Skip to main content
Erschienen in: Inflammation 2/2020

23.11.2019 | Original Article

Intra-subunit Disulfide Determines the Conversion and Structural Stability of CRP Isoforms

verfasst von: Chun-Miao Zhang, Yu-Bo Tan, Hai-Hong Zhou, Zhong-Bo Ge, Jun-Rui Feng, Guang-Bo Lv, Zhi-Yuan Sun, Yu Fu, Ming-Yu Wang

Erschienen in: Inflammation | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

C-reactive protein (CRP) is a major human acute-phase reactant that is composed of five identical subunits. CRP dissociates into subunits at inflammatory loci forming monomeric CRP (mCRP) with substantially enhanced activities, which can be further activated by reducing the intra-subunit disulfide bond. However, conformational changes underlying the activation process of CRP are less well understood. Conformational changes accompanying the conversion of CRP to mCRP with or without reduction were examined with circular dichroism spectroscopy, fluorescence spectroscopy, electron microscopy, size-exclusion chromatography, and neoepitope expression. The conversion of CRP to mCRP follows a two-stage process. In the first stage, CRP dissociates into molten globular subunits characterized by intact secondary structure elements with greatly impaired tertiary packing. In the second stage, these intermediates completely lose their native subunit conformation and assemble into high-order aggregates. The inclusion of reductant accelerates the formation of molten globular subunits in the first step and promotes the formation of more compact aggregates in the second stage. We further show a significant contribution of electrostatic interactions to the stabilization of native CRP. The conformational features of dissociated subunits and the aggregation of mCRP may have a key impact on their activities.
Literatur
1.
Zurück zum Zitat Pepys, M.B., and G.M. Hirschfield. 2003. C-reactive protein: A critical update. The Journal of Clinical Investigation 111: 1805–1812.PubMedPubMedCentral Pepys, M.B., and G.M. Hirschfield. 2003. C-reactive protein: A critical update. The Journal of Clinical Investigation 111: 1805–1812.PubMedPubMedCentral
2.
Zurück zum Zitat Singh, S.K., M.V. Suresh, B. Voleti, and A. Agrawal. 2008. The connection between C-reactive protein and atherosclerosis. Annals of Medicine 40: 110–120.PubMedPubMedCentral Singh, S.K., M.V. Suresh, B. Voleti, and A. Agrawal. 2008. The connection between C-reactive protein and atherosclerosis. Annals of Medicine 40: 110–120.PubMedPubMedCentral
3.
Zurück zum Zitat Khreiss, T., L. Jớzsef, L.A. Potempa, and J.G. Filep. 2004. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 109: 2016–2022.PubMed Khreiss, T., L. Jớzsef, L.A. Potempa, and J.G. Filep. 2004. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 109: 2016–2022.PubMed
4.
Zurück zum Zitat Khreiss, T., L. Jozsef, L.A. Potempa, and J.G. Filep. 2005. Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circulation Research 97: 690–697.PubMed Khreiss, T., L. Jozsef, L.A. Potempa, and J.G. Filep. 2005. Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circulation Research 97: 690–697.PubMed
5.
Zurück zum Zitat Ji, S.R., Y. Wu, L.A. Potempa, Q. Qiu, and J. Zhao. 2006. Interactions of C-reactive protein with low density lipoproteins: Implications for an active role of modified C-reactive protein in atherosclerosis. The International Journal of Biochemistry & Cell Biology 38: 648–661. Ji, S.R., Y. Wu, L.A. Potempa, Q. Qiu, and J. Zhao. 2006. Interactions of C-reactive protein with low density lipoproteins: Implications for an active role of modified C-reactive protein in atherosclerosis. The International Journal of Biochemistry & Cell Biology 38: 648–661.
6.
