Skip to main content
Erschienen in: Inflammation 5/2016

09.07.2016 | ORIGINAL ARTICLE

Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom

verfasst von: Imene Nakib, Marie-France Martin-Eauclaire, Fatima Laraba-Djebari

Erschienen in: Inflammation | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Bot III neurotoxin is the most lethal α neurotoxin purified from Buthus occitanus tunetanus scorpion venom. This toxin binds to the voltage-gated sodium channel of excitable cells and blocks its inactivation, inducing an increased release of neurotransmitters (acetylcholine and catecholamines). This study aims to elucidate the involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response triggered by this toxin. Injection of Bot III to animals induces an increase of peroxidase activities, an imbalance of oxidative status, tissue damages in lung parenchyma, and myocardium correlated with metabolic disorders. The pretreatment with nicotine (nicotinic receptor agonist) or atropine (muscarinic receptor antagonist) protected the animals from almost all disorders caused by Bot III toxin, especially the immunological alterations. Bisoprolol administration (selective β1 adrenergic receptor antagonist) was also efficient in the protection of animals, mainly on tissue damage. Propranolol (non-selective adrenergic receptor antagonist) showed less effect. These results suggest that both cholinergic and adrenergic receptors are activated in the cardiopulmonary manifestations induced by Bot III. Indeed, the muscarinic receptor appears to be more involved than the nicotinic one, and the β1 adrenergic receptor seems to dominate the β2 receptor. These results showed also that the activation of nicotinic receptor leads to a significant protection of animals against Bot III toxin effect. These findings supply a supplementary data leading to better understanding of the mechanism triggered by scorpionic neurotoxins and suggest the use of drugs targeting these receptors, especially the nicotinic one in order to counteract the inflammatory response observed in scorpion envenomation.
Literatur
1.
Zurück zum Zitat Gueron, M., and R. Ilia. 1996. Non-cardiogenic pulmonary oedema after scorpion envenomation: a true entity? Toxicon 34(4): 393–395.CrossRefPubMed Gueron, M., and R. Ilia. 1996. Non-cardiogenic pulmonary oedema after scorpion envenomation: a true entity? Toxicon 34(4): 393–395.CrossRefPubMed
2.
Zurück zum Zitat Sofer, S., et al. 1996. Interleukin-6 release following scorpion sting in children. Toxicon 34(3): 389–392.CrossRefPubMed Sofer, S., et al. 1996. Interleukin-6 release following scorpion sting in children. Toxicon 34(3): 389–392.CrossRefPubMed
3.
Zurück zum Zitat Hammoudi-Triki, D., et al. 2007. Toxicokinetic and toxicodynamic analyses of Androctonus australis hector venom in rats: optimization of antivenom therapy. Toxicology and applied pharmacology 218(3): 205–214.CrossRefPubMed Hammoudi-Triki, D., et al. 2007. Toxicokinetic and toxicodynamic analyses of Androctonus australis hector venom in rats: optimization of antivenom therapy. Toxicology and applied pharmacology 218(3): 205–214.CrossRefPubMed
4.
Zurück zum Zitat Martin-Eauclaire, M.-F., et al. 1999. Les toxines des venins de scorpion. Annales de l’Institut Pasteur. 10: 207–222. Elsevier: France. Martin-Eauclaire, M.-F., et al. 1999. Les toxines des venins de scorpion. Annales de l’Institut Pasteur. 10: 207–222. Elsevier: France.
5.
Zurück zum Zitat Martin, M., and H. Rochat. 1984. Purification of thirteen toxins active on mice from the venom of the North African scorpion Buthus occitanus tunetanus. Toxicon 22(2): 279–291.CrossRefPubMed Martin, M., and H. Rochat. 1984. Purification of thirteen toxins active on mice from the venom of the North African scorpion Buthus occitanus tunetanus. Toxicon 22(2): 279–291.CrossRefPubMed
6.
Zurück zum Zitat Martin, M., and H. Rochat. 1986. Large scale purification of toxins from the venom of the scorpion Androctonus australis Hector. Toxicon 24(11): 1131–1139.CrossRefPubMed Martin, M., and H. Rochat. 1986. Large scale purification of toxins from the venom of the scorpion Androctonus australis Hector. Toxicon 24(11): 1131–1139.CrossRefPubMed
7.
