Skip to main content
Erschienen in: Breast Cancer 2/2018

14.11.2017 | Original Article

Investigating the therapeutic potential and mechanism of curcumin in breast cancer based on RNA sequencing and bioinformatics analysis

verfasst von: Rong Wang, Jinbin Li, Yulan Zhao, Yapeng Li, Ling Yin

Erschienen in: Breast Cancer | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Breast cancer is a prevalent cancer in female. This study aims to investigate the therapeutic potential and mechanism of curcumin in breast cancer.

Methods

After cultivation, human breast cancer cells (MCF-7 cells) were treated with 0.1% (v/v) 15 µmol/ml curcumin-dimethylsulfoxide solution and 0.1% (v/v) dimethylsulfoxide, respectively, at 37 °C and 5% CO2 for 48 h. Total RNA was extracted, cDNA library was constructed, and cDNAs were amplified and sequenced. After data preprocessing, the Cufflinks software was utilized to identify differentially expressed genes (DEGs, |log2 fold change| > 0.5 and p value < 0.05). Then, functional and pathway enrichment analyses were performed through DAVID (p value < 0.05) and WebGestalt [false discovery rate (FDR) < 0.05], respectively. Furthermore, drug and disease association analyses (FDR < 0.05) were conducted through WebGestalt and DAVID, respectively. STRING was employed to construct protein–protein interaction (PPI) network (combined score > 0.4).

Results

After DEGs screening, 347 DEGs were identified. Up-regulated DEGs were enriched in 14 functions and 3 pathways, and associated with 12 drugs. Down-regulated DEGs were enriched in 14 functions and 9 pathways, and associated with 14 drugs. Moreover, 5 DEGs were associated with breast cancer, including PGAP3, MAP3K1, SERPINE1, PON2, and GSTO2. PPI network was constructed, and the top DEGs were FOS, VIM, FGF2, MAPK1, SPARC, TOMM7, PSMB10, TCEB2, SOCS1, COL4A1, UQCR11, SERPINE1, and ISG15.

