Skip to main content

06.12.2024 | RESEARCH

IRF-1 Regulates Mitochondrial Respiration and Intrinsic Apoptosis Under Metabolic Stress through ATP Synthase Ancillary Factor TMEM70

verfasst von: ChongXiu Sun, Haotian Sun, Jiahao Wei, Xing Fan, Scott I. Simon, Anthony G. Passerini

Erschienen in: Inflammation

Einloggen, um Zugang zu erhalten

Abstract

Mitochondrial dysfunction, which can be caused by metabolic stressors such as oxidized low-density lipoprotein (oxLDL), sensitizes the endothelium to pathological changes. The transcription factor interferon regulatory factor 1 (IRF-1) is a master regulator of inflammation, previously shown to promote oxLDL-induced inflammatory pyroptosis in human aortic endothelial cells (HAEC). However, a presumed role for IRF-1 in regulating the intrinsic apoptotic pathway in response to metabolic stress has not been demonstrated. Here targeted deletion of IRF-1 by siRNA in HAEC aggravated oxLDL-induced, mitochondria-mediated intrinsic apoptosis, as evidenced by increased Caspase-3 and Caspase-9 activation, and chromosomal DNA breakage. The increased apoptosis was concomitant with accumulation of mitochondrial ROS, decrease in intracellular ATP production and respiratory oxygen consumption, and abnormal mitochondrial structure. RNA profiling of endothelial cells isolated from wild type and Irf1 knockout mice, followed by quantitative PCR, luciferase activity assay and chromatin immunoprecipitation (ChIP), revealed that IRF-1 directly regulated the expression of transmembrane protein 70 (TMEM70), an ancillary factor required for the assembly of ATP synthase and conversion of an electrochemical gradient to ATP synthesis. Mirroring the effect of IRF1 knockdown, depletion of TMEM70 in HAEC resulted in impaired mitochondrial function and enhanced cell apoptosis. In contrast, overexpression of TMEM70 rescued ATP biosynthesis and suppressed apoptosis in oxLDL-treated, IRF-1-deficient HAEC. These results reveal a novel homeostatic role for IRF-1 in the regulation of mitochondrial function and associated stress-induced apoptosis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gimbrone, M.A., Jr., and G. Garcia-Cardena. 2016. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research 118 (4): 620–636.PubMedPubMedCentralCrossRef Gimbrone, M.A., Jr., and G. Garcia-Cardena. 2016. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research 118 (4): 620–636.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Newton, K., A. Strasser, N. Kayagaki, and V.M. Dixit. 2024. Cell death. Cell 187 (2): 235–256.PubMedCrossRef Newton, K., A. Strasser, N. Kayagaki, and V.M. Dixit. 2024. Cell death. Cell 187 (2): 235–256.PubMedCrossRef
3.
Zurück zum Zitat Spinelli, J.B., and M.C. Haigis. 2018. The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biology 20 (7): 745–754.PubMedPubMedCentralCrossRef Spinelli, J.B., and M.C. Haigis. 2018. The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biology 20 (7): 745–754.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Ackerman, S.H., and A. Tzagoloff. 1990. Identification of two nuclear genes (ATP11, ATP12) required for assembly of the yeast F1-ATPase. Proceedings of the National Academy of Sciences 87 (13): 4986–4990.CrossRef Ackerman, S.H., and A. Tzagoloff. 1990. Identification of two nuclear genes (ATP11, ATP12) required for assembly of the yeast F1-ATPase. Proceedings of the National Academy of Sciences 87 (13): 4986–4990.CrossRef
5.
Zurück zum Zitat Lefebvre-Legendre, L., J. Vaillier, H. Benabdelhak, J. Velours, P.P. Slonimski, and J.P. di Rago. 2001. Identification of a nuclear gene (FMC1) required for the assembly/stability of yeast mitochondrial F(1)-ATPase in heat stress conditions. Journal of Biological Chemistry 276 (9): 6789–6796.PubMedCrossRef Lefebvre-Legendre, L., J. Vaillier, H. Benabdelhak, J. Velours, P.P. Slonimski, and J.P. di Rago. 2001. Identification of a nuclear gene (FMC1) required for the assembly/stability of yeast mitochondrial F(1)-ATPase in heat stress conditions. Journal of Biological Chemistry 276 (9): 6789–6796.PubMedCrossRef
