Skip to main content
Erschienen in:

03.06.2020 | Original Work

Intranasal Insulin Treatment Attenuates Metabolic Distress and Early Brain Injury After Subarachnoid Hemorrhage in Mice

verfasst von: Long-Biao Xu, Hua-Dong Huang, Ming Zhao, Guo-Chong Zhu, Zhen Xu

Erschienen in: Neurocritical Care | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Background

Intranasal administration of insulin to the brain bypasses the blood brain barrier (BBB) and can increase cerebral glucose uptake and prevent energy failure. Intranasal insulin treatment has shown neuroprotective effects in multiple central nervous system (CNS) lesions, but the effects of intranasal insulin on the metabolic and pathological process of subarachnoid hemorrhage (SAH) are not clear. This study is designed to explore the effects of intranasal insulin treatment on metabolic distress and early brain injury (EBI) after experimental SAH.

Methods

SAH model was built by endovascular filament perforation method in adult male C57BL/6J mice, and then, insulin was administrated via intranasal route at 0, 24, and 48 h post-SAH. EBI was assessed according to the neurological performance, BBB damage, brain edema, neuroinflammatory reaction, and neuronal apoptosis at each time point. To evaluate metabolic conditions, microdialysis was used to continuously monitor the real-time levels of glucose, pyruvate, and lactate in interstitial fluid (ISF) in living animals. The mRNA and protein expression of glucose transporter-1 and 3 (GLUT-1 and -3) were also tested by RT-PCR and Western blot in brain after SAH.

Results

Compared to vehicle, intranasal insulin treatment promoted the relative mRNA and protein levels of GLUT-1 in SAH brain (0.98 ± 0.020 vs 0.33 ± 0.016 at 24 h, 0.91 ± 0.25 vs 0.21 ± 0.013 at 48 h and 0.94 ± 0.025 vs 0.28 ± 0.015 at 72 h in mRNA/0.96 ± 0.023 vs 0.36 ± 0.015 at 24 h, 0.91 ± 0.022 vs 0.22 ± 0.011 at 48 h and 0.95 ± 0.024 vs 0.27 ± 0.014 at 72 h in protein, n = 8/Group, p < 0.001). Similar results were also observed in GLUT-3. Intranasal insulin reduced the lactate/pyruvate ratio (LPR) and increased ISF glucose level. It also improved neurological dysfunction, BBB damage, and brain edema and attenuated the levels of pro-inflammatory cytokines as well as neuronal apoptosis after SAH.

