Skip to main content
Erschienen in: Brain Structure and Function 1/2022

16.09.2021 | Methods Paper

Investigating sexual dimorphism in human brain structure by combining multiple indexes of brain morphology and source-based morphometry

verfasst von: Gianpaolo Del Mauro, Nicola Del Maschio, Simone Sulpizio, Davide Fedeli, Daniela Perani, Jubin Abutalebi

Erschienen in: Brain Structure and Function | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Abstract

Computational morphometry of magnetic resonance images represents a powerful tool for studying macroscopic differences in human brains. In the present study (N participants = 829), we combined different techniques and measures of brain morphology to investigate one of the most compelling topics in neuroscience: sexual dimorphism in human brain structure. When accounting for overall larger male brains, results showed limited sex differences in gray matter volume (GMV) and surface area. On the other hand, we found larger differences in cortical thickness, favoring both males and females, arguably as a result of region-specific differences. We also observed higher values of fractal dimension, a measure of cortical complexity, for males versus females across the four lobes. In addition, we applied source-based morphometry, an alternative method for measuring GMV based on the independent component analysis. Analyses on independent components revealed higher GMV in fronto-parietal regions, thalamus and caudate nucleus for females, and in cerebellar- temporal cortices and putamen for males, a pattern that is largely consistent with previous findings.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Amft M, Bzdok D, Laird AR, Fox PT, Schilbach L, Eickhoff SB (2015) Definition and characterization of an extended social-affective default network. Brain Struct Funct 220(2):1031–1049CrossRef Amft M, Bzdok D, Laird AR, Fox PT, Schilbach L, Eickhoff SB (2015) Definition and characterization of an extended social-affective default network. Brain Struct Funct 220(2):1031–1049CrossRef
Zurück zum Zitat Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci 107(10):4734–4739CrossRef Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci 107(10):4734–4739CrossRef
Zurück zum Zitat Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, Helmich RC, Dirkx M, Houk J, Jörntell H, Lago-Rodriguez A, Galea JM, Miall RC, Popa T, Kishore A, Verschure PFMJ, Zucca R, Herreros I (2017) Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum 16(1):203–229. https://doi.org/10.1007/s12311-016-0763-3CrossRefPubMed Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, Helmich RC, Dirkx M, Houk J, Jörntell H, Lago-Rodriguez A, Galea JM, Miall RC, Popa T, Kishore A, Verschure PFMJ, Zucca R, Herreros I (2017) Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum 16(1):203–229. https://​doi.​org/​10.​1007/​s12311-016-0763-3CrossRefPubMed
Zurück zum Zitat Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1):1–15CrossRef Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1):1–15CrossRef
Zurück zum Zitat Gaser C, Dahnke R (2016) CAT-a computational anatomy toolbox for the analysis of structural MRI data. Hbm 2016:336–348 Gaser C, Dahnke R (2016) CAT-a computational anatomy toolbox for the analysis of structural MRI data. Hbm 2016:336–348
Zurück zum Zitat Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., & Wu-Minn HCP Consortium (2013) The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80:105–124CrossRef Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., & Wu-Minn HCP Consortium (2013) The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80:105–124CrossRef
Zurück zum Zitat Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–790CrossRef Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–790CrossRef