Zurück zum Zitat Bougis, P.E., H. Rochat, and L.A. Smith. 1989. Precursors of Androctonus australis scorpion neurotoxins. Structures of precursors, processing outcomes, and expression of a functional recombinant toxin II. Journal of Biological Chemistry 264(32): 19259–19265.PubMed Bougis, P.E., H. Rochat, and L.A. Smith. 1989. Precursors of Androctonus australis scorpion neurotoxins. Structures of precursors, processing outcomes, and expression of a functional recombinant toxin II. Journal of Biological Chemistry 264(32): 19259–19265.PubMed
8.
Zurück zum Zitat Benkhadir, K., et al. 2004. Molecular cloning and functional expression of the alpha-scorpion toxin BotIII: pivotal role of the C-terminal region for its interaction with voltage-dependent sodium channels. Peptides 25(2): 151–161.CrossRefPubMed Benkhadir, K., et al. 2004. Molecular cloning and functional expression of the alpha-scorpion toxin BotIII: pivotal role of the C-terminal region for its interaction with voltage-dependent sodium channels. Peptides 25(2): 151–161.CrossRefPubMed
9.
Zurück zum Zitat Yarom, R., M. Gueron, and K. Braun. 1970. Scorpion venom cardiomyopathy. Pathobiology 35(1–3): 114–117.CrossRef Yarom, R., M. Gueron, and K. Braun. 1970. Scorpion venom cardiomyopathy. Pathobiology 35(1–3): 114–117.CrossRef
10.
Zurück zum Zitat Freire-Maia, L., and I.M. de Matos. 1993. Heparin or a PAF antagonist (BN-52021) prevents the acute pulmonary edema induced by Tityus serrulatus scorpion venom in the rat. Toxicon 31(9): 1207–1210.CrossRefPubMed Freire-Maia, L., and I.M. de Matos. 1993. Heparin or a PAF antagonist (BN-52021) prevents the acute pulmonary edema induced by Tityus serrulatus scorpion venom in the rat. Toxicon 31(9): 1207–1210.CrossRefPubMed
12.
Zurück zum Zitat de Davila, C.A.M., et al. 2002. Sympathetic nervous system activation, antivenin administration and cardiovascular manifestations of scorpion envenomation. Toxicon 40(9): 1339–1346.CrossRefPubMed de Davila, C.A.M., et al. 2002. Sympathetic nervous system activation, antivenin administration and cardiovascular manifestations of scorpion envenomation. Toxicon 40(9): 1339–1346.CrossRefPubMed
13.
Zurück zum Zitat Van Oosterhout, A., et al. 1996. Role of interleukin-5 and substance P in development of airway hyperreactivity to histamine in guinea-pigs. European Respiratory Journal 9(3): 493–499.CrossRefPubMed Van Oosterhout, A., et al. 1996. Role of interleukin-5 and substance P in development of airway hyperreactivity to histamine in guinea-pigs. European Respiratory Journal 9(3): 493–499.CrossRefPubMed
14.
Zurück zum Zitat Bertazzi, D.T., et al. 2003. Effect of Tityus serrulatus scorpion venom and its major toxin, TsTX-I, on the complement system in vivo. Toxicon 41(4): 501–508.CrossRefPubMed Bertazzi, D.T., et al. 2003. Effect of Tityus serrulatus scorpion venom and its major toxin, TsTX-I, on the complement system in vivo. Toxicon 41(4): 501–508.CrossRefPubMed
15.
Zurück zum Zitat Ergün, Y., et al. 2011. Evaluation of nitrite/nitrate levels in relation to oxidative stress parameters in liver cirrhosis. Clinics and Research in Hepatology and Gastroenterology 35(4): 303–308.CrossRefPubMed Ergün, Y., et al. 2011. Evaluation of nitrite/nitrate levels in relation to oxidative stress parameters in liver cirrhosis. Clinics and Research in Hepatology and Gastroenterology 35(4): 303–308.CrossRefPubMed
16.
