Skip to main content
Erschienen in:

06.09.2024 | Original Research Article

Investigating the Influence of Covariates on Axicabtagene Ciloleucel (axi-cel) Kinetics in Patients with Non-Hodgkin’s Lymphoma

verfasst von: Magali Chartier, Simone Filosto, Thomas Peyret, Manoj Chiney, Francesca Milletti, Justin Budka, Andre Ndi, Jinghui Dong, Saran Vardhanabhuti, Daqin Mao, Stephen Duffull, Michael Dodds, Rhine Shen

Erschienen in: Clinical Pharmacokinetics | Ausgabe 9/2024

Einloggen, um Zugang zu erhalten

Abstract

Background and Objective

Axicabtagene ciloleucel (axi-cel, Yescarta) is an autologous, anti-CD19, chimeric antigen receptor (CAR) T-cell therapy approved for patients with relapsed and refractory non-Hodgkin’s lymphoma. Substantial inter-individual variability in cellular kinetics has been observed with CAR-T therapies and factors impacting CAR-T cellular kinetics remain poorly understood. This work reports a population cellular kinetic model of axi-cel in relapsed and patients with refractory non-Hodgkin’s lymphoma and investigated the impact of covariates on early and late kinetic phases of CAR-T exposure.

Methods

A population cellular kinetic model (NONMEM® version 7.4) for axi-cel was developed using data from 410 patients (2050 transgene observations) after a single intravenous infusion of 2 × 106 anti-CD19 CAR+ T cells/kg in patients with non-Hodgkin’s lymphoma (ZUMA-1, ZUMA-5, and ZUMA-7 clinical studies). A large panel of covariates was assessed to decipher the variability of CAR-T cell kinetics including patient characteristics, product characteristics, and disease types.

Results

Axi-cel cellular kinetics were well described by a piecewise model of cellular growth kinetics characterized by an exponential growth phase followed by a triphasic decline phase including a long-term persistence phase. The final cellular kinetic model retained in vitro doubling time during CAR-T cell manufacturing and total number of T cells infused as covariates impacting the duration of the growth phase, which, however, did not substantially influence maximum concentration, area under the concentration–time curve over the first 28 days, or long-term persistence. A statistically significant relationship was observed between maximum concentration and the probability to receive tocilizumab and/or corticosteroids.

Conclusions

No covariates considered in this study were found to significantly and substantially predict the exposure profile of axi-cel. Tocilizumab and steroid use were related to maximum concentration, but they were used reactively to treat toxicities that are associated with a higher maximum concentration. Further CAR-T kinetic analyses should consider additional factors to explain the observed variability in cellular kinetics or help establish a dose–exposure relationship.