Conclusions

The intranasal insulin treatment protects brain from EBI possibly via improving metabolic distress after SAH.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kusaka G, et al. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24(8):916–25.PubMedCrossRef Kusaka G, et al. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24(8):916–25.PubMedCrossRef
3.
Zurück zum Zitat Vespa P, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.PubMedPubMedCentralCrossRef Vespa P, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Marcoux J, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36(10):2871–7.PubMedCrossRef Marcoux J, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36(10):2871–7.PubMedCrossRef
5.
Zurück zum Zitat Stein NR, et al. Early cerebral metabolic crisis after TBI influences outcome despite adequate hemodynamic resuscitation. Neurocrit Care. 2012;17(1):49–57.PubMedCrossRef Stein NR, et al. Early cerebral metabolic crisis after TBI influences outcome despite adequate hemodynamic resuscitation. Neurocrit Care. 2012;17(1):49–57.PubMedCrossRef
6.
Zurück zum Zitat Kurtz P, et al. Anemia is associated with metabolic distress and brain tissue hypoxia after subarachnoid hemorrhage. Neurocrit Care. 2010;13(1):10–6.PubMedCrossRef Kurtz P, et al. Anemia is associated with metabolic distress and brain tissue hypoxia after subarachnoid hemorrhage. Neurocrit Care. 2010;13(1):10–6.PubMedCrossRef
7.
Zurück zum Zitat Oddo M, et al. Induced normothermia attenuates cerebral metabolic distress in patients with aneurysmal subarachnoid hemorrhage and refractory Fever. Stroke. 2009;40(5):1913–6.PubMedCrossRef Oddo M, et al. Induced normothermia attenuates cerebral metabolic distress in patients with aneurysmal subarachnoid hemorrhage and refractory Fever. Stroke. 2009;40(5):1913–6.PubMedCrossRef
8.
Zurück zum Zitat Kurtz P, et al. Systemic glucose variability predicts cerebral metabolic distress and mortality after subarachnoid hemorrhage: a retrospective observational study. Crit Care. 2014;18(3):R89.PubMedPubMedCentralCrossRef Kurtz P, et al. Systemic glucose variability predicts cerebral metabolic distress and mortality after subarachnoid hemorrhage: a retrospective observational study. Crit Care. 2014;18(3):R89.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat de Lima Oliveira M, et al. Brain metabolic crisis in traumatic brain injury: what does it mean? J Neurotrauma. 2014;31(20):1750–1.PubMedCrossRef de Lima Oliveira M, et al. Brain metabolic crisis in traumatic brain injury: what does it mean? J Neurotrauma. 2014;31(20):1750–1.PubMedCrossRef
10.
Zurück zum Zitat Schulingkamp RJ, et al. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24(8):855–72.PubMedCrossRef Schulingkamp RJ, et al. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24(8):855–72.PubMedCrossRef
11.
Zurück zum Zitat Plum L, Schubert M, Bruning JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16(2):59–65.PubMedCrossRef Plum L, Schubert M, Bruning JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16(2):59–65.PubMedCrossRef
12.
Zurück zum Zitat Cashion MF, Banks WA, Kastin AJ. Sequestration of centrally administered insulin by the brain: effects of starvation, aluminum, and TNF-alpha. Horm Behav. 1996;30(3):280–6.PubMedCrossRef Cashion MF, Banks WA, Kastin AJ. Sequestration of centrally administered insulin by the brain: effects of starvation, aluminum, and TNF-alpha. Horm Behav. 1996;30(3):280–6.PubMedCrossRef
13.
Zurück zum Zitat Thorne RG, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.PubMedCrossRef Thorne RG, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.PubMedCrossRef
14.
Zurück zum Zitat Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.PubMedCrossRef Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.PubMedCrossRef
15.
Zurück zum Zitat Lochhead JJ, et al. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 2015;35(3):371–81.PubMedCrossRef Lochhead JJ, et al. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 2015;35(3):371–81.PubMedCrossRef
16.
Zurück zum Zitat Reger MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–31.PubMedPubMedCentralCrossRef Reger MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–31.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Pang Y, et al. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience. 2016;318:157–65.PubMedPubMedCentralCrossRef Pang Y, et al. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience. 2016;318:157–65.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Chen Y, et al. Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Abeta level and microglia activation in the brains of 3xTg-AD mice. Exp Neurol. 2014;261:610–9.PubMedCrossRef Chen Y, et al. Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Abeta level and microglia activation in the brains of 3xTg-AD mice. Exp Neurol. 2014;261:610–9.PubMedCrossRef
19.
Zurück zum Zitat Brabazon F, et al. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(9):3203–18.PubMedPubMedCentralCrossRef Brabazon F, et al. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(9):3203–18.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Lioutas VA, et al. Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res. 2015;6(4):264–75.PubMedPubMedCentralCrossRef Lioutas VA, et al. Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res. 2015;6(4):264–75.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Hasegawa Y, et al. Preservation of tropomyosin-related kinase B (TrkB) signaling by sodium orthovanadate attenuates early brain injury after subarachnoid hemorrhage in rats. Stroke. 2011;42(2):477–83.PubMedCrossRef Hasegawa Y, et al. Preservation of tropomyosin-related kinase B (TrkB) signaling by sodium orthovanadate attenuates early brain injury after subarachnoid hemorrhage in rats. Stroke. 2011;42(2):477–83.PubMedCrossRef
22.
Zurück zum Zitat Sugawara T, et al. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34.PubMedCrossRef Sugawara T, et al. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34.PubMedCrossRef
23.
Zurück zum Zitat Quintard H, et al. Improvement of neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. J Neurotrauma. 2016;33(7):681–7.PubMedPubMedCentralCrossRef Quintard H, et al. Improvement of neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. J Neurotrauma. 2016;33(7):681–7.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Yan EB, et al. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation. 2011;8:147–8.PubMedPubMedCentralCrossRef Yan EB, et al. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation. 2011;8:147–8.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Marks DR, et al. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci. 2009;29(20):6734–51.PubMedPubMedCentralCrossRef Marks DR, et al. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci. 2009;29(20):6734–51.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Chen Y, et al. Intranasal insulin prevents anesthesia-induced cognitive impairment and chronic neurobehavioral changes. Front Aging Neurosci. 2017;9:136.PubMedPubMedCentralCrossRef Chen Y, et al. Intranasal insulin prevents anesthesia-induced cognitive impairment and chronic neurobehavioral changes. Front Aging Neurosci. 2017;9:136.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Garcia JH et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke, 1995. 26(4): p. 627–34; discussion 635. Garcia JH et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke, 1995. 26(4): p. 627–34; discussion 635.