Zurück zum Zitat Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95(2): 351–358.CrossRefPubMed Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95(2): 351–358.CrossRefPubMed
18.
Zurück zum Zitat Sami-Merah, S., et al. 2008. Combination of two antibody fragments F (ab’) 2/Fab: An alternative for scorpion envenoming treatment. International Immunopharmacology 8(10): 1386–1394.CrossRefPubMed Sami-Merah, S., et al. 2008. Combination of two antibody fragments F (ab’) 2/Fab: An alternative for scorpion envenoming treatment. International Immunopharmacology 8(10): 1386–1394.CrossRefPubMed
19.
Zurück zum Zitat Raouraoua-Boukari, R., et al. 2012. Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions. Neuroimmunomodulation 19(2): 103–110.CrossRefPubMed Raouraoua-Boukari, R., et al. 2012. Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions. Neuroimmunomodulation 19(2): 103–110.CrossRefPubMed
20.
Zurück zum Zitat Adi-Bessalem, S., et al. 2012. Lung immunoreactivity and airway inflammation: Their assessment after scorpion envenomation. Inflammation 35(2): 501–508.CrossRefPubMed Adi-Bessalem, S., et al. 2012. Lung immunoreactivity and airway inflammation: Their assessment after scorpion envenomation. Inflammation 35(2): 501–508.CrossRefPubMed
21.
Zurück zum Zitat Bekkari, N., M.-F. Martin-Eauclaire, and F. Laraba-Djebari. 2015. Complement system and immunological mediators: Their involvements in the induced inflammatory process by Androctonus australis hector venom and its toxic components. Experimental and Toxicologic Pathology 67: 389.CrossRefPubMed Bekkari, N., M.-F. Martin-Eauclaire, and F. Laraba-Djebari. 2015. Complement system and immunological mediators: Their involvements in the induced inflammatory process by Androctonus australis hector venom and its toxic components. Experimental and Toxicologic Pathology 67: 389.CrossRefPubMed
22.
Zurück zum Zitat Dousset, E., et al. 2005. Evidence that free radical generation occurs during scorpion envenomation. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 140(2): 221–226. Dousset, E., et al. 2005. Evidence that free radical generation occurs during scorpion envenomation. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 140(2): 221–226.
23.
Zurück zum Zitat Folkerts, G., et al. 2001. Reactive nitrogen and oxygen species in airway inflammation. European Journal of Pharmacology 429(1): 251–262.CrossRefPubMed Folkerts, G., et al. 2001. Reactive nitrogen and oxygen species in airway inflammation. European Journal of Pharmacology 429(1): 251–262.CrossRefPubMed
24.
Zurück zum Zitat Endo, S., et al. 1996. Nitrite/nitrate oxide (NOx) and cytokine levels in patients with septic shock. Research Communications in Molecular Pathology and Pharmacology 91(3): 347–356.PubMed Endo, S., et al. 1996. Nitrite/nitrate oxide (NOx) and cytokine levels in patients with septic shock. Research Communications in Molecular Pathology and Pharmacology 91(3): 347–356.PubMed
25.
Zurück zum Zitat Meki, A.Z. and Mohey El-Deen. 1998. Serum interleukin-1B, IL-6. Nitric oxide and alpha1-antitrypsin in scorpion envenomed children. Toxicon 36: 1851–1859. Meki, A.Z. and Mohey El-Deen. 1998. Serum interleukin-1B, IL-6. Nitric oxide and alpha1-antitrypsin in scorpion envenomed children. Toxicon 36: 1851–1859.
26.
Zurück zum Zitat Hamdi-chérif, M., et al. 2009. Cancers liés au tabac dans la wilaya de Sétif (Algérie): incidence, tendance, survie et prévention 1986–2005. Revue d’Épidémiologie et de Santé Publique 57: S29.CrossRef Hamdi-chérif, M., et al. 2009. Cancers liés au tabac dans la wilaya de Sétif (Algérie): incidence, tendance, survie et prévention 1986–2005. Revue d’Épidémiologie et de Santé Publique 57: S29.CrossRef
27.
Zurück zum Zitat Uchiyama, M., and M. Mihara. 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry 86(1): 271–278.CrossRefPubMed Uchiyama, M., and M. Mihara. 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry 86(1): 271–278.CrossRefPubMed
28.
