Skip to main content
Erschienen in: Inflammation 2/2020

27.11.2019 | Original Article

Investigation of Modulatory Effect of Pinolenic Acid (PNA) on Inflammatory Responses in Human THP-1 Macrophage-Like Cell and Mouse Models

verfasst von: Szu-Jung Chen, Wen-Cheng Huang, Hung-Jing Shen, Ruei-Yu Chen, Hsiang Chang, Yun-Shan Ho, Po-Jung Tsai, Lu-Te Chuang

Erschienen in: Inflammation | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Pinolenic acid (PNA) is a rare n-6 polyunsaturated fatty acid (n-6 PUFA) originally identified in pine seeds. Previous studies demonstrated that PNA and its elongation metabolite, Δ7-eicosatrienoic acid (Δ7-ETrA), exerted an anti-inflammatory effect in cultured cells by suppressing prostaglandin E2 (PGE2) production. The objective of this study was to further examine the in vivo anti-inflammatory properties of PNA. Using human THP-1 macrophage, we first confirmed that incorporation of PNA into cellular phospholipids suppressed the production of interleukin-6 (IL-6) (by 46%), tumor necrosis factor-α (TNF-α) (by 18%), and prostaglandin E2 (PGE2) (by 87%), and the expression of type-2 cyclooxygenase (COX-2) (by 27%). Furthermore, we demonstrated that injection of PNA or Δ7-ETrA suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, as measured by ear thickness (by 15%) and biopsy weight (by up to 29%). Both PUFA also lowered proportions of infiltrated leukocytes, neutrophils, and macrophages using flow cytometric analysis. Topical application of PNA or Δ7-ETrA on mouse back skin suppressed TPA-induced pro-inflammatory mediator production, including IL-1β, IL-6, TNF-α, and PGE2, as well as the phosphorylation of p38- and JNK-mitogen-activated protein kinase (MAPK), but not that of ERK-MAPK. That no PNA or Δ7-ETrA was detected in the ear disc after the PUFA injection suggests that their anti-inflammatory effect might not be due to fatty acid incorporation, but to modulation of cell signaling. In conclusion, PNA and Δ7-ETrA exerted the in vivo anti-inflammatory effect by suppressing mouse ear edema and dorsal skin inflammation.
Literatur
1.
Zurück zum Zitat Sugano, M., I. Ikeda, K. Wakamatsu, and Y. Oka. 1994. Influence of Korean pine (Pinus koraiensis)-seed oil containing cis-5, cis-9, cis-12-octadecatrienoic acid on polyunsaturated fatty acid metabolism, eicosanoid production and blood pressure. British Journal of Nutrition 72: 775–783.CrossRef Sugano, M., I. Ikeda, K. Wakamatsu, and Y. Oka. 1994. Influence of Korean pine (Pinus koraiensis)-seed oil containing cis-5, cis-9, cis-12-octadecatrienoic acid on polyunsaturated fatty acid metabolism, eicosanoid production and blood pressure. British Journal of Nutrition 72: 775–783.CrossRef
2.
Zurück zum Zitat Wolff, R.L., O. Lavialle, F. Pédrono, E. Pasquier, L.G. Deluc, A.M. Marpeau, and K. Aitzetmüller. 2001. Fatty acid composition of Pinaceae as taxonomic markers. Lipids 36: 439–451.CrossRef Wolff, R.L., O. Lavialle, F. Pédrono, E. Pasquier, L.G. Deluc, A.M. Marpeau, and K. Aitzetmüller. 2001. Fatty acid composition of Pinaceae as taxonomic markers. Lipids 36: 439–451.CrossRef
3.
Zurück zum Zitat Wolff, R.L., W.W. Christie, F. Pédrono, and A.M. Marpeau. 1999. Arachidonic, eicosapentaenoic, and biosynthetically related fatty acids in the seed lipids from a primitive gymnosperm, Agathis robusta. Lipids 34: 1083–1097.CrossRef Wolff, R.L., W.W. Christie, F. Pédrono, and A.M. Marpeau. 1999. Arachidonic, eicosapentaenoic, and biosynthetically related fatty acids in the seed lipids from a primitive gymnosperm, Agathis robusta. Lipids 34: 1083–1097.CrossRef
4.