Conclusion

Curcumin might have therapeutic potential in breast cancer through regulating breast cancer-related genes, including SERPINE1, PGAP3, MAP3K1, MAPK1, GSTO2, VIM, SPARC, and FGF2. However, validations are required.
Literatur
1.
2.
Zurück zum Zitat Zilli M, Grassadonia A, Tinari N, Di Giacobbe A, Gildetti S, Giampietro J, et al. Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim Biophys Acta. 2009;1795:62–81.PubMed Zilli M, Grassadonia A, Tinari N, Di Giacobbe A, Gildetti S, Giampietro J, et al. Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim Biophys Acta. 2009;1795:62–81.PubMed
3.
Zurück zum Zitat Baselga J, Cortés J, Kim S-B, Im S-A, Hegg R, Im Y-H, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.CrossRefPubMed Baselga J, Cortés J, Kim S-B, Im S-A, Hegg R, Im Y-H, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.CrossRefPubMed
4.
Zurück zum Zitat Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011;16:4567–98.CrossRefPubMed Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011;16:4567–98.CrossRefPubMed
5.
Zurück zum Zitat Ozawa H, Imaizumi A, Sumi Y, Hashimoto T, Kanai M, Makino Y, et al. Curcumin β-d-Glucuronide plays an important role to keep high levels of free-form curcumin in the blood. Biol Pharm Bull. 2017;40:1515.CrossRefPubMed Ozawa H, Imaizumi A, Sumi Y, Hashimoto T, Kanai M, Makino Y, et al. Curcumin β-d-Glucuronide plays an important role to keep high levels of free-form curcumin in the blood. Biol Pharm Bull. 2017;40:1515.CrossRefPubMed
7.
Zurück zum Zitat Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512:334–40.CrossRefPubMed Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512:334–40.CrossRefPubMed
8.
Zurück zum Zitat Nagaraju GP, Aliya S, Zafar SF, Basha R, Diaz R, El-Rayes BF. The impact of curcumin on breast cancer. Integr Biol. 2012;4:996–1007.CrossRef Nagaraju GP, Aliya S, Zafar SF, Basha R, Diaz R, El-Rayes BF. The impact of curcumin on breast cancer. Integr Biol. 2012;4:996–1007.CrossRef
9.
Zurück zum Zitat Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.CrossRefPubMedPubMedCentral Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Da Wei Huang BTS, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44–57.CrossRef Da Wei Huang BTS, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44–57.CrossRef
11.
Zurück zum Zitat Wang J, Duncan D, Shi Z, Zhang B. WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41:439. Wang J, Duncan D, Shi Z, Zhang B. WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41:439.
12.
Zurück zum Zitat Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.CrossRefPubMed Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.CrossRefPubMed
13.
Zurück zum Zitat Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Data mining in proteomics. Berlin: Springer; 2011. p. 291–303. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Data mining in proteomics. Berlin: Springer; 2011. p. 291–303.
14.
Zurück zum Zitat Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121:2750–67.CrossRefPubMedPubMedCentral Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121:2750–67.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL. TGFβ/TNFα-mediated epithelial–mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Can Res. 2011;71:4707–19.CrossRef Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL. TGFβ/TNFα-mediated epithelial–mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Can Res. 2011;71:4707–19.CrossRef
16.
Zurück zum Zitat Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–4.PubMedPubMedCentral Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–4.PubMedPubMedCentral
17.
Zurück zum Zitat Zhang B, Zhao Y, Zhu J. Global gene regulatory and protein interaction networks in breast cancer metastasis. Cancer Res. 2013;73:A81.CrossRef Zhang B, Zhao Y, Zhu J. Global gene regulatory and protein interaction networks in breast cancer metastasis. Cancer Res. 2013;73:A81.CrossRef
18.
Zurück zum Zitat Izrailit J, Berman HK, Datti A, Wrana JL, Reedijk M. High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGFβ pathways as fundamental Notch regulators in breast cancer. Proc Natl Acad Sci. 2013;110:1714–9.CrossRefPubMedPubMedCentral Izrailit J, Berman HK, Datti A, Wrana JL, Reedijk M. High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGFβ pathways as fundamental Notch regulators in breast cancer. Proc Natl Acad Sci. 2013;110:1714–9.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Masoudi M, Saadat I, Omidvari S, Saadat M. Association between N142D genetic polymorphism of GSTO2 and susceptibility to colorectal cancer. Mol Biol Rep. 2011;38:4309.CrossRefPubMed Masoudi M, Saadat I, Omidvari S, Saadat M. Association between N142D genetic polymorphism of GSTO2 and susceptibility to colorectal cancer. Mol Biol Rep. 2011;38:4309.CrossRefPubMed