Zurück zum Zitat Dhuley, J.N. 1998. Effect of ashwagandha on lipid peroxidation in stress-induced animals. Journal of Ethnopharmacology 60(2): 173–178.CrossRefPubMed Dhuley, J.N. 1998. Effect of ashwagandha on lipid peroxidation in stress-induced animals. Journal of Ethnopharmacology 60(2): 173–178.CrossRefPubMed
29.
Zurück zum Zitat Cho, S.-Y., et al. 2002. Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clinica Chimica Acta 317(1): 109–117.CrossRef Cho, S.-Y., et al. 2002. Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clinica Chimica Acta 317(1): 109–117.CrossRef
30.
Zurück zum Zitat Adi-Bessalem, S., D. Hammoudi-Triki, and F. Laraba-Djebari. 2008. Pathophysiological effects of Androctonus australis hector scorpion venom: tissue damages and inflammatory response. Experimental and Toxicologic Pathology 60(4): 373–380.CrossRefPubMed Adi-Bessalem, S., D. Hammoudi-Triki, and F. Laraba-Djebari. 2008. Pathophysiological effects of Androctonus australis hector scorpion venom: tissue damages and inflammatory response. Experimental and Toxicologic Pathology 60(4): 373–380.CrossRefPubMed
31.
Zurück zum Zitat Fatani, A., et al. 2006. Protective effects of the antioxidant Ginkgo biloba extract and the protease inhibitor aprotinin against Leiurus quinquestriatus venom-induced tissue damage in rats. Journal of Venomous Animals and Toxins including Tropical Diseases 12(2): 255–275.CrossRef Fatani, A., et al. 2006. Protective effects of the antioxidant Ginkgo biloba extract and the protease inhibitor aprotinin against Leiurus quinquestriatus venom-induced tissue damage in rats. Journal of Venomous Animals and Toxins including Tropical Diseases 12(2): 255–275.CrossRef
32.
Zurück zum Zitat Daisley, H., D. Alexander, and P. Pitt-Miller. 1999. Acute myocarditis following Tityus trinitatis envenoming: morphological and pathophysiological characteristics. Toxicon 37(1): 159–165.CrossRefPubMed Daisley, H., D. Alexander, and P. Pitt-Miller. 1999. Acute myocarditis following Tityus trinitatis envenoming: morphological and pathophysiological characteristics. Toxicon 37(1): 159–165.CrossRefPubMed
33.
Zurück zum Zitat Neumann, S., et al. 2007. The non-neuronal cholinergic system in peripheral blood cells: effects of nicotinic and muscarinic receptor antagonists on phagocytosis, respiratory burst and migration. Life Sciences 80(24): 2361–2364.CrossRefPubMed Neumann, S., et al. 2007. The non-neuronal cholinergic system in peripheral blood cells: effects of nicotinic and muscarinic receptor antagonists on phagocytosis, respiratory burst and migration. Life Sciences 80(24): 2361–2364.CrossRefPubMed
34.
Zurück zum Zitat Whaley, K., D. Lappin, and T. Barkas. 1981. C2 synthesis by human monocytes is modulated by a nicotinic cholinergic receptor. Whaley, K., D. Lappin, and T. Barkas. 1981. C2 synthesis by human monocytes is modulated by a nicotinic cholinergic receptor.
35.
Zurück zum Zitat Mita, Y., et al. 1996. Induction of muscarinic receptor subtypes in monocytic/macrophagic cells differentiated from EoL-1 cells. European Journal of Pharmacology 297(1): 121–127.CrossRefPubMed Mita, Y., et al. 1996. Induction of muscarinic receptor subtypes in monocytic/macrophagic cells differentiated from EoL-1 cells. European Journal of Pharmacology 297(1): 121–127.CrossRefPubMed
36.
Zurück zum Zitat Iho, S., et al. 2003. Nicotine induces human neutrophils to produce IL-8 through the generation of peroxynitrite and subsequent activation of NF-kB. Journal of Leukocyte Biology 74(5): 942–951.CrossRefPubMed Iho, S., et al. 2003. Nicotine induces human neutrophils to produce IL-8 through the generation of peroxynitrite and subsequent activation of NF-kB. Journal of Leukocyte Biology 74(5): 942–951.CrossRefPubMed
37.