Zurück zum Zitat Leonard, A.E., B. Kelder, E.G. Bobik, L.-T. Chuang, J.M. Parker-Barnes, J.M. Thurmond, P.E. Kroeger, J.J. Kopchick, Y.-S. Huang, and P. Mukerji. 2000. cDNA cloning and characterization of human ∆5-desaturase involved in the biosynthesis of arachidonic acid. Biochemical Journal 347: 719–724.CrossRef Leonard, A.E., B. Kelder, E.G. Bobik, L.-T. Chuang, J.M. Parker-Barnes, J.M. Thurmond, P.E. Kroeger, J.J. Kopchick, Y.-S. Huang, and P. Mukerji. 2000. cDNA cloning and characterization of human ∆5-desaturase involved in the biosynthesis of arachidonic acid. Biochemical Journal 347: 719–724.CrossRef
5.
Zurück zum Zitat Innes, J.K., and P.C. Calder. 2018. Omega-6 fatty acids and inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids 132: 41–48.CrossRef Innes, J.K., and P.C. Calder. 2018. Omega-6 fatty acids and inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids 132: 41–48.CrossRef
6.
Zurück zum Zitat Tanaka, T., T. Takimoto, J.-I. Morishige, Y. Kikuta, T. Sugiura, and K. Satouchi. 1999. Non-methylene-interrupted polyunsaturated fatty acids: Effective substitutes for arachidonate of phosphatidylinositol. Biochemical and Biophysical Research Communication 264: 683–688.CrossRef Tanaka, T., T. Takimoto, J.-I. Morishige, Y. Kikuta, T. Sugiura, and K. Satouchi. 1999. Non-methylene-interrupted polyunsaturated fatty acids: Effective substitutes for arachidonate of phosphatidylinositol. Biochemical and Biophysical Research Communication 264: 683–688.CrossRef
7.
Zurück zum Zitat Chuang, L.-T., P.-J. Tsai, C.-L. Lee, and Y.-S. Huang. 2009. Uptake and incorporation of pinolenic acid reduces n-6 polyunsaturated fatty acid and downstream prostaglandin formation in murine macrophage. Lipids 44: 217–224.CrossRef Chuang, L.-T., P.-J. Tsai, C.-L. Lee, and Y.-S. Huang. 2009. Uptake and incorporation of pinolenic acid reduces n-6 polyunsaturated fatty acid and downstream prostaglandin formation in murine macrophage. Lipids 44: 217–224.CrossRef
8.
Zurück zum Zitat Huang, W.-C., P.-J. Tsai, Y.-L. Huang, S.-N. Chen, and L.-T. Chuang. 2014. PGE2 production suppressed by chemically-synthesized Δ7-eicosatrienoic acid in macrophages through the competitive inhibition of COX-2. Food and Chemical Toxicology 66: 122–133.CrossRef Huang, W.-C., P.-J. Tsai, Y.-L. Huang, S.-N. Chen, and L.-T. Chuang. 2014. PGE2 production suppressed by chemically-synthesized Δ7-eicosatrienoic acid in macrophages through the competitive inhibition of COX-2. Food and Chemical Toxicology 66: 122–133.CrossRef
9.
Zurück zum Zitat Chen, S.-J., C.-P. Hsu, C.-W. Li, J.-H. Lu, and L.-T. Chuang. 2011. Pinolenic acid inhibits human breast cancer MDA-MB-231 cell metastasis in vitro. Food Chemistry 126: 1708–1715.CrossRef Chen, S.-J., C.-P. Hsu, C.-W. Li, J.-H. Lu, and L.-T. Chuang. 2011. Pinolenic acid inhibits human breast cancer MDA-MB-231 cell metastasis in vitro. Food Chemistry 126: 1708–1715.CrossRef
10.
Zurück zum Zitat Chen, S.-J., L.-T. Chuang, J.-S. Liao, W.-C. Huang, and H.-H. Lin. 2015. Phospholipid incorporation of non-methylene-interrupted fatty acids (NMIFA) in murine microglial BV-2 cells reduces pro-inflammatory mediator production. Inflammation 38: 2133–2145.CrossRef Chen, S.-J., L.-T. Chuang, J.-S. Liao, W.-C. Huang, and H.-H. Lin. 2015. Phospholipid incorporation of non-methylene-interrupted fatty acids (NMIFA) in murine microglial BV-2 cells reduces pro-inflammatory mediator production. Inflammation 38: 2133–2145.CrossRef
11.