6.
Zurück zum Zitat Houstek, J., S. Kmoch, and J. Zeman. 2009. TMEM70 protein - a novel ancillary factor of mammalian ATP synthase. Biochimica et Biophysica Acta 1787 (5): 529–532.PubMedCrossRef Houstek, J., S. Kmoch, and J. Zeman. 2009. TMEM70 protein - a novel ancillary factor of mammalian ATP synthase. Biochimica et Biophysica Acta 1787 (5): 529–532.PubMedCrossRef
7.
Zurück zum Zitat Kovalčíkova, J., M. Vrbacký, P. Pecina, et al. 2019. TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme. The FASEB Journal 33 (12): 14103–14117.PubMedCrossRef Kovalčíkova, J., M. Vrbacký, P. Pecina, et al. 2019. TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme. The FASEB Journal 33 (12): 14103–14117.PubMedCrossRef
8.
Zurück zum Zitat Catteruccia, M., D. Verrigni, D. Martinelli, et al. 2014. Persistent pulmonary arterial hypertension in the newborn (PPHN): A frequent manifestation of TMEM70 defective patients. Molecular Genetics and Metabolism 111 (3): 353–359.PubMedCrossRef Catteruccia, M., D. Verrigni, D. Martinelli, et al. 2014. Persistent pulmonary arterial hypertension in the newborn (PPHN): A frequent manifestation of TMEM70 defective patients. Molecular Genetics and Metabolism 111 (3): 353–359.PubMedCrossRef
9.
Zurück zum Zitat Magner, M., V. Dvorakova, M. Tesarova, et al. 2015. TMEM70 deficiency: Long-term outcome of 48 patients. Journal of Inherited Metabolic Disease 38 (3): 417–426.PubMedCrossRef Magner, M., V. Dvorakova, M. Tesarova, et al. 2015. TMEM70 deficiency: Long-term outcome of 48 patients. Journal of Inherited Metabolic Disease 38 (3): 417–426.PubMedCrossRef
10.
Zurück zum Zitat Cizkova, A., V. Stranecky, J.A. Mayr, et al. 2008. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nature Genetics 40 (11): 1288–1290.PubMedCrossRef Cizkova, A., V. Stranecky, J.A. Mayr, et al. 2008. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nature Genetics 40 (11): 1288–1290.PubMedCrossRef
11.
Zurück zum Zitat Fujita, T., Y. Kimura, M. Miyamoto, E.L. Barsoumian, and T. Taniguchi. 1989. Induction of endogenous IFN-alpha and IFN-beta genes by a regulatory transcription factor, IRF-1. Nature 337 (6204): 270–272.PubMedCrossRef Fujita, T., Y. Kimura, M. Miyamoto, E.L. Barsoumian, and T. Taniguchi. 1989. Induction of endogenous IFN-alpha and IFN-beta genes by a regulatory transcription factor, IRF-1. Nature 337 (6204): 270–272.PubMedCrossRef
12.
Zurück zum Zitat Kroger, A., M. Koster, K. Schroeder, H. Hauser, and P.P. Mueller. 2002. Activities of IRF-1. Journal of Interferon and Cytokine Research 22 (1): 5–14.PubMedCrossRef Kroger, A., M. Koster, K. Schroeder, H. Hauser, and P.P. Mueller. 2002. Activities of IRF-1. Journal of Interferon and Cytokine Research 22 (1): 5–14.PubMedCrossRef
13.
Zurück zum Zitat Zhang, X.J., D.S. Jiang, and H. Li. 2015. The interferon regulatory factors as novel potential targets in the treatment of cardiovascular diseases. British Journal of Pharmacology 172 (23): 5457–5476.PubMedPubMedCentralCrossRef Zhang, X.J., D.S. Jiang, and H. Li. 2015. The interferon regulatory factors as novel potential targets in the treatment of cardiovascular diseases. British Journal of Pharmacology 172 (23): 5457–5476.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Matsuyama, T., T. Kimura, M. Kitagawa, et al. 1993. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75 (1): 83–97.PubMedCrossRef Matsuyama, T., T. Kimura, M. Kitagawa, et al. 1993. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75 (1): 83–97.PubMedCrossRef
15.
Zurück zum Zitat Chapman, R.S., E.K. Duff, P.C. Lourenco, et al. 2000. A novel role for IRF-1 as a suppressor of apoptosis. Oncogene 19 (54): 6386–6391.PubMedCrossRef Chapman, R.S., E.K. Duff, P.C. Lourenco, et al. 2000. A novel role for IRF-1 as a suppressor of apoptosis. Oncogene 19 (54): 6386–6391.PubMedCrossRef
16.
Zurück zum Zitat Sun, C., K. Alkhoury, Y.I. Wang, et al. 2012. IRF-1 and miRNA126 modulate VCAM-1 expression in response to a high-fat meal. Circulation Research 111 (8): 1054–1064.PubMedCrossRef Sun, C., K. Alkhoury, Y.I. Wang, et al. 2012. IRF-1 and miRNA126 modulate VCAM-1 expression in response to a high-fat meal. Circulation Research 111 (8): 1054–1064.PubMedCrossRef
