Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2019

13.04.2019

Intracellular pH dynamics and charge-changing somatic mutations in cancer

verfasst von: Katharine A. White, Kyle Kisor, Diane L. Barber

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2019

Einloggen, um Zugang zu erhalten

Abstract

An unresolved question critical for understanding cancer is how recurring somatic mutations are retained and how selective pressures drive retention. Increased intracellular pH (pHi) is common to most cancers and is an early event in cancer development. Recent work shows that recurrent somatic mutations can confer an adaptive gain in pH sensing to mutant proteins, enhancing tumorigenic phenotypes specifically at the increased pHi of cancer. Newly identified amino acid mutation signatures in cancer suggest charge-changing mutations define and shape the mutational landscape of cancer. Taken together, these results support a new perspective on the functional significance of somatic mutations in cancer. In this review, we explore existing data and new directions for better understanding how changes in dynamic pH sensing by somatic mutation might be conferring a fitness advantage to the high pH of cancer.
Literatur
1.
Zurück zum Zitat Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: a perfect storm for cancer progression. Nature Reviews Cancer, 11, 671–677.CrossRefPubMed Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: a perfect storm for cancer progression. Nature Reviews Cancer, 11, 671–677.CrossRefPubMed
2.
Zurück zum Zitat White, K. A., Grillo-Hill, B. K., & Barber, D. L. (2017). Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal of Cell Science, 130, 663–669.CrossRefPubMedPubMedCentral White, K. A., Grillo-Hill, B. K., & Barber, D. L. (2017). Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal of Cell Science, 130, 663–669.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Pedersen, S. F., & Stock, C. (2013). Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Research, 73, 1658–1661.CrossRefPubMed Pedersen, S. F., & Stock, C. (2013). Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Research, 73, 1658–1661.CrossRefPubMed
4.
Zurück zum Zitat Parks, S. K., Chiche, J., & Pouyssegur, J. (2013). Disrupting proton dynamics and energy metabolism for cancer therapy. Nature Reviews Cancer, 13, 611–623.CrossRefPubMed Parks, S. K., Chiche, J., & Pouyssegur, J. (2013). Disrupting proton dynamics and energy metabolism for cancer therapy. Nature Reviews Cancer, 13, 611–623.CrossRefPubMed
5.
Zurück zum Zitat Reshkin, S. J., et al. (2000). Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. The FASEB Journal, 14, 2185–2197.CrossRefPubMed Reshkin, S. J., et al. (2000). Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. The FASEB Journal, 14, 2185–2197.CrossRefPubMed
6.
Zurück zum Zitat Grillo-Hill, B. K., Choi, C., Jimenez-Vidal, M., & Barber, D. L. (2015). Increased H(+) efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. Elife, 4. Grillo-Hill, B. K., Choi, C., Jimenez-Vidal, M., & Barber, D. L. (2015). Increased H(+) efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. Elife, 4.
7.
9.
Zurück zum Zitat Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews Cancer, 12, 487–493.CrossRefPubMedPubMedCentral Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews Cancer, 12, 487–493.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Ward, S. G., & Mrsny, R. (2009). New insights into mechanisms of gastrointestinal inflammation and cancer. Current Opinion in Pharmacology, 9, 677–679.CrossRefPubMed Ward, S. G., & Mrsny, R. (2009). New insights into mechanisms of gastrointestinal inflammation and cancer. Current Opinion in Pharmacology, 9, 677–679.CrossRefPubMed
11.
Zurück zum Zitat Ramachandran, S., Ient, J., Gottgens, E. L., Krieg, A. J., & Hammond, E. M. (2015). Epigenetic therapy for solid tumors: highlighting the impact of tumor hypoxia. Genes Basel, 6, 935–956.CrossRefPubMedPubMedCentral Ramachandran, S., Ient, J., Gottgens, E. L., Krieg, A. J., & Hammond, E. M. (2015). Epigenetic therapy for solid tumors: highlighting the impact of tumor hypoxia. Genes Basel, 6, 935–956.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Brahimi-Horn, M. C., Bellot, G., & Pouyssegur, J. (2011). Hypoxia and energetic tumour metabolism. Current Opinion in Genetics & Development, 21, 67–72.CrossRef Brahimi-Horn, M. C., Bellot, G., & Pouyssegur, J. (2011). Hypoxia and energetic tumour metabolism. Current Opinion in Genetics & Development, 21, 67–72.CrossRef
13.