Zurück zum Zitat Profita, M., et al. 2005. Muscarinic receptors, leukotriene B4 production and neutrophilic inflammation in COPD patients. Allergy 60(11): 1361–1369.CrossRefPubMed Profita, M., et al. 2005. Muscarinic receptors, leukotriene B4 production and neutrophilic inflammation in COPD patients. Allergy 60(11): 1361–1369.CrossRefPubMed
38.
Zurück zum Zitat Saareks, V., et al. 1993. Nicotine and cotinine modulate eicosanoid production in human leukocytes and platelet rich plasma. European Journal of Pharmacology: Environmental Toxicology and Pharmacology 248(4): 345–349. Saareks, V., et al. 1993. Nicotine and cotinine modulate eicosanoid production in human leukocytes and platelet rich plasma. European Journal of Pharmacology: Environmental Toxicology and Pharmacology 248(4): 345–349.
39.
Zurück zum Zitat Wang, H., et al. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine 10(11): 1216–1221.CrossRefPubMed Wang, H., et al. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine 10(11): 1216–1221.CrossRefPubMed
40.
Zurück zum Zitat Pavlov, V.A., and K.J. Tracey. 2005. The cholinergic anti-inflammatory pathway. Brain, Behavior, and Immunity 19(6): 493–499.CrossRefPubMed Pavlov, V.A., and K.J. Tracey. 2005. The cholinergic anti-inflammatory pathway. Brain, Behavior, and Immunity 19(6): 493–499.CrossRefPubMed
41.
Zurück zum Zitat Koyama, S., S.I. Rennard, and R.A. Robbins. 1992. Acetylcholine stimulates bronchial epithelial cells to release neutrophil and monocyte chemotactic activity. American Journal of Physiology-Lung Cellular and Molecular Physiology 262(4): L466–L471. Koyama, S., S.I. Rennard, and R.A. Robbins. 1992. Acetylcholine stimulates bronchial epithelial cells to release neutrophil and monocyte chemotactic activity. American Journal of Physiology-Lung Cellular and Molecular Physiology 262(4): L466–L471.
42.
Zurück zum Zitat Sato, E., et al. 1998. Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity. American Journal of Physiology-Lung Cellular and Molecular Physiology 274(6): L970–L979. Sato, E., et al. 1998. Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity. American Journal of Physiology-Lung Cellular and Molecular Physiology 274(6): L970–L979.
43.
Zurück zum Zitat Aronstam, R. and P. Patil. 2009. Muscarinic receptors: autonomic neurons. Encyclopedia of neuroscience. 1141–1149. Oxford: 4th Academic Press. Aronstam, R. and P. Patil. 2009. Muscarinic receptors: autonomic neurons. Encyclopedia of neuroscience. 1141–1149. Oxford: 4th Academic Press.
44.
Zurück zum Zitat Kavelaars, A., et al. 1997. β 2-Adrenergic activation enhances interleukin-8 production by human monocytes. Journal of Neuroimmunology 77(2): 211–216.CrossRefPubMed Kavelaars, A., et al. 1997. β 2-Adrenergic activation enhances interleukin-8 production by human monocytes. Journal of Neuroimmunology 77(2): 211–216.CrossRefPubMed
45.
Zurück zum Zitat Ghazal, A., et al. 1975. Pharmacological studies of scorpion (Androctonus amoreuxi Aud. & Sav.) venom. Toxicon 13(4): 253–254.CrossRefPubMed Ghazal, A., et al. 1975. Pharmacological studies of scorpion (Androctonus amoreuxi Aud. & Sav.) venom. Toxicon 13(4): 253–254.CrossRefPubMed
46.
Zurück zum Zitat Ismail, M., et al. 1980. Pharmacokinetics of 125 I-labelled venom from the scorpion Androctonus amoreuxi, Aud. and Sav. Toxicon 18(3): 301–308.CrossRefPubMed Ismail, M., et al. 1980. Pharmacokinetics of 125 I-labelled venom from the scorpion Androctonus amoreuxi, Aud. and Sav. Toxicon 18(3): 301–308.CrossRefPubMed
47.