Clinical Trial Registration

NCT02348216 (ZUMA-1), NCT03105336 (ZUMA-5), and NCT03391466 (ZUMA-7).
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat King AC, Orozco JS. Axicabtagene ciloleucel: the first FDA-approved CAR T-cell therapy for relapsed/refractory large B-cell lymphoma. J Adv Pract Oncol. 2019;10:878–82.PubMedPubMedCentral King AC, Orozco JS. Axicabtagene ciloleucel: the first FDA-approved CAR T-cell therapy for relapsed/refractory large B-cell lymphoma. J Adv Pract Oncol. 2019;10:878–82.PubMedPubMedCentral
3.
Zurück zum Zitat Westin JR, Kersten MJ, Salles G, Abramson JS, Schuster SJ, Locke FL, et al. Efficacy and safety of CD19-directed CAR-T cell therapies in patients with relapsed/refractory aggressive B-cell lymphomas: observations from the JULIET, ZUMA-1, and TRANSCEND trials. Am J Hematol. 2021;96:1295–312.CrossRefPubMedPubMedCentral Westin JR, Kersten MJ, Salles G, Abramson JS, Schuster SJ, Locke FL, et al. Efficacy and safety of CD19-directed CAR-T cell therapies in patients with relapsed/refractory aggressive B-cell lymphomas: observations from the JULIET, ZUMA-1, and TRANSCEND trials. Am J Hematol. 2021;96:1295–312.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 Anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther J Am Soc Gene Ther. 2017;25:285–95.CrossRef Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 Anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther J Am Soc Gene Ther. 2017;25:285–95.CrossRef
7.
Zurück zum Zitat Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.CrossRefPubMedPubMedCentral Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Jacobson CA, Chavez JC, Sehgal AR, William BM, Munoz J, Salles G, et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022;23:91–103.CrossRefPubMed Jacobson CA, Chavez JC, Sehgal AR, William BM, Munoz J, Salles G, et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022;23:91–103.CrossRefPubMed
9.
Zurück zum Zitat Locke FL, Miklos DB, Jacobson CA, Perales M-A, Kersten M-J, Oluwole OO, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 2022;386:640–54.CrossRefPubMed Locke FL, Miklos DB, Jacobson CA, Perales M-A, Kersten M-J, Oluwole OO, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 2022;386:640–54.CrossRefPubMed
10.
Zurück zum Zitat Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20:31–42.CrossRefPubMed Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20:31–42.CrossRefPubMed
11.
Zurück zum Zitat Neelapu SS, Jacobson CA, Ghobadi A, Miklos DB, Lekakis LJ, Oluwole OO, et al. 5-Year follow-up supports curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1). Blood. 2023; p. blood.2022018893. Neelapu SS, Jacobson CA, Ghobadi A, Miklos DB, Lekakis LJ, Oluwole OO, et al. 5-Year follow-up supports curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1). Blood. 2023; p. blood.2022018893.
12.
Zurück zum Zitat Westin JR, Oluwole OO, Kersten MJ, Miklos DB, Perales M-A, Ghobadi A, et al. Survival with axicabtagene ciloleucel in large B-cell lymphoma. N Engl J Med. 2023;389:148–57.CrossRefPubMed Westin JR, Oluwole OO, Kersten MJ, Miklos DB, Perales M-A, Ghobadi A, et al. Survival with axicabtagene ciloleucel in large B-cell lymphoma. N Engl J Med. 2023;389:148–57.CrossRefPubMed
13.
Zurück zum Zitat Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.CrossRefPubMedPubMedCentral Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Tallantyre EC, Evans NA, Parry-Jones J, Morgan MPG, Jones CH, Ingram W. Neurological updates: neurological complications of CAR-T therapy. J Neurol. 2021;268:1544–54.CrossRefPubMed Tallantyre EC, Evans NA, Parry-Jones J, Morgan MPG, Jones CH, Ingram W. Neurological updates: neurological complications of CAR-T therapy. J Neurol. 2021;268:1544–54.CrossRefPubMed
16.
Zurück zum Zitat US Food and Drug Administration. Center for Biologics Evaluation and Research. Considerations for the development of chimeric antigen receptor (CAR) T cell products. Draft guidance for industry. 2022. Available from: https://www.fda.gov/media/156896/download. Accessed 2 Jul 2023. US Food and Drug Administration. Center for Biologics Evaluation and Research. Considerations for the development of chimeric antigen receptor (CAR) T cell products. Draft guidance for industry. 2022. Available from: https://​www.​fda.​gov/​media/​156896/​download. Accessed 2 Jul 2023.