Zurück zum Zitat Ji, S.R., Y. Wu, L.A. Potempa, Y.H. Liang, and J. Zhao. 2006. Effect of Modified C-reactive protein on complement activation. A possible complement regulatory role of modified or monomeric C-reactive protein in atherosclerotic lesions. Arterioscler Thrombosis, and Vascular Biology 26: 935–941. Ji, S.R., Y. Wu, L.A. Potempa, Y.H. Liang, and J. Zhao. 2006. Effect of Modified C-reactive protein on complement activation. A possible complement regulatory role of modified or monomeric C-reactive protein in atherosclerotic lesions. Arterioscler Thrombosis, and Vascular Biology 26: 935–941.
7.
Zurück zum Zitat McFadyen, J.D., J. Kiefer, D. Braig, J. Loseff-Silver, L.A. Potempa, S.U. Eisenhardt, and K. Peter. 2018. Dissociation of C-reactive protein localizes and amplifies inflammation: Evidence for a direct biological role of C-reactive protein and its conformational changes. Frontiers in Immunology 9: 1351.PubMedPubMedCentral McFadyen, J.D., J. Kiefer, D. Braig, J. Loseff-Silver, L.A. Potempa, S.U. Eisenhardt, and K. Peter. 2018. Dissociation of C-reactive protein localizes and amplifies inflammation: Evidence for a direct biological role of C-reactive protein and its conformational changes. Frontiers in Immunology 9: 1351.PubMedPubMedCentral
8.
Zurück zum Zitat Jia, Z.K., H.Y. Li, Y.L. Liang, L.A. Potempa, S.R. Ji, and Y. Wu. 2018. Monomeric C-reactive protein binds and neutralizes receptor activator of NF-kappaB ligand-induced osteoclast differentiation. Frontiers in Immunology 9: 234.PubMedPubMedCentral Jia, Z.K., H.Y. Li, Y.L. Liang, L.A. Potempa, S.R. Ji, and Y. Wu. 2018. Monomeric C-reactive protein binds and neutralizes receptor activator of NF-kappaB ligand-induced osteoclast differentiation. Frontiers in Immunology 9: 234.PubMedPubMedCentral
9.
Zurück zum Zitat Li, Q.Y., H.Y. Li, G. Fu, F. Yu, Y. Wu, and M.H. Zhao. 2017. Autoantibodies against C-reactive protein influence complement activation and clinical course in lupus nephritis. Journal of American Society of Nephrology 28: 3044–3054. Li, Q.Y., H.Y. Li, G. Fu, F. Yu, Y. Wu, and M.H. Zhao. 2017. Autoantibodies against C-reactive protein influence complement activation and clinical course in lupus nephritis. Journal of American Society of Nephrology 28: 3044–3054.
10.
Zurück zum Zitat Li, H.Y., J. Wang, F. Meng, Z.K. Jia, Y. Su, Q.F. Bai, L.L. Lv, F.R. Ma, L.A. Potempa, Y.B. Yan, S.R. Ji, and Y. Wu. 2016. An intrinsically disordered motif mediates diverse actions of monomeric C-reactive protein. The Journal of Biological Chemistry 291: 8795–8804.PubMedPubMedCentral Li, H.Y., J. Wang, F. Meng, Z.K. Jia, Y. Su, Q.F. Bai, L.L. Lv, F.R. Ma, L.A. Potempa, Y.B. Yan, S.R. Ji, and Y. Wu. 2016. An intrinsically disordered motif mediates diverse actions of monomeric C-reactive protein. The Journal of Biological Chemistry 291: 8795–8804.PubMedPubMedCentral
11.
Zurück zum Zitat Wang, M.Y., S.R. Ji, C.J. Bai, D. El Kebir, H.Y. Li, J.M. Shi, W. Zhu, S. Costantino, H.H. Zhou, L.A. Potempa, J. Zhao, J.G. Filep, and Y. Wu. 2011. A redox switch in C-reactive protein modulates activation of endothelial cells. The FASEB Journal 25: 3186–3196.PubMed Wang, M.Y., S.R. Ji, C.J. Bai, D. El Kebir, H.Y. Li, J.M. Shi, W. Zhu, S. Costantino, H.H. Zhou, L.A. Potempa, J. Zhao, J.G. Filep, and Y. Wu. 2011. A redox switch in C-reactive protein modulates activation of endothelial cells. The FASEB Journal 25: 3186–3196.PubMed
12.