17.
Zurück zum Zitat Fan, X., Q. Li, Y. Wang, et al. 2023. Non-canonical NF-kappaB contributes to endothelial pyroptosis and atherogenesis dependent on IRF-1. Translational Research 255: 1–13.PubMedCrossRef Fan, X., Q. Li, Y. Wang, et al. 2023. Non-canonical NF-kappaB contributes to endothelial pyroptosis and atherogenesis dependent on IRF-1. Translational Research 255: 1–13.PubMedCrossRef
18.
Zurück zum Zitat DeVerse, J.S., A.S. Sandhu, N. Mendoza, et al. 2013. Shear stress modulates VCAM-1 expression in response to TNF-alpha and dietary lipids via interferon regulatory factor-1 in cultured endothelium. American Journal of Physiology. Heart and Circulatory Physiology 305 (8): H1149-1157.PubMedPubMedCentralCrossRef DeVerse, J.S., A.S. Sandhu, N. Mendoza, et al. 2013. Shear stress modulates VCAM-1 expression in response to TNF-alpha and dietary lipids via interferon regulatory factor-1 in cultured endothelium. American Journal of Physiology. Heart and Circulatory Physiology 305 (8): H1149-1157.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Peng, K., X. Fan, Q. Li, et al. 2020. IRF-1 mediates the suppressive effects of mTOR inhibition on arterial endothelium. Journal of Molecular and Cellular Cardiology 140: 30–41.PubMedPubMedCentralCrossRef Peng, K., X. Fan, Q. Li, et al. 2020. IRF-1 mediates the suppressive effects of mTOR inhibition on arterial endothelium. Journal of Molecular and Cellular Cardiology 140: 30–41.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Thasan, M.M., and A.A. Abdul-Sater. 2022. Measurement of Inflammasome-Induced Mitochondrial Dysfunction by Flow Cytometry. Methods in Molecular Biology 2459: 65–72.PubMedCrossRef Thasan, M.M., and A.A. Abdul-Sater. 2022. Measurement of Inflammasome-Induced Mitochondrial Dysfunction by Flow Cytometry. Methods in Molecular Biology 2459: 65–72.PubMedCrossRef
21.
Zurück zum Zitat Vrbacky, M., J. Kovalcikova, K. Chawengsaksophak, et al. 2016. Knockout of Tmem70 alters biogenesis of ATP synthase and leads to embryonal lethality in mice. Human Molecular Genetics 25 (21): 4674–4685.PubMed Vrbacky, M., J. Kovalcikova, K. Chawengsaksophak, et al. 2016. Knockout of Tmem70 alters biogenesis of ATP synthase and leads to embryonal lethality in mice. Human Molecular Genetics 25 (21): 4674–4685.PubMed
22.
Zurück zum Zitat Houstek, J., T. Mracek, A. Vojtiskova, and J. Zeman. 2004. Mitochondrial diseases and ATPase defects of nuclear origin. Biochimica et Biophysica Acta 1658 (1–2): 115–121.PubMedCrossRef Houstek, J., T. Mracek, A. Vojtiskova, and J. Zeman. 2004. Mitochondrial diseases and ATPase defects of nuclear origin. Biochimica et Biophysica Acta 1658 (1–2): 115–121.PubMedCrossRef
23.
Zurück zum Zitat Mracek, T., P. Pecina, A. Vojtiskova, M. Kalous, O. Sebesta, and J. Houstek. 2006. Two components in pathogenic mechanism of mitochondrial ATPase deficiency: Energy deprivation and ROS production. Experimental Gerontology 41 (7): 683–687.PubMedCrossRef Mracek, T., P. Pecina, A. Vojtiskova, M. Kalous, O. Sebesta, and J. Houstek. 2006. Two components in pathogenic mechanism of mitochondrial ATPase deficiency: Energy deprivation and ROS production. Experimental Gerontology 41 (7): 683–687.PubMedCrossRef
24.
Zurück zum Zitat Du, M., X. Wang, X. Mao, et al. 2019. Absence of Interferon Regulatory Factor 1 Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. Theranostics 9 (16): 4688–4703.PubMedPubMedCentralCrossRef Du, M., X. Wang, X. Mao, et al. 2019. Absence of Interferon Regulatory Factor 1 Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. Theranostics 9 (16): 4688–4703.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Carroll, J., J. He, S. Ding, I.M. Fearnley, and J.E. Walker. 2021. TMEM70 and TMEM242 help to assemble the rotor ring of human ATP synthase and interact with assembly factors for complex I. Proceedings of the National Academy of Sciences of the United States of America 118 (13): e2100558118.PubMedPubMedCentralCrossRef Carroll, J., J. He, S. Ding, I.M. Fearnley, and J.E. Walker. 