28.
Zurück zum Zitat Roof RL, et al. Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective. Exp Neurol. 1996;138(2):246–51.PubMedCrossRef Roof RL, et al. Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective. Exp Neurol. 1996;138(2):246–51.PubMedCrossRef
29.
Zurück zum Zitat Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28(4):399–414.PubMedCrossRef Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28(4):399–414.PubMedCrossRef
31.
Zurück zum Zitat Keep RF, et al. Ischemia-induced endothelial cell dysfunction. Acta Neurochir Suppl. 2005;95:399–402.PubMedCrossRef Keep RF, et al. Ischemia-induced endothelial cell dysfunction. Acta Neurochir Suppl. 2005;95:399–402.PubMedCrossRef
32.
Zurück zum Zitat Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007;27(11):1766–91.PubMedPubMedCentralCrossRef Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007;27(11):1766–91.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Bonkowski D, et al. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011;8(1):8.PubMedPubMedCentralCrossRef Bonkowski D, et al. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011;8(1):8.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23.PubMedCrossRef Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23.PubMedCrossRef
35.
Zurück zum Zitat Devraj K, et al. GLUT-1 glucose transporters in the blood-brain barrier: differential phosphorylation. J Neurosci Res. 2011;89(12):1913–25.PubMedCrossRef Devraj K, et al. GLUT-1 glucose transporters in the blood-brain barrier: differential phosphorylation. J Neurosci Res. 2011;89(12):1913–25.PubMedCrossRef
36.
Zurück zum Zitat Castro V, et al. Occludin regulates glucose uptake and ATP production in pericytes by influencing AMP-activated protein kinase activity. J Cereb Blood Flow Metab. 2018;38(2):317–32.PubMedCrossRef Castro V, et al. Occludin regulates glucose uptake and ATP production in pericytes by influencing AMP-activated protein kinase activity. J Cereb Blood Flow Metab. 2018;38(2):317–32.PubMedCrossRef
37.
Zurück zum Zitat Szablewski L. Glucose transporters in brain: in health and in Alzheimer’s disease. J Alzheimers Dis. 2017;55(4):1307–20.PubMedCrossRef Szablewski L. Glucose transporters in brain: in health and in Alzheimer’s disease. J Alzheimers Dis. 2017;55(4):1307–20.PubMedCrossRef
38.
Zurück zum Zitat Schlenk F, et al. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2008;34(7):1200–7.PubMedCrossRef Schlenk F, et al. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2008;34(7):1200–7.PubMedCrossRef
39.
Zurück zum Zitat Oertel MF, et al. Cerebral energy failure after subarachnoid hemorrhage: the role of relative hyperglycolysis. J Clin Neurosci. 2007;14(10):948–54.PubMedCrossRef Oertel MF, et al. Cerebral energy failure after subarachnoid hemorrhage: the role of relative hyperglycolysis. J Clin Neurosci. 2007;14(10):948–54.PubMedCrossRef
40.
Zurück zum Zitat Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986;83(4):1140–4.PubMedPubMedCentralCrossRef Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986;83(4):1140–4.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Fox PT, et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241(4864):462–4.PubMedCrossRef Fox PT, et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241(4864):462–4.PubMedCrossRef
42.
Zurück zum Zitat Park CR, et al. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav. 2000;68(4):509–14.PubMedCrossRef Park CR, et al. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav. 2000;68(4):509–14.PubMedCrossRef
43.
Zurück zum Zitat de la Monte SM. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv. 2013;10(12):1699–709.PubMedPubMedCentralCrossRef de la Monte SM. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv. 2013;10(12):1699–709.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Huang CC, Lee CC, Hsu KS. An investigation into signal transduction mechanisms involved in insulin-induced long-term depression in the CA1 region of the hippocampus. J Neurochem. 2004;89(1):217–31.PubMedCrossRef Huang CC, Lee CC, Hsu KS. An investigation into signal transduction mechanisms involved in insulin-induced long-term depression in the CA1 region of the hippocampus. J Neurochem. 2004;89(1):217–31.PubMedCrossRef
45.
Zurück zum Zitat Ahmadian G, et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 2004;23(5):1040–50.PubMedPubMedCentralCrossRef Ahmadian G, et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 2004;23(5):1040–50.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Yu Q, et al. Intranasal insulin increases synaptic protein expression and prevents anesthesia-induced cognitive deficits through mTOR-eEF2 pathway. J Alzheimers Dis. 2019;70(3):925–36.PubMedCrossRef Yu Q, et al. Intranasal insulin increases synaptic protein expression and prevents anesthesia-induced cognitive deficits through mTOR-eEF2 pathway. J Alzheimers Dis. 2019;70(3):925–36.PubMedCrossRef
47.
Zurück zum Zitat Dandona P, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab. 2001;86(7):3257–65.PubMed Dandona P, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab. 2001;86(7):3257–65.PubMed
48.
Zurück zum Zitat Aljada A, et al. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab. 2002;87(3):1419–22.PubMedCrossRef Aljada A, et al. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab. 2002;87(3):1419–22.PubMedCrossRef
49.
Zurück zum Zitat Spielman LJ, et al. Insulin modulates in vitro secretion of cytokines and cytotoxins by human glial cells. Curr Alzheimer Res. 2015;12(7):684–93.PubMedCrossRef Spielman LJ, et al. Insulin modulates in vitro secretion of cytokines and cytotoxins by human glial cells. Curr Alzheimer Res. 2015;12(7):684–93.PubMedCrossRef
50.
Zurück zum Zitat D’Souza R, et al. Insulin gel as an alternate to parenteral insulin: formulation, preclinical, and clinical studies. AAPS PharmSciTech. 2005;6(2):E184–9.PubMedPubMedCentralCrossRef D’Souza R, et al. Insulin gel as an alternate to parenteral insulin: formulation, preclinical, and clinical studies. AAPS PharmSciTech. 2005;6(2):E184–9.PubMedPubMedCentralCrossRef
Metadaten
Titel
Intranasal Insulin Treatment Attenuates Metabolic Distress and Early Brain Injury After Subarachnoid Hemorrhage in Mice
verfasst von
Long-Biao Xu
Hua-Dong Huang
Ming Zhao
Guo-Chong Zhu
Zhen Xu
Publikationsdatum
03.06.2020
Verlag
Springer US
Erschienen in
Neurocritical Care / Ausgabe 1/2021
Print ISSN: 1541-6933
Elektronische ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-020-01011-4

