Choe S, Walker R et al (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69(11):6705–6711CrossRefPubMedPubMedCentral
Metadaten
Titel
Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies
verfasst von
Catharina Majer
Jan Moritz Schüssler
Renate König
Publikationsdatum
16.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical Microbiology and Immunology / Ausgabe 3-4/2019
Print ISSN: 0300-8584
Elektronische ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-019-00593-x

Weitere Artikel der Ausgabe 3-4/2019

Medical Microbiology and Immunology 3-4/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.