2021. TMEM70 and TMEM242 help to assemble the rotor ring of human ATP synthase and interact with assembly factors for complex I. Proceedings of the National Academy of Sciences of the United States of America 118 (13): e2100558118.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Billingham, L.K., J.S. Stoolman, K. Vasan, et al. 2022. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nature Immunology 23 (5): 692–704.PubMedPubMedCentralCrossRef Billingham, L.K., J.S. Stoolman, K. Vasan, et al. 2022. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nature Immunology 23 (5): 692–704.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Dou, L., H.F. Liang, D.A. Geller, Y.F. Chen, and X.P. Chen. 2014. The regulation role of interferon regulatory factor-1 gene and clinical relevance. Human Immunology 75 (11): 1110–1114.PubMedCrossRef Dou, L., H.F. Liang, D.A. Geller, Y.F. Chen, and X.P. Chen. 2014. The regulation role of interferon regulatory factor-1 gene and clinical relevance. Human Immunology 75 (11): 1110–1114.PubMedCrossRef
29.
Zurück zum Zitat Kano, A., T. Haruyama, T. Akaike, and Y. Watanabe. 1999. IRF-1 is an essential mediator in IFN-gamma-induced cell cycle arrest and apoptosis of primary cultured hepatocytes. Biochemical and Biophysical Research Communications 257 (3): 672–677.PubMedCrossRef Kano, A., T. Haruyama, T. Akaike, and Y. Watanabe. 1999. IRF-1 is an essential mediator in IFN-gamma-induced cell cycle arrest and apoptosis of primary cultured hepatocytes. Biochemical and Biophysical Research Communications 257 (3): 672–677.PubMedCrossRef
30.
Zurück zum Zitat Zhang, L., J.S. Cardinal, P. Pan, et al. 2012. Splenocyte apoptosis and autophagy is mediated by interferon regulatory factor 1 during murine endotoxemia. Shock 37 (5): 511–517.PubMedCrossRef Zhang, L., J.S. Cardinal, P. Pan, et al. 2012. Splenocyte apoptosis and autophagy is mediated by interferon regulatory factor 1 during murine endotoxemia. Shock 37 (5): 511–517.PubMedCrossRef
31.
Zurück zum Zitat Schwartz-Roberts, J.L., K.L. Cook, C. Chen, et al. 2015. Interferon regulatory factor-1 signaling regulates the switch between autophagy and apoptosis to determine breast cancer cell fate. Cancer Research 75 (6): 1046–1055.PubMedPubMedCentralCrossRef Schwartz-Roberts, J.L., K.L. Cook, C. Chen, et al. 2015. Interferon regulatory factor-1 signaling regulates the switch between autophagy and apoptosis to determine breast cancer cell fate. Cancer Research 75 (6): 1046–1055.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Li, P., Q. Du, Z. Cao, et al. 2012. Interferon-gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Letters 314 (2): 213–222.PubMedCrossRef Li, P., Q. Du, Z. Cao, et al. 2012. Interferon-gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Letters 314 (2): 213–222.PubMedCrossRef
33.
Zurück zum Zitat Savitskaya, M.A., I.I. Zakharov, and G.E. Onishchenko. 2022. Apoptotic features in non-apoptotic processes. Biochemistry (Mosc) 87 (3): 191–206.PubMedCrossRef Savitskaya, M.A., I.I. Zakharov, and G.E. Onishchenko. 2022. Apoptotic features in non-apoptotic processes. Biochemistry (Mosc) 87 (3): 191–206.PubMedCrossRef
34.
Zurück zum Zitat Adayev, T., R. Estephan, S. Meserole, B. Mazza, E.J. Yurkow, and P. Banerjee. 1998. Externalization of phosphatidylserine may not be an early signal of apoptosis in neuronal cells, but only the phosphatidylserine-displaying apoptotic cells are phagocytosed by microglia. Journal of Neurochemistry 71 (5): 1854–1864.PubMedCrossRef Adayev, T., R. Estephan, S. Meserole, B. Mazza, E.J. Yurkow, and P. Banerjee. 1998. Externalization of phosphatidylserine may not be an early signal of apoptosis in neuronal cells, but only the phosphatidylserine-displaying apoptotic cells are phagocytosed by microglia. Journal of Neurochemistry 71 (5): 1854–1864.PubMedCrossRef
35.