Zurück zum Zitat Kalmanti E, Maris TG (2007) Fractal dimension as an index of brain cortical changes throughout life. Vivo 21(4):641–646 Kalmanti E, Maris TG (2007) Fractal dimension as an index of brain cortical changes throughout life. Vivo 21(4):641–646
Zurück zum Zitat Lisofsky N, Riediger M, Gallinat J, Lindenberger U, Kühn S (2016) Hormonal contraceptive use is associated with neural and affective changes in healthy young women. Neuroimage 134:597–606CrossRef Lisofsky N, Riediger M, Gallinat J, Lindenberger U, Kühn S (2016) Hormonal contraceptive use is associated with neural and affective changes in healthy young women. Neuroimage 134:597–606CrossRef
Zurück zum Zitat Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, Hackett G, Baron-Cohen S (2012) Fetal testosterone influences sexually dimorphic gray matter in the human brain. J Neurosci 32(2):674–680CrossRef Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, Hackett G, Baron-Cohen S (2012) Fetal testosterone influences sexually dimorphic gray matter in the human brain. J Neurosci 32(2):674–680CrossRef
Zurück zum Zitat Lv B, Li J, He H, Li M, Zhao M, Ai L, Wang Z (2010) Gender consistency and difference in healthy adults revealed by cortical thickness. Neuroimage 53(2):373–382CrossRef Lv B, Li J, He H, Li M, Zhao M, Ai L, Wang Z (2010) Gender consistency and difference in healthy adults revealed by cortical thickness. Neuroimage 53(2):373–382CrossRef
Zurück zum Zitat Mars RB, Neubert FX, Noonan MP, Sallet J, Toni I, Rushworth MF (2012) On the relationship between the “default mode network” and the “social brain.” Front Hum Neurosci 6:189CrossRef Mars RB, Neubert FX, Noonan MP, Sallet J, Toni I, Rushworth MF (2012) On the relationship between the “default mode network” and the “social brain.” Front Hum Neurosci 6:189CrossRef
Zurück zum Zitat McEwen BS, Milner TA (2017) Understanding the broad influence of sex hormones and sex differences in the brain. J Neurosci Res 95(1–2):24–39CrossRef McEwen BS, Milner TA (2017) Understanding the broad influence of sex hormones and sex differences in the brain. J Neurosci Res 95(1–2):24–39CrossRef
Zurück zum Zitat Neufang S, Specht K, Hausmann M, Güntürkün O, Herpertz-Dahlmann B, Fink GR, Konrad K (2009) Sex differences and the impact of steroid hormones on the developing human brain. Cereb Cortex 19(2):464–473CrossRef Neufang S, Specht K, Hausmann M, Güntürkün O, Herpertz-Dahlmann B, Fink GR, Konrad K (2009) Sex differences and the impact of steroid hormones on the developing human brain. Cereb Cortex 19(2):464–473CrossRef
Zurück zum Zitat Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):2728–2735CrossRef Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):2728–2735CrossRef
Zurück zum Zitat Peper JS, Brouwer RM, Schnack HG, van Baal GC, van Leeuwen M, van den Berg SM, Pol HEH (2009) Sex steroids and brain structure in pubertal boys and girls. Psychoneuroendocrinology 34(3):332–342CrossRef Peper JS, Brouwer RM, Schnack HG, van Baal GC, van Leeuwen M, van den Berg SM, Pol HEH (2009) Sex steroids and brain structure in pubertal boys and girls. Psychoneuroendocrinology 34(3):332–342CrossRef
Zurück zum Zitat Pletzer B, Kronbichler M, Aichhorn M, Bergmann J, Ladurner G, Kerschbaum HH (2010) Menstrual cycle and hormonal contraceptive use modulate human brain structure. Brain Res 1348:55–62CrossRef Pletzer B, Kronbichler M, Aichhorn M, Bergmann J, Ladurner G, Kerschbaum HH (2010) Menstrual cycle and hormonal contraceptive use modulate human brain structure. Brain Res 1348:55–62CrossRef
Zurück zum Zitat Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci 38:433–447CrossRef Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci 38:433–447CrossRef
Zurück zum Zitat Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci 98(2):676–682CrossRef Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci 98(2):676–682CrossRef