Zurück zum Zitat Tanaka, T., T. Hattori, M. Kouchi, K. Hirano, and K. Satouchi. 1998. Non-methylene-interrupted polyenoic fatty acids: Structural characterization and metabolism by fatty acid chain elongation system in rat liver. In Essential fatty acids and eicosanoids, ed. R.A. Tiemersma, R. Armstrong, R.W. Kelly, and R. Wilson, 229–233. Champaign: American Oil Chemists’ Society Press. Tanaka, T., T. Hattori, M. Kouchi, K. Hirano, and K. Satouchi. 1998. Non-methylene-interrupted polyenoic fatty acids: Structural characterization and metabolism by fatty acid chain elongation system in rat liver. In Essential fatty acids and eicosanoids, ed. R.A. Tiemersma, R. Armstrong, R.W. Kelly, and R. Wilson, 229–233. Champaign: American Oil Chemists’ Society Press.
12.
Zurück zum Zitat Pasquier, E., W.M. Ratnayake, and R.L. Wolff. 2001. Effects of delta5 polyunsaturated fatty acids of maritime pine (Pinus pinaster) seed oil on the fatty acid profile of the developing brain of rats. Lipids 36: 567–574.CrossRef Pasquier, E., W.M. Ratnayake, and R.L. Wolff. 2001. Effects of delta5 polyunsaturated fatty acids of maritime pine (Pinus pinaster) seed oil on the fatty acid profile of the developing brain of rats. Lipids 36: 567–574.CrossRef
13.
Zurück zum Zitat Folch, J., M. Lees, and G.H. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226: 497–509.PubMed Folch, J., M. Lees, and G.H. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226: 497–509.PubMed
14.
Zurück zum Zitat Robertson, F.M., M.S. Ross, K.L. Tober, B.W. Long, and T.M. Oberyszyn. 1996. Inhibition of pro-inflammatory cytokine gene expression and papilloma growth during murine multistage carcinogenesis by pentoxifylline. Carcinogenesis 17: 1719–1728.CrossRef Robertson, F.M., M.S. Ross, K.L. Tober, B.W. Long, and T.M. Oberyszyn. 1996. Inhibition of pro-inflammatory cytokine gene expression and papilloma growth during murine multistage carcinogenesis by pentoxifylline. Carcinogenesis 17: 1719–1728.CrossRef
15.
Zurück zum Zitat Huang, W.-C., T.-H. Tsai, C.-J. Huang, Y.-Y. Li, J.-H. Chyuan, L.-T. Chuang, and P.-J. Tsai. 2015. Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food and Function 6: 2550–2560.CrossRef Huang, W.-C., T.-H. Tsai, C.-J. Huang, Y.-Y. Li, J.-H. Chyuan, L.-T. Chuang, and P.-J. Tsai. 2015. Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food and Function 6: 2550–2560.CrossRef
16.
Zurück zum Zitat Tsai, P.-J., W.-C. Huang, M.-C. Hsieh, P.-J. Sung, Y.-H. Kuo, and W.-H. Wu. 2016. Flavones isolated from Scutellariae radix suppress Propionibacterium acnes-induced cytokine production in vitro and in vivo. Molecules 21: 15.CrossRef Tsai, P.-J., W.-C. Huang, M.-C. Hsieh, P.-J. Sung, Y.-H. Kuo, and W.-H. Wu. 2016. Flavones isolated from Scutellariae radix suppress Propionibacterium acnes-induced cytokine production in vitro and in vivo. Molecules 21: 15.CrossRef
17.
Zurück zum Zitat Das, U.N., M.E. Begin, and G. Ells. 1992. Fatty acid changes during the induction of differentiation of human promyelocytic leukemia (HL-60) cells by phorbolmyristate acetate. Prostaglandins, Leukotrienes and Essential Fatty Acids 146: 235–239.CrossRef Das, U.N., M.E. Begin, and G. Ells. 1992. Fatty acid changes during the induction of differentiation of human promyelocytic leukemia (HL-60) cells by phorbolmyristate acetate. Prostaglandins, Leukotrienes and Essential Fatty Acids 146: 235–239.CrossRef
18.
Zurück zum Zitat Horrobin, D.F. 1993. Fatty acid metabolism in health and disease: The role of delta-6-desaturase. American Journal of Clinical Nutrition 57: 732S–736S.CrossRef Horrobin, D.F. 1993. Fatty acid metabolism in health and disease: The role of delta-6-desaturase. American Journal of Clinical Nutrition 57: 732S–736S.CrossRef
19.