Zurück zum Zitat Murphy, S.P., R. Kakkar, C.P. McCarthy, and J.L. Januzzi Jr. 2020. Inflammation in Heart Failure: JACC State-of-the-Art Review. Journal of the American College of Cardiology 75 (11): 1324–1340.PubMedCrossRef Murphy, S.P., R. Kakkar, C.P. McCarthy, and J.L. Januzzi Jr. 2020. Inflammation in Heart Failure: JACC State-of-the-Art Review. Journal of the American College of Cardiology 75 (11): 1324–1340.PubMedCrossRef
36.
Zurück zum Zitat Chang, X., R. Liu, R. Li, Y. Peng, P. Zhu, and H. Zhou. 2023. Molecular mechanisms of mitochondrial quality control in ischemic cardiomyopathy. International Journal of Biological Sciences 19 (2): 426–448.PubMedPubMedCentralCrossRef Chang, X., R. Liu, R. Li, Y. Peng, P. Zhu, and H. Zhou. 2023. Molecular mechanisms of mitochondrial quality control in ischemic cardiomyopathy. International Journal of Biological Sciences 19 (2): 426–448.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Zhang, X., H. Zhou, and X. Chang. 2023. Involvement of mitochondrial dynamics and mitophagy in diabetic endothelial dysfunction and cardiac microvascular injury. Archives of Toxicology 97 (12): 3023–3035.PubMedCrossRef Zhang, X., H. Zhou, and X. Chang. 2023. Involvement of mitochondrial dynamics and mitophagy in diabetic endothelial dysfunction and cardiac microvascular injury. Archives of Toxicology 97 (12): 3023–3035.PubMedCrossRef
38.
Zurück zum Zitat Chang, X., Q. Zhang, Y. Huang, et al. 2024. Quercetin inhibits necroptosis in cardiomyocytes after ischemia-reperfusion via DNA-PKcs-SIRT5-orchestrated mitochondrial quality control. Phytotherapy Research : PTR 38 (5): 2496–2517.PubMedCrossRef Chang, X., Q. Zhang, Y. Huang, et al. 2024. Quercetin inhibits necroptosis in cardiomyocytes after ischemia-reperfusion via DNA-PKcs-SIRT5-orchestrated mitochondrial quality control. Phytotherapy Research : PTR 38 (5): 2496–2517.PubMedCrossRef
39.
Zurück zum Zitat Chang, X., S. Zhou, J. Liu, et al. 2024. Zishenhuoxue decoction-induced myocardial protection against ischemic injury through TMBIM6-VDAC1-mediated regulation of calcium homeostasis and mitochondrial quality surveillance. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 132: 155331.PubMedCrossRef Chang, X., S. Zhou, J. Liu, et al. 2024. Zishenhuoxue decoction-induced myocardial protection against ischemic injury through TMBIM6-VDAC1-mediated regulation of calcium homeostasis and mitochondrial quality surveillance. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 132: 155331.PubMedCrossRef
40.
Zurück zum Zitat Zhang, X.J., P. Zhang, and H. Li. 2015. Interferon regulatory factor signalings in cardiometabolic diseases. Hypertension 66 (2): 222–247.PubMedCrossRef Zhang, X.J., P. Zhang, and H. Li. 2015. Interferon regulatory factor signalings in cardiometabolic diseases. Hypertension 66 (2): 222–247.PubMedCrossRef
41.
Zurück zum Zitat Sindhu, S., S. Kochumon, R. Thomas, A. Bennakhi, F. Al-Mulla, and R. Ahmad. 2020. Enhanced Adipose Expression of Interferon Regulatory Factor (IRF)-5 Associates with the Signatures of Metabolic Inflammation in Diabetic Obese Patients. Cells 9 (3): 730.PubMedPubMedCentralCrossRef Sindhu, S., S. Kochumon, R. Thomas, A. Bennakhi, F. Al-Mulla, and R. Ahmad. 2020. Enhanced Adipose Expression of Interferon Regulatory Factor (IRF)-5 Associates with the Signatures of Metabolic Inflammation in Diabetic Obese Patients. Cells 9 (3): 730.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Tang, P., S. Virtue, J.Y.G. Goie, et al. 2021. Regulation of adipogenic differentiation and adipose tissue inflammation by interferon regulatory factor 3. Cell Death and Differentiation 28 (11): 3022–3035.PubMedPubMedCentralCrossRef Tang, P., S. Virtue, J.Y.G. Goie, et al. 2021. Regulation of adipogenic differentiation and adipose tissue inflammation by interferon regulatory factor 3. Cell Death and Differentiation 28 (11): 3022–3035.PubMedPubMedCentralCrossRef
Metadaten
Titel
IRF-1 Regulates Mitochondrial Respiration and Intrinsic Apoptosis Under Metabolic Stress through ATP Synthase Ancillary Factor TMEM70
verfasst von
ChongXiu Sun
Haotian Sun
Jiahao Wei
Xing Fan
Scott I. Simon
Anthony G. Passerini
Publikationsdatum
06.12.2024
Verlag
Springer US
Erschienen in
Inflammation
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02209-w

