Skip to main content
Erschienen in: The journal of nutrition, health & aging 6/2019

18.05.2019

Ionized and Total Magnesium Levels Change during Repeated Exercise in Older Adults

verfasst von: Rieneke Terink, M. G. Balvers, C. C. W. G. Bongers, T. M. H. Eijsvogels, R. F. Witkamp, M. Mensink, M. T. Hopman, J. M. T. Klein Gunnewiek

Erschienen in: The journal of nutrition, health & aging | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

Magnesium is essential for health and performance. Sub-optimal levels have been reported for older persons. In addition, physical exercise is known to temporally decrease magnesium blood concentrations.

Objective

To investigate these observations in conjunction we assessed total (tMg) and ionized magnesium (iMg) concentrations in plasma and whole blood, respectively, during 4 consecutive days of exercise in very old vital adults. Design: 68 participants (age 83.7±1.9 years) were monitored on 4 consecutive days at which they walked 30–40km (average ∼8 hours) per day at a self-determined pace. Blood samples were collected one or two days prior to the start of exercise (baseline) and every walking day immediately post-exercise. Samples were analysed for tMg and iMg levels.

Results

Baseline tMg and iMg levels were 0.85±0.07 and 0.47±0.07 mmol/L, respectively. iMg decreased after the first walking day (−0.10±0.09 mmol/L, p<.001), increased after the second (+0.11±0.07 mmol/L, p<.001), was unchanged after the third and decreased on the final walking day, all compared to the previous day. tMg was only higher after the third walking day compared to the second walking day (p=.012). In 88% of the participants, iMg levels reached values considered to be sub-optimal at day 1, in 16% of the participants values were sub-optimal for tMg at day 2.