18.
Zurück zum Zitat Locke FL, Rossi JM, Neelapu SS, Jacobson CA, Miklos DB, Ghobadi A, et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4:4898–911.CrossRefPubMedPubMedCentral Locke FL, Rossi JM, Neelapu SS, Jacobson CA, Miklos DB, Ghobadi A, et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4:4898–911.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28:481–504.CrossRefPubMed Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28:481–504.CrossRefPubMed
20.
21.
Zurück zum Zitat Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.CrossRefPubMed Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.CrossRefPubMed
22.
Zurück zum Zitat Strati P, Ahmed S, Furqan F, Fayad LE, Lee HJ, Iyer SP, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137:3272–6.CrossRefPubMedPubMedCentral Strati P, Ahmed S, Furqan F, Fayad LE, Lee HJ, Iyer SP, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137:3272–6.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Nguyen THT, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacomet Syst Pharmacol. 2017;6:87–109.CrossRef Nguyen THT, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacomet Syst Pharmacol. 2017;6:87–109.CrossRef
24.
Zurück zum Zitat Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13:143–51.CrossRefPubMedPubMedCentral Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13:143–51.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Ogasawara K, Dodds M, Mack T, Lymp J, Dell’Aringa J, Smith J. Population cellular kinetics of lisocabtagene maraleucel, an autologous CD19-directed chimeric antigen receptor T-cell product, in patients with Rrlapsed/refractory large B-cell lymphoma. Clin Pharmacokinet. 2021;60:1621–33.CrossRefPubMedPubMedCentral Ogasawara K, Dodds M, Mack T, Lymp J, Dell’Aringa J, Smith J. Population cellular kinetics of lisocabtagene maraleucel, an autologous CD19-directed chimeric antigen receptor T-cell product, in patients with Rrlapsed/refractory large B-cell lymphoma. Clin Pharmacokinet. 2021;60:1621–33.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Singh AP, Zheng X, Lin-Schmidt X, Chen W, Carpenter TJ, Zong A, et al. Development of a quantitative relationship between CAR-affinity, antigen abundance, tumor cell depletion and CAR-T cell expansion using a multiscale systems PK-PD model. MAbs. 2020;12:1688616.CrossRefPubMed Singh AP, Zheng X, Lin-Schmidt X, Chen W, Carpenter TJ, Zong A, et al. Development of a quantitative relationship between CAR-affinity, antigen abundance, tumor cell depletion and CAR-T cell expansion using a multiscale systems PK-PD model. MAbs. 2020;12:1688616.CrossRefPubMed
28.
Zurück zum Zitat Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384:705–16.CrossRefPubMed Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384:705–16.CrossRefPubMed
29.
Zurück zum Zitat Stein AM, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, Boyer MW, et al. Tisagenlecleucel model-based cellular kinetic analysis of chimeric antigen receptor-T cells. CPT Pharmacomet Syst Pharmacol. 2019;8:285–95.CrossRef Stein AM, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, Boyer MW, et al. Tisagenlecleucel model-based cellular kinetic analysis of chimeric antigen receptor-T cells. CPT Pharmacomet Syst Pharmacol. 2019;8:285–95.CrossRef
30.
Zurück zum Zitat Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382:1331–42.CrossRefPubMedPubMedCentral Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382:1331–42.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Liu C, Ayyar VS, Zheng X, Chen W, Zheng S, Mody H, et al. Model-based cellular kinetic analysis of chimeric antigen receptor-T cells in humans. Clin Pharmacol Ther. 2021;109:716–27.CrossRefPubMed Liu C, Ayyar VS, Zheng X, Chen W, Zheng S, Mody H, et al. Model-based cellular kinetic analysis of chimeric antigen receptor-T cells in humans. Clin Pharmacol Ther. 2021;109:716–27.CrossRefPubMed
32.