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Mit Lidocain kommt der Darm nicht schneller in Schwung

Verzögertes Wiederanspringen der Darmfunktion ist ein Hauptfaktor dafür, wenn Patientinnen und Patienten nach einer Kolonresektion länger als geplant im Krankenhaus bleiben müssen. Ob man diesem Problem mit Lidocain vorbeugen kann, war Thema einer Studie.

Koronare Herzkrankheit: Das waren die Top-Studien in 2024

Zum Thema Koronare Herzkrankheit gab es 2024 wichtige neue Studien. Beleuchtet wurden darin unter anderem der Stellenwert von Betablockern nach Herzinfarkt, neue Optionen für eine Lipidsenkung sowie die Therapie bei infarktbedingtem kardiogenem Schock.

CDK4/6-Inhibitoren bei Brustkrebs in die Zweitlinie aufschieben?

Ergebnisse einer Phase-III-Studie sprechen dafür, dass die Behandlung mit CDK4/6-Inhibitoren bei fortgeschrittenem HR-positivem, HER2-negativem Brustkrebs auch auf die Zweitlinie verschoben werden könnte, ohne die onkologischen Ergebnisse zu kompromittieren.

Inhalative Steroide bei COPD nicht kardioprotektiv

  • 10.01.2025
  • COPD
  • Nachrichten

Ob inhalative Kortikosteroide (ICS) COPD-Kranke außer vor akuten Exazerbationen auch vor kardiovaskulären Komplikationen schützen können, ist unklar. Eine bevölkerungsbasierte Studie aus England spricht nicht dafür.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.