14.
Zurück zum Zitat Su, A. I., et al. (2001). Molecular classification of human carcinomas by use of gene expression signatures. Cancer Research, 61, 7388–7393.PubMed Su, A. I., et al. (2001). Molecular classification of human carcinomas by use of gene expression signatures. Cancer Research, 61, 7388–7393.PubMed
15.
Zurück zum Zitat Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K. V., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V. K., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E., & Vogelstein, B. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.CrossRefPubMed Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K. V., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V. K., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E., & Vogelstein, B. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.CrossRefPubMed
17.
Zurück zum Zitat Watanabe, N., Okochi, E., Mochizuki, M., Sugimura, T., & Ushijima, T. (2001). The presence of single nucleotide instability in human breast cancer cell lines. Cancer Research, 61, 7739–7742.PubMed Watanabe, N., Okochi, E., Mochizuki, M., Sugimura, T., & Ushijima, T. (2001). The presence of single nucleotide instability in human breast cancer cell lines. Cancer Research, 61, 7739–7742.PubMed
18.
Zurück zum Zitat Bignell, G. R., Greenman, C. D., Davies, H., Butler, A. P., Edkins, S., Andrews, J. M., Buck, G., Chen, L., Beare, D., Latimer, C., Widaa, S., Hinton, J., Fahey, C., Fu, B., Swamy, S., Dalgliesh, G. L., Teh, B. T., Deloukas, P., Yang, F., Campbell, P. J., Futreal, P. A., & Stratton, M. R. (2010). Signatures of mutation and selection in the cancer genome. Nature, 463, 893–898.CrossRefPubMedPubMedCentral Bignell, G. R., Greenman, C. D., Davies, H., Butler, A. P., Edkins, S., Andrews, J. M., Buck, G., Chen, L., Beare, D., Latimer, C., Widaa, S., Hinton, J., Fahey, C., Fu, B., Swamy, S., Dalgliesh, G. L., Teh, B. T., Deloukas, P., Yang, F., Campbell, P. J., Futreal, P. A., & Stratton, M. R. (2010). Signatures of mutation and selection in the cancer genome. Nature, 463, 893–898.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Szpiech, Z. A., Strauli, N. B., White, K. A., Ruiz, D. G., Jacobson, M. P., Barber, D. L., & Hernandez, R. D. (2017). Prominent features of the amino acid mutation landscape in cancer. PLoS One, 12, e0183273.CrossRefPubMedPubMedCentral Szpiech, Z. A., Strauli, N. B., White, K. A., Ruiz, D. G., Jacobson, M. P., Barber, D. L., & Hernandez, R. D. (2017). Prominent features of the amino acid mutation landscape in cancer. PLoS One, 12, e0183273.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Anoosha, P., Sakthivel, R., & Michael Gromiha, M. (2016). Exploring preferred amino acid mutations in cancer genes: applications to identify potential drug targets. Biochimica et Biophysica Acta, 1862, 155–165.CrossRefPubMed Anoosha, P., Sakthivel, R., & Michael Gromiha, M. (2016). Exploring preferred amino acid mutations in cancer genes: applications to identify potential drug targets. Biochimica et Biophysica Acta, 1862, 155–165.CrossRefPubMed
21.