Zurück zum Zitat Raznahan A, Shaw P, Lalonde F, Stockman M, Wallace GL, Greenstein D, Giedd JN (2011) How does your cortex grow? J Neurosci 31(19):7174–7177CrossRef Raznahan A, Shaw P, Lalonde F, Stockman M, Wallace GL, Greenstein D, Giedd JN (2011) How does your cortex grow? J Neurosci 31(19):7174–7177CrossRef
Zurück zum Zitat Schäfer, T., & Ecker, C. (2020). fsbrain: an R package for the visualization of structural neuroimaging data. bioRxiv. Schäfer, T., & Ecker, C. (2020). fsbrain: an R package for the visualization of structural neuroimaging data. bioRxiv.
Zurück zum Zitat Segall JM, Allen EA, Jung RE, Erhardt EB, Arja SK, Kiehl K, Calhoun VD (2012) Correspondence between structure and function in the human brain at rest. Front Neuroinform 6(MARCH):1–17 Segall JM, Allen EA, Jung RE, Erhardt EB, Arja SK, Kiehl K, Calhoun VD (2012) Correspondence between structure and function in the human brain at rest. Front Neuroinform 6(MARCH):1–17
Zurück zum Zitat Sowell ER, Peterson BS, Kan E, Woods RP, Yoshii J, Bansal R, Xu D, Zhu H, Thompson PM, Toga AW (2007) Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb Cortex 17(7):1550–1560CrossRef Sowell ER, Peterson BS, Kan E, Woods RP, Yoshii J, Bansal R, Xu D, Zhu H, Thompson PM, Toga AW (2007) Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb Cortex 17(7):1550–1560CrossRef
Zurück zum Zitat Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., & Wu-Minn HCP Consortium (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79CrossRef Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., & Wu-Minn HCP Consortium (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79CrossRef
Zurück zum Zitat Vanston JE, Strother L (2017) Sex differences in the human visual system. J Neurosci Res 95(1–2):617–625CrossRef Vanston JE, Strother L (2017) Sex differences in the human visual system. J Neurosci Res 95(1–2):617–625CrossRef
Zurück zum Zitat Votinov M, Goerlich KS, Puiu AA, Smith E, Nickl-Jockschat T, Derntl B, Habel U (2021) Brain structure changes associated with sexual orientation. Sci Rep 11(1):1–10CrossRef Votinov M, Goerlich KS, Puiu AA, Smith E, Nickl-Jockschat T, Derntl B, Habel U (2021) Brain structure changes associated with sexual orientation. Sci Rep 11(1):1–10CrossRef
Zurück zum Zitat Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C, Kremen WS (2015) The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cereb Cortex 25(8):2127–2137CrossRef Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C, Kremen WS (2015) The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cereb Cortex 25(8):2127–2137CrossRef
Zurück zum Zitat Wierenga LM, Langen M, Oranje B, Durston S (2014) Unique developmental trajectories of cortical thickness and surface area. Neuroimage 87:120–126CrossRef Wierenga LM, Langen M, Oranje B, Durston S (2014) Unique developmental trajectories of cortical thickness and surface area. Neuroimage 87:120–126CrossRef
Zurück zum Zitat Wierenga, L. M., Doucet, G. E., Dima, D., Agartz, I., Aghajani, M., Akudjedu, T. N., & Wittfeld, K. (2020). Greater male than female variability in regional brain structure across the lifespan. Human brain mapping. Wierenga, L. M., Doucet, G. E., Dima, D., Agartz, I., Aghajani, M., Akudjedu, T. N., & Wittfeld, K. (2020). Greater male than female variability in regional brain structure across the lifespan. Human brain mapping.
Metadaten
Titel
Investigating sexual dimorphism in human brain structure by combining multiple indexes of brain morphology and source-based morphometry
verfasst von
Gianpaolo Del Mauro
Nicola Del Maschio
Simone Sulpizio
Davide Fedeli
Daniela Perani
Jubin Abutalebi
Publikationsdatum
16.09.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 1/2022
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02376-8

Weitere Artikel der Ausgabe 1/2022

Brain Structure and Function 1/2022 Zur Ausgabe

Letter to the Editor

Letter to the Editor

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.