Zurück zum Zitat Li, S.L., J.R. Feng, H.H. Zhou, C.M. Zhang, G.B. Lv, Y.B. Tan, Z.B. Ge, and M.Y. Wang. 2018. Acidic pH promotes oxidation-induced dissociation of C-reactive protein. Molecular Immunology 104: 47–53.PubMed Li, S.L., J.R. Feng, H.H. Zhou, C.M. Zhang, G.B. Lv, Y.B. Tan, Z.B. Ge, and M.Y. Wang. 2018. Acidic pH promotes oxidation-induced dissociation of C-reactive protein. Molecular Immunology 104: 47–53.PubMed
13.
Zurück zum Zitat Singh, S.K., A. Thirumalai, A. Pathak, D.N. Ngwa, and A. Agrawal. 2017. Functional Transformation of C-reactive protein by hydrogen peroxide. The Journal of Biological Chemistry 292: 3129–3136.PubMedPubMedCentral Singh, S.K., A. Thirumalai, A. Pathak, D.N. Ngwa, and A. Agrawal. 2017. Functional Transformation of C-reactive protein by hydrogen peroxide. The Journal of Biological Chemistry 292: 3129–3136.PubMedPubMedCentral
14.
Zurück zum Zitat Hammond, D.J., Jr., S.K. Singh, J.A. Thompson, B.W. Beeler, A.E. Rusinol, M.K. Pangburn, L.A. Potempa, and A. Agrawal. 2010. Identification of acidic pH-dependent ligands of pentameric C-reactive protein. The Journal of Biological Chemistry 285: 36235–36244.PubMedPubMedCentral Hammond, D.J., Jr., S.K. Singh, J.A. Thompson, B.W. Beeler, A.E. Rusinol, M.K. Pangburn, L.A. Potempa, and A. Agrawal. 2010. Identification of acidic pH-dependent ligands of pentameric C-reactive protein. The Journal of Biological Chemistry 285: 36235–36244.PubMedPubMedCentral
15.
Zurück zum Zitat Eisenhardt, S.U., J. Habersberger, A. Murphy, Y.C. Chen, K.J. Woollard, N. Bassler, H. Qian, C. von Zur Muhlen, C.E. Hagemeyer, I. Ahrens, J. Chin-Dusting, A. Bobik, and K. Peter. 2009. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circulation Research 105: 128–137.PubMed Eisenhardt, S.U., J. Habersberger, A. Murphy, Y.C. Chen, K.J. Woollard, N. Bassler, H. Qian, C. von Zur Muhlen, C.E. Hagemeyer, I. Ahrens, J. Chin-Dusting, A. Bobik, and K. Peter. 2009. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circulation Research 105: 128–137.PubMed
16.
Zurück zum Zitat Thiele, J.R., J. Habersberger, D. Braig, Y. Schmidt, K. Goerendt, V. Maurer, H. Bannasch, A. Scheichl, K.J. Woollard, E. von Dobschutz, F. Kolodgie, R. Virmani, G.B. Stark, K. Peter, and S.U. Eisenhardt. 2014. Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: In vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation 130: 35–50.PubMed Thiele, J.R., J. Habersberger, D. Braig, Y. Schmidt, K. Goerendt, V. Maurer, H. Bannasch, A. Scheichl, K.J. Woollard, E. von Dobschutz, F. Kolodgie, R. Virmani, G.B. Stark, K. Peter, and S.U. Eisenhardt. 2014. Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: In vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation 130: 35–50.PubMed
17.