Zurück zum Zitat Tan, H., Bao, J., & Zhou, X. (2015). Genome-wide mutational spectra analysis reveals significant cancer-specific heterogeneity. Scientific Reports, 5, 12566.CrossRefPubMedPubMedCentral Tan, H., Bao, J., & Zhou, X. (2015). Genome-wide mutational spectra analysis reveals significant cancer-specific heterogeneity. Scientific Reports, 5, 12566.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Pollock, D. D., Thiltgen, G., & Goldstein, R. A. (2012). Amino acid coevolution induces an evolutionary stokes shift. Proceedings of the National Academy of Sciences, 109, E1352–E1359.CrossRef Pollock, D. D., Thiltgen, G., & Goldstein, R. A. (2012). Amino acid coevolution induces an evolutionary stokes shift. Proceedings of the National Academy of Sciences, 109, E1352–E1359.CrossRef
24.
Zurück zum Zitat White, K. A., Ruiz, D. G., Szpiech, Z. A., Strauli, N. B., Hernandez, R. D., Jacobson, M. P., & Barber, D. L. (2017). Cancer-associated arginine-to-histidine mutations confer a gain in pH sensing to mutant proteins. Science Signaling, 10, eaam9931.CrossRefPubMedPubMedCentral White, K. A., Ruiz, D. G., Szpiech, Z. A., Strauli, N. B., Hernandez, R. D., Jacobson, M. P., & Barber, D. L. (2017). Cancer-associated arginine-to-histidine mutations confer a gain in pH sensing to mutant proteins. Science Signaling, 10, eaam9931.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Frantz, C., Barreiro, G., Dominguez, L., Chen, X., Eddy, R., Condeelis, J., Kelly, M. J. S., Jacobson, M. P., & Barber, D. L. (2008). Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. The Journal of Cell Biology, 183, 865–879.CrossRefPubMedPubMedCentral Frantz, C., Barreiro, G., Dominguez, L., Chen, X., Eddy, R., Condeelis, J., Kelly, M. J. S., Jacobson, M. P., & Barber, D. L. (2008). Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. The Journal of Cell Biology, 183, 865–879.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Srivastava, J., Barreiro, G., Groscurth, S., Gingras, A. R., Goult, B. T., Critchley, D. R., Kelly, M. J. S., Jacobson, M. P., & Barber, D. L. (2008). Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proceedings of the National Academy of Sciences of the United States of America, 105, 14436–14441.CrossRefPubMedPubMedCentral Srivastava, J., Barreiro, G., Groscurth, S., Gingras, A. R., Goult, B. T., Critchley, D. R., Kelly, M. J. S., Jacobson, M. P., & Barber, D. L. (2008). Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proceedings of the National Academy of Sciences of the United States of America, 105, 14436–14441.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M., & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11, 217–227.CrossRefPubMedPubMedCentral Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M., & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11, 217–227.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Forbes, S. A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., Cole, C. G., Ward, S., Dawson, E., Ponting, L., Stefancsik, R., Harsha, B., Kok, C. Y., Jia, M., Jubb, H., Sondka, Z., Thompson, S., de, T., & Campbell, P. J. (2017). COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Research, 45, D777–D783.CrossRefPubMed Forbes, S. A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., Cole, C. G., Ward, S., Dawson, E., Ponting, L., Stefancsik, R., Harsha, B., Kok, C. Y., Jia, M., Jubb, H., Sondka, Z., Thompson, S., de, T., & Campbell, P. J. (2017). COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Research, 45, D777–D783.CrossRefPubMed
29.
Zurück zum Zitat Joerger, A. C., & Fersht, A. R. (2010). The tumor suppressor p53: from structures to drug discovery. Cold Spring Harbor Perspectives in Biology, 2, a000919.CrossRefPubMedPubMedCentral Joerger, A. C., & Fersht, A. R. (2010). The tumor suppressor p53: from structures to drug discovery. Cold Spring Harbor Perspectives in Biology, 2, a000919.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113, 685–700.CrossRefPubMed Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113, 685–700.CrossRefPubMed
31.
Zurück zum Zitat Singh, P., Srinivasan, R., & Wig, J. D. (2012). SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas, 41, 541–546.CrossRefPubMed Singh, P., Srinivasan, R., & Wig, J. D. (2012). SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas, 41, 541–546.CrossRefPubMed
32.