Conclusion

Prolonged moderate intensity exercise caused acute effects on iMg levels in a degree comparable to that after a bout of intensive exercise. These effects were not associated with drop-out or health problems. After the second consecutive day of exercise, levels were returned to baseline values, suggesting rapid adaptation/resilience in this population.
Literatur
1.
Zurück zum Zitat de Baaij, J.H., J.G. Hoenderop, and R.J. Bindels, Magnesium in man: implications for health and disease. Physiol Rev, 2015. 95(1): p. 1–46.CrossRefPubMed de Baaij, J.H., J.G. Hoenderop, and R.J. Bindels, Magnesium in man: implications for health and disease. Physiol Rev, 2015. 95(1): p. 1–46.CrossRefPubMed
2.
Zurück zum Zitat Finstad, E.W., et al., The effects of magnesium supplementation on exercise performance. Med Sci Sports Exerc, 2001. 33(3): p. 493–8.CrossRefPubMed Finstad, E.W., et al., The effects of magnesium supplementation on exercise performance. Med Sci Sports Exerc, 2001. 33(3): p. 493–8.CrossRefPubMed
3.
Zurück zum Zitat Lukaski, H.C., Magnesium, zinc, and chromium nutriture and physical activity. Am J Clin Nutr, 2000. 72(2 Suppl): p. 585s–93s.CrossRefPubMed Lukaski, H.C., Magnesium, zinc, and chromium nutriture and physical activity. Am J Clin Nutr, 2000. 72(2 Suppl): p. 585s–93s.CrossRefPubMed
4.
Zurück zum Zitat Lukaski, H.C., Vitamin and mineral status: effects on physical performance. Nutrition, 2004. 20(7–8): p. 632–44.CrossRefPubMed Lukaski, H.C., Vitamin and mineral status: effects on physical performance. Nutrition, 2004. 20(7–8): p. 632–44.CrossRefPubMed
5.
Zurück zum Zitat Konishi, M., Cytoplasmic free concentrations of Ca2+ and Mg2+ in skeletal muscle fibers at rest and during contraction. Jpn J Physiol, 1998. 48(6): p. 421–38.CrossRefPubMed Konishi, M., Cytoplasmic free concentrations of Ca2+ and Mg2+ in skeletal muscle fibers at rest and during contraction. Jpn J Physiol, 1998. 48(6): p. 421–38.CrossRefPubMed
6.
Zurück zum Zitat Singh, R.B., et al., Mechanisms of acute myocardial infarction study (MAMIS). Biomed Pharmacother, 2004. 58Suppl 1: p. S111–5.CrossRefPubMed Singh, R.B., et al., Mechanisms of acute myocardial infarction study (MAMIS). Biomed Pharmacother, 2004. 58Suppl 1: p. S111–5.CrossRefPubMed
7.
Zurück zum Zitat Welch, A.A., et al., Dietary Magnesium Is Positively Associated With Skeletal Muscle Power and Indices of Muscle Mass and May Attenuate the Association Between Circulating C-Reactive Protein and Muscle Mass in Women. J Bone Miner Res, 2016. 31(2): p. 317–25.CrossRefPubMed Welch, A.A., et al., Dietary Magnesium Is Positively Associated With Skeletal Muscle Power and Indices of Muscle Mass and May Attenuate the Association Between Circulating C-Reactive Protein and Muscle Mass in Women. J Bone Miner Res, 2016. 31(2): p. 317–25.CrossRefPubMed
8.
Zurück zum Zitat Barbagallo, M., M. Belvedere, and L.J. Dominguez, Magnesium homeostasis and aging. Magnes Res, 2009. 22(4): p. 235–46.PubMed Barbagallo, M., M. Belvedere, and L.J. Dominguez, Magnesium homeostasis and aging. Magnes Res, 2009. 22(4): p. 235–46.PubMed
9.
Zurück zum Zitat Durlach, J., et al., Magnesium status and ageing: an update. Magnes Res, 1998. 11(1): p. 25–42.PubMed Durlach, J., et al., Magnesium status and ageing: an update. Magnes Res, 1998. 11(1): p. 25–42.PubMed
10.
Zurück zum Zitat Park, C.H., et al., The association between the use of proton pump inhibitors and the risk of hypomagnesemia: a systematic review and meta-analysis. PLoS One, 2014. 9(11): p. e112558.CrossRefPubMedPubMedCentral Park, C.H., et al., The association between the use of proton pump inhibitors and the risk of hypomagnesemia: a systematic review and meta-analysis. PLoS One, 2014. 9(11): p. e112558.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Elin, R.J., Assessment of magnesium status for diagnosis and therapy. Magnes Res, 2010. 23(4): p. S194–8.PubMed Elin, R.J., Assessment of magnesium status for diagnosis and therapy. Magnes Res, 2010. 23(4): p. S194–8.PubMed
12.
Zurück zum Zitat Buchman, A.L., et al., The effect of a marathon run on plasma and urine mineral and metal concentrations. J Am Coll Nutr, 1998. 17(2): p. 124–7.CrossRefPubMed Buchman, A.L., et al., The effect of a marathon run on plasma and urine mineral and metal concentrations. J Am Coll Nutr, 1998. 17(2): p. 124–7.CrossRefPubMed
13.
Zurück zum Zitat Scherr, J., et al., Repolarization perturbation and hypomagnesemia after extreme exercise. Med Sci Sports Exerc, 2012. 44(9): p. 1637–43.CrossRefPubMed Scherr, J., et al., Repolarization perturbation and hypomagnesemia after extreme exercise. Med Sci Sports Exerc, 2012. 44(9): p. 1637–43.CrossRefPubMed
14.
Zurück zum Zitat Mooren, F.C., et al., Alterations of ionized Mg2+ in human blood after exercise. Life Sci, 2005. 77(11): p. 1211–25.CrossRefPubMed Mooren, F.C., et al., Alterations of ionized Mg2+ in human blood after exercise. Life Sci, 2005. 77(11): p. 1211–25.CrossRefPubMed
15.
Zurück zum Zitat Terink, R., et al., Decrease in Ionized and Total Magnesium Blood Concentrations in Endurance Athletes Following an Exercise Bout Restores Within Hours - Potential Consequences for Monitoring and Supplementation. Int J Sport Nutr Exerc Metab, 2016: p. 1–22. Terink, R., et al., Decrease in Ionized and Total Magnesium Blood Concentrations in Endurance Athletes Following an Exercise Bout Restores Within Hours - Potential Consequences for Monitoring and Supplementation. Int J Sport Nutr Exerc Metab, 2016: p. 1–22.