20.
Zurück zum Zitat Wang Z, Qu K, Huang Z, Xu X, Zhang J, Zhang L, et al. Glutathione S-transferase O2 gene rs157077 polymorphism predicts response to transarterial chemoembolization in hepatocellular carcinoma. Tumor Biol. 2015;36:6463–9.CrossRef Wang Z, Qu K, Huang Z, Xu X, Zhang J, Zhang L, et al. Glutathione S-transferase O2 gene rs157077 polymorphism predicts response to transarterial chemoembolization in hepatocellular carcinoma. Tumor Biol. 2015;36:6463–9.CrossRef
21.
Zurück zum Zitat Pongstaporn W, Rochanawutanon M, Wilailak S, Linasamita V, Weerakiat S, Petmitr S. Genetic alterations in chromosome 10q24. 3 and glutathione S-transferase omega 2 gene polymorphism in ovarian cancer. J Exp Clin Cancer Res CR. 2006;25:107.PubMed Pongstaporn W, Rochanawutanon M, Wilailak S, Linasamita V, Weerakiat S, Petmitr S. Genetic alterations in chromosome 10q24. 3 and glutathione S-transferase omega 2 gene polymorphism in ovarian cancer. J Exp Clin Cancer Res CR. 2006;25:107.PubMed
22.
Zurück zum Zitat Masoudi M, Saadat I, Omidvari S, Saadat M. Additive effects of genetic variations of xenobiotic detoxification enzymes and DNA repair gene XRCC1 on the susceptibility to breast cancer. Breast Cancer Res Treat. 2010;120:263–5.CrossRefPubMed Masoudi M, Saadat I, Omidvari S, Saadat M. Additive effects of genetic variations of xenobiotic detoxification enzymes and DNA repair gene XRCC1 on the susceptibility to breast cancer. Breast Cancer Res Treat. 2010;120:263–5.CrossRefPubMed
23.
Zurück zum Zitat Andonova IE, Justenhoven C, Winter S, Hamann U, Baisch C, Rabstein S, et al. No evidence for glutathione S-transferases GSTA2, GSTM2, GSTO1, GSTO2, and GSTZ1 in breast cancer risk. Breast Cancer Res Treat. 2010;121:497–502.CrossRefPubMed Andonova IE, Justenhoven C, Winter S, Hamann U, Baisch C, Rabstein S, et al. No evidence for glutathione S-transferases GSTA2, GSTM2, GSTO1, GSTO2, and GSTZ1 in breast cancer risk. Breast Cancer Res Treat. 2010;121:497–502.CrossRefPubMed
24.
Zurück zum Zitat Huang C-C, Tu S-H, Lien H-H, Jeng J-Y, Huang C-S, Huang C-J, et al. Concurrent gene signatures for han chinese breast cancers. PLoS One. 2013;8:e76421.CrossRefPubMedPubMedCentral Huang C-C, Tu S-H, Lien H-H, Jeng J-Y, Huang C-S, Huang C-J, et al. Concurrent gene signatures for han chinese breast cancers. PLoS One. 2013;8:e76421.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.CrossRefPubMedPubMedCentral Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Cheng C-W, Wang H-W, Chang C-W, Chu H-W, Chen C-Y, Yu J-C, et al. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat. 2012;134:1081–93.CrossRefPubMed Cheng C-W, Wang H-W, Chang C-W, Chu H-W, Chen C-Y, Yu J-C, et al. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat. 2012;134:1081–93.CrossRefPubMed
27.
Zurück zum Zitat Basu G, Van Vickle G, Ghazalpour A, Ashfaq R, Gatalica Z, Blevins R, et al. Frequency distribution of SPARC in triple-negative breast cancer patients. J Clin Oncol. 2011;29:s27. Basu G, Van Vickle G, Ghazalpour A, Ashfaq R, Gatalica Z, Blevins R, et al. Frequency distribution of SPARC in triple-negative breast cancer patients. J Clin Oncol. 2011;29:s27.
28.
Zurück zum Zitat Guillardoy T, Gorostiaga MA, Lanari C, Giulianelli S. FGF-2 stimulates breast cancer growth activating ER and PR. Mol Cancer Res. 2013;11:A006.CrossRef Guillardoy T, Gorostiaga MA, Lanari C, Giulianelli S. FGF-2 stimulates breast cancer growth activating ER and PR. Mol Cancer Res. 2013;11:A006.CrossRef
Metadaten
Titel
Investigating the therapeutic potential and mechanism of curcumin in breast cancer based on RNA sequencing and bioinformatics analysis
verfasst von
Rong Wang
Jinbin Li
Yulan Zhao
Yapeng Li
Ling Yin
Publikationsdatum
14.11.2017
Verlag
Springer Japan
Erschienen in
Breast Cancer / Ausgabe 2/2018
Print ISSN: 1340-6868
Elektronische ISSN: 1880-4233
DOI
https://doi.org/10.1007/s12282-017-0816-6

Weitere Artikel der Ausgabe 2/2018

Breast Cancer 2/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.