Zurück zum Zitat Papageorgis, P., Cheng, K., Ozturk, S., Gong, Y., Lambert, A. W., Abdolmaleky, H. M., Zhou, J. R., & Thiagalingam, S. (2011). Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Research, 71, 998–1008.CrossRefPubMedPubMedCentral Papageorgis, P., Cheng, K., Ozturk, S., Gong, Y., Lambert, A. W., Abdolmaleky, H. M., Zhou, J. R., & Thiagalingam, S. (2011). Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Research, 71, 998–1008.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Schiro, M. M., Stauber, S. E., Peterson, T. L., Krueger, C., Darnell, S. J., Satyshur, K. A., Drinkwater, N. R., Newton, M. A., & Hoffmann, F. M. (2011). Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression. PLoS One, 6, e25021.CrossRefPubMedPubMedCentral Schiro, M. M., Stauber, S. E., Peterson, T. L., Krueger, C., Darnell, S. J., Satyshur, K. A., Drinkwater, N. R., Newton, M. A., & Hoffmann, F. M. (2011). Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression. PLoS One, 6, e25021.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Linder, P., & Jankowsky, E. (2011). From unwinding to clamping—the DEAD box RNA helicase family. Nature Reviews Molecular Cell Biology, 12, 505–516.CrossRefPubMed Linder, P., & Jankowsky, E. (2011). From unwinding to clamping—the DEAD box RNA helicase family. Nature Reviews Molecular Cell Biology, 12, 505–516.CrossRefPubMed
35.
Zurück zum Zitat Northcott, P. A., Jones, D. T. W., Kool, M., Robinson, G. W., Gilbertson, R. J., Cho, Y. J., Pomeroy, S. L., Korshunov, A., Lichter, P., Taylor, M. D., & Pfister, S. M. (2012). Medulloblastomics: the end of the beginning. Nature Reviews. Cancer, 12, 818–834.CrossRefPubMedPubMedCentral Northcott, P. A., Jones, D. T. W., Kool, M., Robinson, G. W., Gilbertson, R. J., Cho, Y. J., Pomeroy, S. L., Korshunov, A., Lichter, P., Taylor, M. D., & Pfister, S. M. (2012). Medulloblastomics: the end of the beginning. Nature Reviews. Cancer, 12, 818–834.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Floor, S. N., Condon, K. J., Sharma, D., Jankowsky, E., & Doudna, J. A. (2016). Autoinhibitory Interdomain interactions and subfamily-specific extensions redefine the catalytic core of the human DEAD-box protein DDX3. The Journal of Biological Chemistry, 291, 2412–2421.CrossRefPubMed Floor, S. N., Condon, K. J., Sharma, D., Jankowsky, E., & Doudna, J. A. (2016). Autoinhibitory Interdomain interactions and subfamily-specific extensions redefine the catalytic core of the human DEAD-box protein DDX3. The Journal of Biological Chemistry, 291, 2412–2421.CrossRefPubMed
37.
Zurück zum Zitat Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S., & Yokoyama, S. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell, 125, 287–300.CrossRefPubMed Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S., & Yokoyama, S. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell, 125, 287–300.CrossRefPubMed
38.
Zurück zum Zitat Valentin-Vega, Y. A., Wang, Y. D., Parker, M., Patmore, D. M., Kanagaraj, A., Moore, J., Rusch, M., Finkelstein, D., Ellison, D. W., Gilbertson, R. J., Zhang, J., Kim, H. J., & Taylor, J. P. (2016). Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Scientific Reports, 6. Valentin-Vega, Y. A., Wang, Y. D., Parker, M., Patmore, D. M., Kanagaraj, A., Moore, J., Rusch, M., Finkelstein, D., Ellison, D. W., Gilbertson, R. J., Zhang, J., Kim, H. J., & Taylor, J. P. (2016). Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Scientific Reports, 6.
39.
Zurück zum Zitat Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes & Development, 23, 537–548.CrossRef Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes & Development, 23, 537–548.CrossRef
40.