Zurück zum Zitat Azevedo, A., et al. 1983. Cardiovascular and respiratory effects induced by a purified scorpion toxin (tityustoxin) in unanesthetized rats. Toxicon 21(6): 753–759.CrossRefPubMed Azevedo, A., et al. 1983. Cardiovascular and respiratory effects induced by a purified scorpion toxin (tityustoxin) in unanesthetized rats. Toxicon 21(6): 753–759.CrossRefPubMed
48.
Zurück zum Zitat Amaral, C.F.S., et al. 1994. Scorpion sting-induced pulmonary oedema: evidence of increased alveolocapillary membrane permeability. Toxicon 32(8): 999–1003.CrossRefPubMed Amaral, C.F.S., et al. 1994. Scorpion sting-induced pulmonary oedema: evidence of increased alveolocapillary membrane permeability. Toxicon 32(8): 999–1003.CrossRefPubMed
49.
Zurück zum Zitat Zheng, M., et al. 2005. Emerging concepts and therapeutic implications of β-adrenergic receptor subtype signaling. Pharmacology & Therapeutics 108(3): 257–268.CrossRef Zheng, M., et al. 2005. Emerging concepts and therapeutic implications of β-adrenergic receptor subtype signaling. Pharmacology & Therapeutics 108(3): 257–268.CrossRef
50.
Zurück zum Zitat Bernstein, D., G. Fajardo, and M. Zhao. 2011. The role of β-adrenergic receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Progress in Pediatric Cardiology 31(1): 35–38.CrossRefPubMedPubMedCentral Bernstein, D., G. Fajardo, and M. Zhao. 2011. The role of β-adrenergic receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Progress in Pediatric Cardiology 31(1): 35–38.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Zhu, W.-Z., et al. 2003. Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A–independent activation of Ca2+/calmodulin kinase II. Journal of Clinical Investigation 111(5): 617.CrossRefPubMedPubMedCentral Zhu, W.-Z., et al. 2003. Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A–independent activation of Ca2+/calmodulin kinase II. Journal of Clinical Investigation 111(5): 617.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Zhu, W., et al. 2005. The Enigma of β2-Adrenergic Receptor Gi Signaling in the Heart The Good, the Bad, and the Ugly. Circulation Research 97(6): 507–509.CrossRefPubMed Zhu, W., et al. 2005. The Enigma of β2-Adrenergic Receptor Gi Signaling in the Heart The Good, the Bad, and the Ugly. Circulation Research 97(6): 507–509.CrossRefPubMed
53.
Zurück zum Zitat Hoffmann, C., et al. 2004. Comparative pharmacology of human β-adrenergic receptor subtypes—characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg’s Archives of Pharmacology 369(2): 151–159.CrossRefPubMed Hoffmann, C., et al. 2004. Comparative pharmacology of human β-adrenergic receptor subtypes—characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg’s Archives of Pharmacology 369(2): 151–159.CrossRefPubMed
54.
Zurück zum Zitat Communal, C., et al. 1999. Opposing Effects of β1-and β2-Adrenergic Receptors on Cardiac Myocyte Apoptosis Role of a Pertussis Toxin–Sensitive G Protein. Circulation 100(22): 2210–2212.CrossRefPubMed Communal, C., et al. 1999. Opposing Effects of β1-and β2-Adrenergic Receptors on Cardiac Myocyte Apoptosis Role of a Pertussis Toxin–Sensitive G Protein. Circulation 100(22): 2210–2212.CrossRefPubMed
55.
Zurück zum Zitat Zhu, W.-Z., et al. 2001. Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. Proceedings of the National Academy of Sciences 98(4): 1607–1612.CrossRef Zhu, W.-Z., et al. 2001. Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. Proceedings of the National Academy of Sciences 98(4): 1607–1612.CrossRef
Metadaten
Titel
Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom
verfasst von
Imene Nakib
Marie-France Martin-Eauclaire
Fatima Laraba-Djebari
Publikationsdatum
09.07.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0401-8

Weitere Artikel der Ausgabe 5/2016

Inflammation 5/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.