16.
Zurück zum Zitat Durlach, J., et al., Importance of the ratio between ionized and total Mg in serum or plasma: new data on the regulation of Mg status and practical importance of total Mg concentration in the investigation of Mg imbalance. Magnes Res, 2002. 15(3–4): p. 203–5.PubMed Durlach, J., et al., Importance of the ratio between ionized and total Mg in serum or plasma: new data on the regulation of Mg status and practical importance of total Mg concentration in the investigation of Mg imbalance. Magnes Res, 2002. 15(3–4): p. 203–5.PubMed
17.
Zurück zum Zitat Ising, H., et al., Measurement of free magnesium in blood, serum and plasma with an ion-sensitive electrode. Eur J Clin Chem Clin Biochem, 1995. 33(6): p. 365–71.PubMed Ising, H., et al., Measurement of free magnesium in blood, serum and plasma with an ion-sensitive electrode. Eur J Clin Chem Clin Biochem, 1995. 33(6): p. 365–71.PubMed
18.
Zurück zum Zitat Tanaka, H., K.D. Monahan, and D.R. Seals, Age-predicted maximal heart rate revisited. J Am Coll Cardiol, 2001. 37(1): p. 153–6.CrossRefPubMed Tanaka, H., K.D. Monahan, and D.R. Seals, Age-predicted maximal heart rate revisited. J Am Coll Cardiol, 2001. 37(1): p. 153–6.CrossRefPubMed
19.
Zurück zum Zitat Dill, D.B. and D.L. Costill, Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol, 1974.37(2): p. 247–8.CrossRef Dill, D.B. and D.L. Costill, Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol, 1974.37(2): p. 247–8.CrossRef
20.
Zurück zum Zitat American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription: Lippincott Williams & Wilkins; 2013. p 5. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription: Lippincott Williams & Wilkins; 2013. p 5.
21.
Zurück zum Zitat Rayana, M.C., et al., Guidelines for sampling, measuring and reporting ionized magnesium in undiluted serum, plasma or blood: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): IFCC Scientific Division, Committee on Point of Care Testing. Clin Chem Lab Med, 2005. 43(5): p. 564–9.PubMed Rayana, M.C., et al., Guidelines for sampling, measuring and reporting ionized magnesium in undiluted serum, plasma or blood: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): IFCC Scientific Division, Committee on Point of Care Testing. Clin Chem Lab Med, 2005. 43(5): p. 564–9.PubMed
22.
Zurück zum Zitat Rakhra, G., et al., Effect of physical activity and age on plasma copper, zinc, iron, and magnesium concentration in physically active healthy males. Nutrition, 2017. 43–44: p. 75–82.CrossRefPubMed Rakhra, G., et al., Effect of physical activity and age on plasma copper, zinc, iron, and magnesium concentration in physically active healthy males. Nutrition, 2017. 43–44: p. 75–82.CrossRefPubMed
23.
Zurück zum Zitat Khan, M.U., B.O. Komolafe, and K.T. Weber, Cation interdependency in acute stressor states. Am J Med Sci, 2013. 345(5): p. 401–4.CrossRefPubMed Khan, M.U., B.O. Komolafe, and K.T. Weber, Cation interdependency in acute stressor states. Am J Med Sci, 2013. 345(5): p. 401–4.CrossRefPubMed
24.
Zurück zum Zitat Vormann J, Förster R, Günther T, Ebel H, editors. Lipolysis induced magnesium uptake into fat-cells. Magnesium-bulletin; 1982: 201–2. Vormann J, Förster R, Günther T, Ebel H, editors. Lipolysis induced magnesium uptake into fat-cells. Magnesium-bulletin; 1982: 201–2.
25.
Zurück zum Zitat Franz, K.B., et al., Physiologic changes during a marathon, with special reference to magnesium. J Am Coll Nutr, 1985. 4(2): p. 187–94.CrossRefPubMed Franz, K.B., et al., Physiologic changes during a marathon, with special reference to magnesium. J Am Coll Nutr, 1985. 4(2): p. 187–94.CrossRefPubMed
26.
Zurück zum Zitat Singh, R. and R.G. Sirisinghe, Haematological and plasma electrolyte changes after long distance running in high heat and humidity. Singapore Med J, 1999. 40(2): p. 84–7.PubMed Singh, R. and R.G. Sirisinghe, Haematological and plasma electrolyte changes after long distance running in high heat and humidity. Singapore Med J, 1999. 40(2): p. 84–7.PubMed
27.
Zurück zum Zitat Convertino, V.A., Blood volume response to physical activity and inactivity. Am J Med Sci, 2007. 334(1): p. 72–9.CrossRefPubMed Convertino, V.A., Blood volume response to physical activity and inactivity. Am J Med Sci, 2007. 334(1): p. 72–9.CrossRefPubMed
29.
Zurück zum Zitat Saris, N.E., et al., Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta, 2000. 294(1–2): p. 1–26.CrossRef Saris, N.E., et al., Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta, 2000. 294(1–2): p. 1–26.CrossRef
Metadaten
Titel
Ionized and Total Magnesium Levels Change during Repeated Exercise in Older Adults
verfasst von
Rieneke Terink
M. G. Balvers
C. C. W. G. Bongers
T. M. H. Eijsvogels
R. F. Witkamp
M. Mensink
M. T. Hopman
J. M. T. Klein Gunnewiek
Publikationsdatum
18.05.2019
Verlag
Springer Paris
Erschienen in
The journal of nutrition, health & aging / Ausgabe 6/2019
Print ISSN: 1279-7707
Elektronische ISSN: 1760-4788
DOI
https://doi.org/10.1007/s12603-019-1205-y

Weitere Artikel der Ausgabe 6/2019

The journal of nutrition, health & aging 6/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.