Zurück zum Zitat Welcker, M., & Clurman, B. E. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Reviews Cancer, 8, 83–93.CrossRefPubMed Welcker, M., & Clurman, B. E. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Reviews Cancer, 8, 83–93.CrossRefPubMed
41.
Zurück zum Zitat Akhoondi, S., Sun, D., von der Lehr, N., Apostolidou, S., Klotz, K., Maljukova, A., Cepeda, D., Fiegl, H., Dofou, D., Marth, C., Mueller-Holzner, E., Corcoran, M., Dagnell, M., Nejad, S. Z., Nayer, B. N., Zali, M. R., Hansson, J., Egyhazi, S., Petersson, F., Sangfelt, P., Nordgren, H., Grander, D., Reed, S. I., Widschwendter, M., Sangfelt, O., & Spruck, C. (2007). FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Research, 67, 9006–9012.CrossRefPubMed Akhoondi, S., Sun, D., von der Lehr, N., Apostolidou, S., Klotz, K., Maljukova, A., Cepeda, D., Fiegl, H., Dofou, D., Marth, C., Mueller-Holzner, E., Corcoran, M., Dagnell, M., Nejad, S. Z., Nayer, B. N., Zali, M. R., Hansson, J., Egyhazi, S., Petersson, F., Sangfelt, P., Nordgren, H., Grander, D., Reed, S. I., Widschwendter, M., Sangfelt, O., & Spruck, C. (2007). FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Research, 67, 9006–9012.CrossRefPubMed
42.
Zurück zum Zitat White, K. A., Grillo-Hill, B. K., Esquivel, M., Peralta, J., Bui, V. N., Chire, I., & Barber, D. L. (2018). β-Catenin is a pH sensor with decreased stability at higher intracellular pH. The Journal of Cell Biology, 217, 3965–3976.CrossRefPubMedPubMedCentral White, K. A., Grillo-Hill, B. K., Esquivel, M., Peralta, J., Bui, V. N., Chire, I., & Barber, D. L. (2018). β-Catenin is a pH sensor with decreased stability at higher intracellular pH. The Journal of Cell Biology, 217, 3965–3976.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Isom, D. G., Castaneda, C. A., Cannon, B. R., & Garcia-Moreno, B. (2011). Large shifts in pKa values of lysine residues buried inside a protein. Proceedings of the National Academy of Sciences of the United States of America, 108, 5260–5265.CrossRefPubMedPubMedCentral Isom, D. G., Castaneda, C. A., Cannon, B. R., & Garcia-Moreno, B. (2011). Large shifts in pKa values of lysine residues buried inside a protein. Proceedings of the National Academy of Sciences of the United States of America, 108, 5260–5265.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Castaneda, C. A., et al. (2009). Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease. Proteins, 77, 570–588.CrossRefPubMed Castaneda, C. A., et al. (2009). Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease. Proteins, 77, 570–588.CrossRefPubMed
45.
Zurück zum Zitat Fang, Y., Liu, Z., Chen, Z., Xu, X., Xiao, M., Yu, Y., Zhang, Y., Zhang, X., du, Y., Jiang, C., Zhao, Y., Wang, Y., Fan, B., Terheyden-Keighley, D., Liu, Y., Shi, L., Hui, Y., Zhang, X., Zhang, B., Feng, H., Ma, L., Zhang, Q., Jin, G., Yang, Y., Xiang, B., Liu, L., & Zhang, X. (2017). Smad5 acts as an intracellular pH messenger and maintains bioenergetic homeostasis. Cell Research, 27, 1083–1099.CrossRefPubMedPubMedCentral Fang, Y., Liu, Z., Chen, Z., Xu, X., Xiao, M., Yu, Y., Zhang, Y., Zhang, X., du, Y., Jiang, C., Zhao, Y., Wang, Y., Fan, B., Terheyden-Keighley, D., Liu, Y., Shi, L., Hui, Y., Zhang, X., Zhang, B., Feng, H., Ma, L., Zhang, Q., Jin, G., Yang, Y., Xiang, B., Liu, L., & Zhang, X. (2017). Smad5 acts as an intracellular pH messenger and maintains bioenergetic homeostasis. Cell Research, 27, 1083–1099.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Vercoulen, Y., Kondo, Y., Iwig, J. S., Janssen, A. B., White, K. A., Amini, M., Barber, D. L., Kuriyan, J., & Roose, J. P. (2017). A histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1. Elife, 6, e29002.CrossRefPubMedPubMedCentral Vercoulen, Y., Kondo, Y., Iwig, J. S., Janssen, A. B., White, K. A., Amini, M., Barber, D. L., Kuriyan, J., & Roose, J. P. (2017). A histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1. Elife, 6, e29002.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Isakoff, S. J., Engelman, J. A., Irie, H. Y., Luo, J., Brachmann, S. M., Pearline, R. V., Cantley, L. C., & Brugge, J. S. (2005). Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Research, 65, 10992–11000.CrossRefPubMed Isakoff, S. J., Engelman, J. A., Irie, H. Y., Luo, J., Brachmann, S. M., Pearline, R. V., Cantley, L. C., & Brugge, J. S. (2005). Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Research, 65, 10992–11000.CrossRefPubMed
49.