Zurück zum Zitat Ji, S.R., Y. Wu, L. Zhu, L.A. Potempa, F.L. Sheng, W. Lu, and J. Zhao. 2007. Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP(m). The FASEB Journal 21: 284–294.PubMed Ji, S.R., Y. Wu, L. Zhu, L.A. Potempa, F.L. Sheng, W. Lu, and J. Zhao. 2007. Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP(m). The FASEB Journal 21: 284–294.PubMed
18.
Zurück zum Zitat Habersberger, J., F. Strang, A. Scheichl, N. Htun, N. Bassler, R.M. Merivirta, P. Diehl, G. Krippner, P. Meikle, S.U. Eisenhardt, I. Meredith, and K. Peter. 2012. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovascular Research 96: 64–72.PubMed Habersberger, J., F. Strang, A. Scheichl, N. Htun, N. Bassler, R.M. Merivirta, P. Diehl, G. Krippner, P. Meikle, S.U. Eisenhardt, I. Meredith, and K. Peter. 2012. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovascular Research 96: 64–72.PubMed
19.
Zurück zum Zitat Lv, J.M., S.Q. Lu, Z.P. Liu, J. Zhang, B.X. Gao, Z.Y. Yao, Y.X. Wu, L.A. Potempa, S.R. Ji, M. Long, and Y. Wu. 2018. Conformational folding and disulfide bonding drive distinct stages of protein structure formation. Scientific Reports 8: 1494.PubMedPubMedCentral Lv, J.M., S.Q. Lu, Z.P. Liu, J. Zhang, B.X. Gao, Z.Y. Yao, Y.X. Wu, L.A. Potempa, S.R. Ji, M. Long, and Y. Wu. 2018. Conformational folding and disulfide bonding drive distinct stages of protein structure formation. Scientific Reports 8: 1494.PubMedPubMedCentral
20.
Zurück zum Zitat Potempa, L.A., B.A. Maldonado, P. Laurent, E.S. Zemel, and H. Gewurz. 1983. Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Molecular Immunology 20: 1165–1175.PubMed Potempa, L.A., B.A. Maldonado, P. Laurent, E.S. Zemel, and H. Gewurz. 1983. Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Molecular Immunology 20: 1165–1175.PubMed
21.
Zurück zum Zitat Khreiss, T., L. Jozsef, S. Hossain, J.S. Chan, L.A. Potempa, and J.G. Filep. 2002. Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. The Journal of Biological Chemistry 277: 40775–40781.PubMed Khreiss, T., L. Jozsef, S. Hossain, J.S. Chan, L.A. Potempa, and J.G. Filep. 2002. Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. The Journal of Biological Chemistry 277: 40775–40781.PubMed
22.
Zurück zum Zitat Ying, S.C., E. Shephard, F.C. de Beer, J.N. Siegel, D. Harris, B.E. Gewurz, M. Fridkin, and H. Gewurz. 1992. Localization of sequence-determined neoepitopes and neutrophil digestion fragments of C-reactive protein utilizing monoclonal antibodies and synthetic peptides. Molecular Immunology 29: 677–687.PubMed Ying, S.C., E. Shephard, F.C. de Beer, J.N. Siegel, D. Harris, B.E. Gewurz, M. Fridkin, and H. Gewurz. 1992. Localization of sequence-determined neoepitopes and neutrophil digestion fragments of C-reactive protein utilizing monoclonal antibodies and synthetic peptides. Molecular Immunology 29: 677–687.PubMed
23.
Zurück zum Zitat Taylor, K.E., and C.W. van den Berg. 2007. Structural and functional comparison of native pentameric, denatured monomeric and biotinylated C-reactive protein. Immunology 120: 404–411.PubMedPubMedCentral Taylor, K.E., and C.W. van den Berg. 2007. Structural and functional comparison of native pentameric, denatured monomeric and biotinylated C-reactive protein. Immunology 120: 404–411.PubMedPubMedCentral
24.