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Einjährige Valaciclovir-Therapie schützt nicht vor Zoster-Rezidiv

Die Zoster Eye Disease Study (ZEDS) liefert gleich zwei ernüchternde Erkenntnisse: Eine einjährige Therapie mit niedrig dosiertem Valaciclovir kann weder einen Herpes zoster ophthalmicus (HZO) noch eine Post-Zoster-Neuralgie (PZN) verhindern.

MCI-Screening per Handy und Smartwatch? Könnte klappen

Handys und Smartwatches könnten niedrigschwellige Tools sein, um eine beginnende Demenz zu erfassen. In einer US-Studie ließ sich damit eine leichte kognitive Beeinträchtigung (MCI) gut nachweisen. Auch waren gerade die älteren Teilnehmenden sehr motiviert.

Welche MS-Subtypen gibt es?

Man kann Multiple Sklerose als ein Krankheitsspektrum sehen, in dem die Erkrankten unterschiedliche Phasen durchlaufen. Vielleicht gibt es aber auch klar definierbare Subtypen mit unterschiedlichen Verläufen. Auf der ACTRIMS-Tagung gab es dazu unterschiedliche Auffassungen.

Demenz-Leitlinie aktualisiert

  • 13.03.2025
  • Demenz
  • Nachrichten

Empfohlen wird jetzt auch eine Musiktherapie sowie bei unklarem diagnostischem Befund ein Tau-PET, und Depressive mit leichten kognitiven Störungen sollten eine Verhaltenstherapie erhalten – das sind einige wichtige Änderungen der aktuellen S3-Leitlinie Demenzen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.