Zurück zum Zitat Huang, C. H., Mandelker, D., Gabelli, S. B., & Amzel, L. M. (2008). Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Cell Cycle, 7, 1151–1156.CrossRefPubMed Huang, C. H., Mandelker, D., Gabelli, S. B., & Amzel, L. M. (2008). Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Cell Cycle, 7, 1151–1156.CrossRefPubMed
50.
Zurück zum Zitat Mandelker, D., Gabelli, S. B., Schmidt-Kittler, O., Zhu, J., Cheong, I., Huang, C. H., Kinzler, K. W., Vogelstein, B., & Amzel, L. M. (2009). A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proceedings of the National Academy of Sciences of the United States of America, 106, 16996–17001.CrossRefPubMedPubMedCentral Mandelker, D., Gabelli, S. B., Schmidt-Kittler, O., Zhu, J., Cheong, I., Huang, C. H., Kinzler, K. W., Vogelstein, B., & Amzel, L. M. (2009). A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proceedings of the National Academy of Sciences of the United States of America, 106, 16996–17001.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Miled, N., Yan, Y., Hon, W. C., Perisic, O., Zvelebil, M., Inbar, Y., Schneidman-Duhovny, D., Wolfson, H. J., Backer, J. M., & Williams, R. L. (2007). Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science, 317, 239–242.CrossRefPubMed Miled, N., Yan, Y., Hon, W. C., Perisic, O., Zvelebil, M., Inbar, Y., Schneidman-Duhovny, D., Wolfson, H. J., Backer, J. M., & Williams, R. L. (2007). Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science, 317, 239–242.CrossRefPubMed
52.
Zurück zum Zitat Zhao, L., & Vogt, P. K. (2010). Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle, 9, 596–600.CrossRefPubMed Zhao, L., & Vogt, P. K. (2010). Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle, 9, 596–600.CrossRefPubMed
53.
Zurück zum Zitat Hatsell, S. J., Idone, V., Wolken, D. M. A., Huang, L., Kim, H. J., Wang, L., Wen, X., Nannuru, K. C., Jimenez, J., Xie, L., Das, N., Makhoul, G., Chernomorsky, R., D’Ambrosio, D., Corpina, R. A., Schoenherr, C. J., Feeley, K., Yu, P. B., Yancopoulos, G. D., Murphy, A. J., & Economides, A. N. (2015). ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Science Translational Medicine, 7, 303ra137–303ra137.CrossRefPubMedPubMedCentral Hatsell, S. J., Idone, V., Wolken, D. M. A., Huang, L., Kim, H. J., Wang, L., Wen, X., Nannuru, K. C., Jimenez, J., Xie, L., Das, N., Makhoul, G., Chernomorsky, R., D’Ambrosio, D., Corpina, R. A., Schoenherr, C. J., Feeley, K., Yu, P. B., Yancopoulos, G. D., Murphy, A. J., & Economides, A. N. (2015). ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Science Translational Medicine, 7, 303ra137–303ra137.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Haupt, J., Stanley, A., McLeod, C. M., Cosgrove, B. D., Culbert, A. L., Wang, L., Mourkioti, F., Mauck, R. L., & Shore, E. M. (2018). ACVR1R206H FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Molecular Biology of the Cell (MBoC), 30, 17–29. https://doi.org/10.1091/mbc.E18-05-0311.CrossRef Haupt, J., Stanley, A., McLeod, C. M., Cosgrove, B. D., Culbert, A. L., Wang, L., Mourkioti, F., Mauck, R. L., & Shore, E. M. (2018). ACVR1R206H FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Molecular Biology of the Cell (MBoC), 30, 17–29. https://​doi.​org/​10.​1091/​mbc.​E18-05-0311.CrossRef
55.