Zurück zum Zitat Mu W, Long X, Cai H, Chen C, Hu G, Lou Y, et al. A model perspective explanation of the long-term sustainability of a fully human BCMA-targeting CAR (CT103A) T-cell immunotherapy. Front Pharmacol. 2022;13: 803693.CrossRefPubMedPubMedCentral Mu W, Long X, Cai H, Chen C, Hu G, Lou Y, et al. A model perspective explanation of the long-term sustainability of a fully human BCMA-targeting CAR (CT103A) T-cell immunotherapy. Front Pharmacol. 2022;13: 803693.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Zhang Y, Li J, Lou X, Chen X, Yu Z, Kang L, et al. A prospective investigation of bispecific CD19/22 CAR T cell therapy in patients with relapsed or refractory B cell non-Hodgkin lymphoma. Front Oncol. 2021;11: 664421.CrossRefPubMedPubMedCentral Zhang Y, Li J, Lou X, Chen X, Yu Z, Kang L, et al. A prospective investigation of bispecific CD19/22 CAR T cell therapy in patients with relapsed or refractory B cell non-Hodgkin lymphoma. Front Oncol. 2021;11: 664421.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Awasthi R, Pacaud L, Waldron E, Tam CS, Jäger U, Borchmann P, et al. Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv. 2020;4:560–72.CrossRefPubMedPubMedCentral Awasthi R, Pacaud L, Waldron E, Tam CS, Jäger U, Borchmann P, et al. Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv. 2020;4:560–72.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Wu LS, Su Y, Li C, Zhou W, Jackson CC, Sun Y-N, et al. Population-based cellular kinetic characterization of ciltacabtagene autoleucel in subjects with relapsed or refractory multiple myeloma. Clin Transl Sci. 2022;15:3000–11.CrossRefPubMedPubMedCentral Wu LS, Su Y, Li C, Zhou W, Jackson CC, Sun Y-N, et al. Population-based cellular kinetic characterization of ciltacabtagene autoleucel in subjects with relapsed or refractory multiple myeloma. Clin Transl Sci. 2022;15:3000–11.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Ahmed JH, Makonnen E, Bisaso RK, Mukonzo JK, Fotoohi A, Aseffa A, et al. Population pharmacokinetic, pharmacogenetic, and pharmacodynamic analysis of cyclophosphamide in Ethiopian breast cancer patients. Front Pharmacol. 2020;11:406.CrossRefPubMedPubMedCentral Ahmed JH, Makonnen E, Bisaso RK, Mukonzo JK, Fotoohi A, Aseffa A, et al. Population pharmacokinetic, pharmacogenetic, and pharmacodynamic analysis of cyclophosphamide in Ethiopian breast cancer patients. Front Pharmacol. 2020;11:406.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Mohanan E, Panetta JC, Lakshmi KM, Edison ES, Korula A, Fouzia NA, et al. Population pharmacokinetics of fludarabine in patients with aplastic anemia and Fanconi anemia undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017;52:977–83.CrossRefPubMedPubMedCentral Mohanan E, Panetta JC, Lakshmi KM, Edison ES, Korula A, Fouzia NA, et al. Population pharmacokinetics of fludarabine in patients with aplastic anemia and Fanconi anemia undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017;52:977–83.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Fabrizio VA, Boelens JJ, Mauguen A, Baggott C, Prabhu S, Egeler E, et al. Optimal fludarabine lymphodepletion is associated with improved outcomes after CAR T-cell therapy. Blood Adv. 2022;6:1961–8.CrossRefPubMedPubMedCentral Fabrizio VA, Boelens JJ, Mauguen A, Baggott C, Prabhu S, Egeler E, et al. Optimal fludarabine lymphodepletion is associated with improved outcomes after CAR T-cell therapy. Blood Adv. 2022;6:1961–8.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Liu Q, Liu Z, Wan R, Huang W. Clinical strategies for enhancing the efficacy of CAR T-cell therapy for hematological malignancies. Cancers. 2022;14:4452.CrossRefPubMedPubMedCentral Liu Q, Liu Z, Wan R, Huang W. Clinical strategies for enhancing the efficacy of CAR T-cell therapy for hematological malignancies. Cancers. 2022;14:4452.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.CrossRefPubMedPubMedCentral Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396:839–52.CrossRefPubMed Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396:839–52.CrossRefPubMed
Metadaten
Titel
Investigating the Influence of Covariates on Axicabtagene Ciloleucel (axi-cel) Kinetics in Patients with Non-Hodgkin’s Lymphoma
verfasst von
Magali Chartier
Simone Filosto
Thomas Peyret
Manoj Chiney
Francesca Milletti
Justin Budka
Andre Ndi
Jinghui Dong
Saran Vardhanabhuti
Daqin Mao
Stephen Duffull
Michael Dodds
Rhine Shen
Publikationsdatum
06.09.2024
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 9/2024
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-024-01413-z