Zurück zum Zitat Lu, S., Y. Cao, S.B. Fan, Z.L. Chen, R.Q. Fang, S.M. He, and M.Q. Dong. 2018. Mapping disulfide bonds from sub-micrograms of purified proteins or micrograms of complex protein mixtures. Biophysics Reports 4: 68–81.PubMedPubMedCentral Lu, S., Y. Cao, S.B. Fan, Z.L. Chen, R.Q. Fang, S.M. He, and M.Q. Dong. 2018. Mapping disulfide bonds from sub-micrograms of purified proteins or micrograms of complex protein mixtures. Biophysics Reports 4: 68–81.PubMedPubMedCentral
25.
Zurück zum Zitat Fink, A.L. 1995. Molten globules. Methods in Molecular Biology 40: 343–360.PubMed Fink, A.L. 1995. Molten globules. Methods in Molecular Biology 40: 343–360.PubMed
26.
Zurück zum Zitat Volanakis, J.E. 2001. Human C-reactive protein: Expression, structure, and function. Molecular Immunology 38: 189–197.PubMed Volanakis, J.E. 2001. Human C-reactive protein: Expression, structure, and function. Molecular Immunology 38: 189–197.PubMed
27.
Zurück zum Zitat Monera, O.D., C.M. Kay, and R.S. Hodges. 1994. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Science 3: 1984–1991.PubMedPubMedCentral Monera, O.D., C.M. Kay, and R.S. Hodges. 1994. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Science 3: 1984–1991.PubMedPubMedCentral
28.
Zurück zum Zitat Schwedler, S.B., J.G. Filep, J. Galle, C. Wanner, and L.A. Potempa. 2006. C-reactive protein: A family of proteins to regulate cardiovascular function. American Journal of Kidney Diseases 47: 212–222.PubMed Schwedler, S.B., J.G. Filep, J. Galle, C. Wanner, and L.A. Potempa. 2006. C-reactive protein: A family of proteins to regulate cardiovascular function. American Journal of Kidney Diseases 47: 212–222.PubMed
29.
Zurück zum Zitat Schwedler, S.B., K. Amann, K. Wernicke, A. Krebs, M. Nauck, C. Wanner, L.A. Potempa, and J. Galle. 2005. Native C-reactive protein (CRP) increases, whereas modified CRP reduces atherosclerosis in ApoE-knockout-mice. Circulation. 112: 1016–1023.PubMed Schwedler, S.B., K. Amann, K. Wernicke, A. Krebs, M. Nauck, C. Wanner, L.A. Potempa, and J. Galle. 2005. Native C-reactive protein (CRP) increases, whereas modified CRP reduces atherosclerosis in ApoE-knockout-mice. Circulation. 112: 1016–1023.PubMed
30.
Zurück zum Zitat Braig, D., B. Kaiser, J.R. Thiele, H. Bannasch, K. Peter, G.B. Stark, H.G. Koch, and S.U. Eisenhardt. 2014. A conformational change of C-reactive protein in burn wounds unmasks its proinflammatory properties. International Immunology 26: 467–478.PubMed Braig, D., B. Kaiser, J.R. Thiele, H. Bannasch, K. Peter, G.B. Stark, H.G. Koch, and S.U. Eisenhardt. 2014. A conformational change of C-reactive protein in burn wounds unmasks its proinflammatory properties. International Immunology 26: 467–478.PubMed
31.
Zurück zum Zitat Strang, F., A. Scheichl, Y.C. Chen, X. Wang, N.M. Htun, N. Bassler, S.U. Eisenhardt, J. Habersberger, and K. Peter. 2011. Amyloid plaques dissociate pentameric to monomeric C-reactive protein: A novel pathomechanism driving cortical inflammation in Alzheimer’s disease? Brain Pathology (Zurich, Switzerland). Strang, F., A. Scheichl, Y.C. Chen, X. Wang, N.M. Htun, N. Bassler, S.U. Eisenhardt, J. Habersberger, and K. Peter. 2011. Amyloid plaques dissociate pentameric to monomeric C-reactive protein: A novel pathomechanism driving cortical inflammation in Alzheimer’s disease? Brain Pathology (Zurich, Switzerland).