Zurück zum Zitat Buczkowicz, P., Hoeman, C., Rakopoulos, P., Pajovic, S., Letourneau, L., Dzamba, M., Morrison, A., Lewis, P., Bouffet, E., Bartels, U., Zuccaro, J., Agnihotri, S., Ryall, S., Barszczyk, M., Chornenkyy, Y., Bourgey, M., Bourque, G., Montpetit, A., Cordero, F., Castelo-Branco, P., Mangerel, J., Tabori, U., Ho, K. C., Huang, A., Taylor, K. R., Mackay, A., Bendel, A. E., Nazarian, J., Fangusaro, J. R., Karajannis, M. A., Zagzag, D., Foreman, N. K., Donson, A., Hegert, J. V., Smith, A., Chan, J., Lafay-Cousin, L., Dunn, S., Hukin, J., Dunham, C., Scheinemann, K., Michaud, J., Zelcer, S., Ramsay, D., Cain, J., Brennan, C., Souweidane, M. M., Jones, C., Allis, C. D., Brudno, M., Becher, O., & Hawkins, C. (2014). Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 46, 451–456.CrossRefPubMedPubMedCentral Buczkowicz, P., Hoeman, C., Rakopoulos, P., Pajovic, S., Letourneau, L., Dzamba, M., Morrison, A., Lewis, P., Bouffet, E., Bartels, U., Zuccaro, J., Agnihotri, S., Ryall, S., Barszczyk, M., Chornenkyy, Y., Bourgey, M., Bourque, G., Montpetit, A., Cordero, F., Castelo-Branco, P., Mangerel, J., Tabori, U., Ho, K. C., Huang, A., Taylor, K. R., Mackay, A., Bendel, A. E., Nazarian, J., Fangusaro, J. R., Karajannis, M. A., Zagzag, D., Foreman, N. K., Donson, A., Hegert, J. V., Smith, A., Chan, J., Lafay-Cousin, L., Dunn, S., Hukin, J., Dunham, C., Scheinemann, K., Michaud, J., Zelcer, S., Ramsay, D., Cain, J., Brennan, C., Souweidane, M. M., Jones, C., Allis, C. D., Brudno, M., Becher, O., & Hawkins, C. (2014). Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 46, 451–456.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Papadopoulos, T., Schemm, R., Grubmüller, H., & Brose, N. (2015). Lipid binding defects and perturbed synaptogenic activity of a collybistin R290H mutant that causes epilepsy and intellectual disability. The Journal of Biological Chemistry, 290, 8256–8270.CrossRefPubMedPubMedCentral Papadopoulos, T., Schemm, R., Grubmüller, H., & Brose, N. (2015). Lipid binding defects and perturbed synaptogenic activity of a collybistin R290H mutant that causes epilepsy and intellectual disability. The Journal of Biological Chemistry, 290, 8256–8270.CrossRefPubMedPubMedCentral
Metadaten
Titel
Intracellular pH dynamics and charge-changing somatic mutations in cancer
verfasst von
Katharine A. White
Kyle Kisor
Diane L. Barber
Publikationsdatum
13.04.2019
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2019
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09791-8

Weitere Artikel der Ausgabe 1-2/2019

Cancer and Metastasis Reviews 1-2/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.