Zurück zum Zitat Wong, S.W., M.J. Kwon, A.M. Choi, H.P. Kim, K. Nakahira, and D.H. Hwang. 2009. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. Journal of Biological Chemistry 284: 27384–27392.CrossRef Wong, S.W., M.J. Kwon, A.M. Choi, H.P. Kim, K. Nakahira, and D.H. Hwang. 2009. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. Journal of Biological Chemistry 284: 27384–27392.CrossRef
20.
Zurück zum Zitat Kim, W., N.A. Khan, D.N. McMurray, I.A. Prior, N. Wang, and R.S. Chapkin. 2010. Regulatory activity of polyunsaturated fatty acids in T-cell signaling. Progress in Lipid Research 49: 250–261.CrossRef Kim, W., N.A. Khan, D.N. McMurray, I.A. Prior, N. Wang, and R.S. Chapkin. 2010. Regulatory activity of polyunsaturated fatty acids in T-cell signaling. Progress in Lipid Research 49: 250–261.CrossRef
21.
Zurück zum Zitat Tsai, P.-J., W.-C. Huang, S.-W. Lin, S.-N. Chen, H.-J. Shen, H. Chang, and L.-T. Chuang. 2018. Juniperonic acid incorporation into the phospholipids of murine macrophage cells modulates pro-inflammatory mediator production. Inflammation 41: 1200–1214.CrossRef Tsai, P.-J., W.-C. Huang, S.-W. Lin, S.-N. Chen, H.-J. Shen, H. Chang, and L.-T. Chuang. 2018. Juniperonic acid incorporation into the phospholipids of murine macrophage cells modulates pro-inflammatory mediator production. Inflammation 41: 1200–1214.CrossRef
22.
Zurück zum Zitat Monmai, C., S.H. Go, I.S. Shin, S.G. You, H. Lee, S.B. Kang, and W.J. Park. 2018. Immune-enhancement and anti-inflammatory activities of fatty acids extracted from Halocynthia aurantium tunic in RAW264.7 cells. Marine Drugs 16: E309.CrossRef Monmai, C., S.H. Go, I.S. Shin, S.G. You, H. Lee, S.B. Kang, and W.J. Park. 2018. Immune-enhancement and anti-inflammatory activities of fatty acids extracted from Halocynthia aurantium tunic in RAW264.7 cells. Marine Drugs 16: E309.CrossRef
23.
Zurück zum Zitat McDaniel, J.C., K. Massey, and A. Nicolaou. 2011. Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds. Wound Repair and Regeneration 19: 189–200.CrossRef McDaniel, J.C., K. Massey, and A. Nicolaou. 2011. Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds. Wound Repair and Regeneration 19: 189–200.CrossRef
24.
Zurück zum Zitat Raederstorff, D., M. Pantze, H. Bachmann, and U. Moser. 1996. Anti-inflammatory properties of docosahexaenoic and eicosapentaenoic acids in phorbol-ester-induced mouse ear inflammation. International Archives of Allergy and Immunology 111: 284–290.CrossRef Raederstorff, D., M. Pantze, H. Bachmann, and U. Moser. 1996. Anti-inflammatory properties of docosahexaenoic and eicosapentaenoic acids in phorbol-ester-induced mouse ear inflammation. International Archives of Allergy and Immunology 111: 284–290.CrossRef
25.
Zurück zum Zitat Hwang, J.K., H.N. Yu, E.M. Noh, J.M. Kim, O.Y. Hong, H.J. Youn, S.H. Jung, K.B. Kwon, J.S. Kim, and Y.R. Lee. 2017. DHA blocks TPA-induced cell invasion by inhibiting MMP-9 expression via suppression of the PPAR-γ/NF-κB pathway in MCF-7 cells. Oncology Letters 13: 243–249.CrossRef Hwang, J.K., H.N. Yu, E.M. Noh, J.M. Kim, O.Y. Hong, H.J. Youn, S.H. Jung, K.B. Kwon, J.S. Kim, and Y.R. Lee. 2017. DHA blocks TPA-induced cell invasion by inhibiting MMP-9 expression via suppression of the PPAR-γ/NF-κB pathway in MCF-7 cells. Oncology Letters 13: 243–249.CrossRef
26.