32.
Zurück zum Zitat Eisenhardt, S.U., J.R. Thiele, H. Bannasch, G.B. Stark, and K. Peter. 2009. C-reactive protein: How conformational changes influence inflammatory properties. Cell Cycle (Georgetown, Tex.) 8: 3885–3892. Eisenhardt, S.U., J.R. Thiele, H. Bannasch, G.B. Stark, and K. Peter. 2009. C-reactive protein: How conformational changes influence inflammatory properties. Cell Cycle (Georgetown, Tex.) 8: 3885–3892.
33.
Zurück zum Zitat Ji, S.R., L. Ma, C.J. Bai, J.M. Shi, H.Y. Li, L.A. Potempa, J.G. Filep, J. Zhao, and Y. Wu. 2009. Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft microdomains. The FASEB Journal 23: 1806–1816.PubMed Ji, S.R., L. Ma, C.J. Bai, J.M. Shi, H.Y. Li, L.A. Potempa, J.G. Filep, J. Zhao, and Y. Wu. 2009. Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft microdomains. The FASEB Journal 23: 1806–1816.PubMed
34.
Zurück zum Zitat Breydo, L., and V.N. Uversky. 2015. Structural, morphological, and functional diversity of amyloid oligomers. FEBS Letters 589: 2640–2648.PubMed Breydo, L., and V.N. Uversky. 2015. Structural, morphological, and functional diversity of amyloid oligomers. FEBS Letters 589: 2640–2648.PubMed
35.
Zurück zum Zitat Pelton, J.T., and L.R. McLean. 2000. Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry 277: 167–176.PubMed Pelton, J.T., and L.R. McLean. 2000. Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry 277: 167–176.PubMed
36.
Zurück zum Zitat Lu, J., K.D. Marjon, L.L. Marnell, R. Wang, C. Mold, T.W. Du Clos, and P. Sun. 2011. Recognition and functional activation of the human IgA receptor (FcalphaRI) by C-reactive protein. Proceedings of the National Academy of Sciences of the United States of America 108: 4974–4979.PubMedPubMedCentral Lu, J., K.D. Marjon, L.L. Marnell, R. Wang, C. Mold, T.W. Du Clos, and P. Sun. 2011. Recognition and functional activation of the human IgA receptor (FcalphaRI) by C-reactive protein. Proceedings of the National Academy of Sciences of the United States of America 108: 4974–4979.PubMedPubMedCentral
37.
Zurück zum Zitat Fujita, Y., A. Kakino, N. Nishimichi, S. Yamaguchi, Y. Sato, S. Machida, L. Cominacini, Y. Delneste, H. Matsuda, and T. Sawamura. 2009. Oxidized LDL receptor LOX-1 binds to C-reactive protein and mediates its vascular effects. Clinical Chemistry 55: 285–294.PubMed Fujita, Y., A. Kakino, N. Nishimichi, S. Yamaguchi, Y. Sato, S. Machida, L. Cominacini, Y. Delneste, H. Matsuda, and T. Sawamura. 2009. Oxidized LDL receptor LOX-1 binds to C-reactive protein and mediates its vascular effects. Clinical Chemistry 55: 285–294.PubMed
38.
Zurück zum Zitat Lu, J., L.L. Marnell, K.D. Marjon, C. Mold, T.W. Du Clos, and P.D. Sun. 2008. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature 456: 989–992.PubMedPubMedCentral Lu, J., L.L. Marnell, K.D. Marjon, C. Mold, T.W. Du Clos, and P.D. Sun. 2008. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature 456: 989–992.PubMedPubMedCentral
39.
Zurück zum Zitat Yang, J., M. Wezeman, X. Zhang, P. Lin, M. Wang, J. Qian, B. Wan, L.W. Kwak, L. Yu, and Q. Yi. 2007. Human C-reactive protein binds activating Fcgamma receptors and protects myeloma tumor cells from apoptosis. Cancer Cell 12: 252–265.PubMed Yang, J., M. Wezeman, X. Zhang, P. Lin, M. Wang, J. Qian, B. Wan, L.W. Kwak, L. Yu, and Q. Yi. 2007. Human C-reactive protein binds activating Fcgamma receptors and protects myeloma tumor cells from apoptosis. Cancer Cell 12: 252–265.PubMed
40.
Zurück zum Zitat Blaschke, F., Y. Takata, E. Caglayan, A. Collins, P. Tontonoz, W.A. Hsueh, and R.K. Tangirala. 2006. A nuclear receptor corepressor-dependent pathway mediates suppression of cytokine-induced C-reactive protein gene expression by liver X receptor. Circulation Research 99: e88–e99.PubMed Blaschke, F., Y. Takata, E. Caglayan, A. Collins, P. Tontonoz, W.A. Hsueh, and R.K. Tangirala. 2006. A nuclear receptor corepressor-dependent pathway mediates suppression of cytokine-induced C-reactive protein gene expression by liver X receptor. Circulation Research 99: e88–e99.PubMed
41.
Zurück zum Zitat Du Clos, T.W. 2000. Function of C-reactive protein. Annals of Medicine 32: 274–278.PubMed Du Clos, T.W. 2000. Function of C-reactive protein. Annals of Medicine 32: 274–278.PubMed
42.
Zurück zum Zitat Vigushin, D.M., M.B. Pepys, and P.N. Hawkins. 1993. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. The Journal of Clinical Investigation 91: 1351–1357.PubMedPubMedCentral Vigushin, D.M., M.B. Pepys, and P.N. Hawkins. 1993. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. The Journal of Clinical Investigation 91: 1351–1357.PubMedPubMedCentral
43.
Zurück zum Zitat Motie, M., K.W. Schaul, and L.A. Potempa. 1998. Biodistribution and clearance of 125I-labeled C-reactive protein and 125I-labeled modified C-reactive protein in CD-1 mice. Drug Metabolism and Disposition 26: 977–981.PubMed Motie, M., K.W. Schaul, and L.A. Potempa. 1998. Biodistribution and clearance of 125I-labeled C-reactive protein and 125I-labeled modified C-reactive protein in CD-1 mice. Drug Metabolism and Disposition 26: 977–981.PubMed
44.
Zurück zum Zitat Singh, S.K., A. Thirumalai, D.J. Hammond Jr., M.K. Pangburn, V.K. Mishra, D.A. Johnson, A.E. Rusinol, and A. Agrawal. 2012. Exposing a hidden functional site of C-reactive protein by site-directed mutagenesis. The Journal of Biological Chemistry 287: 3550–3558.PubMed Singh, S.K., A. Thirumalai, D.J. Hammond Jr., M.K. Pangburn, V.K. Mishra, D.A. Johnson, A.E. Rusinol, and A. Agrawal. 2012. Exposing a hidden functional site of C-reactive protein by site-directed mutagenesis. The Journal of Biological Chemistry 287: 3550–3558.PubMed
Metadaten
Titel
Intra-subunit Disulfide Determines the Conversion and Structural Stability of CRP Isoforms
verfasst von
Chun-Miao Zhang
Yu-Bo Tan
Hai-Hong Zhou
Zhong-Bo Ge
Jun-Rui Feng
Guang-Bo Lv
Zhi-Yuan Sun
Yu Fu
Ming-Yu Wang
Publikationsdatum
23.11.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01130-x

Weitere Artikel der Ausgabe 2/2020

Inflammation 2/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.