Zurück zum Zitat Ibrahim, A., K. Mbodji, A. Hassan, M. Aziz, N. Boukhettala, M. Coëffier, G. Savoye, P. Déchelottec, and R. Marion-Letelliera. 2011. Anti-inflammatory and antiangiogenic effect of long-chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clinical Nutrition 30: 678–687.CrossRef Ibrahim, A., K. Mbodji, A. Hassan, M. Aziz, N. Boukhettala, M. Coëffier, G. Savoye, P. Déchelottec, and R. Marion-Letelliera. 2011. Anti-inflammatory and antiangiogenic effect of long-chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clinical Nutrition 30: 678–687.CrossRef
27.
Zurück zum Zitat Ziboh, V.A. 1996. The biological/nutritional significance of γ-linolenic acid in the epidermis: metabolism and generation of potent biological modulators. In γ-Linolenic acid: Metabolism and its roles in nutrition and medicine, ed. Y.-S. Huang and D.E. Mills, 118–128. Champaign: American Oil Chemists’ Society Press. Ziboh, V.A. 1996. The biological/nutritional significance of γ-linolenic acid in the epidermis: metabolism and generation of potent biological modulators. In γ-Linolenic acid: Metabolism and its roles in nutrition and medicine, ed. Y.-S. Huang and D.E. Mills, 118–128. Champaign: American Oil Chemists’ Society Press.
28.
Zurück zum Zitat Simon, D., P.A. Eng, S. Borelli, R. Kägi, C. Zimmermann, C. Zahner, J. Drewe, L. Hess, G. Ferrari, S. Lautenschlager, B. Wüthrich, and P. Schmid-Grendelmeier. 2014. Gamma-linolenic acid levels correlate with clinical efficacy of evening primrose oil in patients with atopic dermatitis. Advances in Therapy 31: 180–188.CrossRef Simon, D., P.A. Eng, S. Borelli, R. Kägi, C. Zimmermann, C. Zahner, J. Drewe, L. Hess, G. Ferrari, S. Lautenschlager, B. Wüthrich, and P. Schmid-Grendelmeier. 2014. Gamma-linolenic acid levels correlate with clinical efficacy of evening primrose oil in patients with atopic dermatitis. Advances in Therapy 31: 180–188.CrossRef
29.
Zurück zum Zitat Fan, F.-Y., and R.S. Chapkin. 1998. Importance of dietary γ-linolenic acid in human health and nutrition. Journal of Nutrition 128: 1411–1414.CrossRef Fan, F.-Y., and R.S. Chapkin. 1998. Importance of dietary γ-linolenic acid in human health and nutrition. Journal of Nutrition 128: 1411–1414.CrossRef
30.
Zurück zum Zitat Ziboh, V.A., S. Naguwa, K. Vang, J. Wineinger, B.M. Morrissey, M. Watnik, and M.E. Gershwin. 2004. Suppression of leukotriene B4 generation by ex-vivo neutrophils isolated from asthma patients on dietary supplementation with gammalinolenic acid-containing borage oil: possible implication in asthma. Clinical and Developmental Immunology 11: 13–21.CrossRef Ziboh, V.A., S. Naguwa, K. Vang, J. Wineinger, B.M. Morrissey, M. Watnik, and M.E. Gershwin. 2004. Suppression of leukotriene B4 generation by ex-vivo neutrophils isolated from asthma patients on dietary supplementation with gammalinolenic acid-containing borage oil: possible implication in asthma. Clinical and Developmental Immunology 11: 13–21.CrossRef
31.
Zurück zum Zitat Sergeant, S., E. Rahbar, and F.H. Chilton. 2016. Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. European Journal of Pharmacology 785: 77–86.CrossRef Sergeant, S., E. Rahbar, and F.H. Chilton. 2016. Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. European Journal of Pharmacology 785: 77–86.CrossRef
Metadaten
Titel
Investigation of Modulatory Effect of Pinolenic Acid (PNA) on Inflammatory Responses in Human THP-1 Macrophage-Like Cell and Mouse Models
verfasst von
Szu-Jung Chen
Wen-Cheng Huang
Hung-Jing Shen
Ruei-Yu Chen
Hsiang Chang
Yun-Shan Ho
Po-Jung Tsai
Lu-Te Chuang
Publikationsdatum
27.11.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01134-7

Weitere Artikel der Ausgabe 2/2020

Inflammation 2/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.