Skip to main content
Erschienen in: Inflammation 1/2018

02.11.2017 | ORIGINAL ARTICLE

Irisin Alleviates Advanced Glycation End Products-Induced Inflammation and Endothelial Dysfunction via Inhibiting ROS-NLRP3 Inflammasome Signaling

verfasst von: Xian Deng, Wei Huang, Juan Peng, Ting-Ting Zhu, Xiao-Lei Sun, Xiang-Yu Zhou, Hui Yang, Jian-Feng Xiong, Hu-Qiang He, You-Hua Xu, Yan-Zheng He

Erschienen in: Inflammation | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

The activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome have been implicated in the initiation or progression of atherosclerosis. Recent research showed that irisin, a newly discovered adipomiokine, alleviates endothelial dysfunction in type 2 diabetes partially via reducing oxidative/nitrative stresses, suggesting that irisin may be a promising candidate for the treatment of vascular complications of diabetes. However, the association between irisin and NLRP3 inflammasome in the pathogenesis of atherosclerosis remains unclear. In the present study, we cultured human umbilical vein endothelial cells (HUVECs) in advanced glycation end products (AGEs) medium; exogenous irisin (0.01, 0.1, 1 μg/ml) were used as an intervention reagent. siRNA and adenoviral vector were constructed to realize silencing and over-expression of NLRP3 gene. Our data showed that irisin significantly reversed AGEs-induced oxidative stress and NLRP3 inflammasome signaling activation (p < 0.05), and increased the endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production in a dose-dependent manner (p < 0.05). siRNA-mediated knockdown NLRP3 facilitated the irisin-mediated anti-inflammatory and antiatherogenic effects (p < 0.05). However, these irisin-mediated effects were reversed by over-expression NLRP3 (p < 0.05). Taken together, our results reveal that irisin alleviates AGEs-induced inflammation and endothelial dysfunction via inhibiting ROS-NLRP3 inflammasome signaling, suggest a likely mechanism for irisin-induced therapeutic effect in vascular complications of diabetes.
Literatur
1.
Zurück zum Zitat Patel, M.N., R.G. Carroll, S. Galván-Peña, E.L. Mills, R. Olden, M. Triantafilou, A.I. Wolf, C.E. Bryant, K. Triantafilou, and S.L. Masters. 2017. Inflammasome priming in sterile inflammatory disease. Trends in Molecular Medicine 23 (2): 165–180.CrossRefPubMed Patel, M.N., R.G. Carroll, S. Galván-Peña, E.L. Mills, R. Olden, M. Triantafilou, A.I. Wolf, C.E. Bryant, K. Triantafilou, and S.L. Masters. 2017. Inflammasome priming in sterile inflammatory disease. Trends in Molecular Medicine 23 (2): 165–180.CrossRefPubMed
3.
Zurück zum Zitat Zheng, Y., S.E. Gardner, and M.C. Clarke. 2011. Cell death, damage-associated molecular patterns, and sterile inflammation in cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (12): 2781–2786.CrossRefPubMed Zheng, Y., S.E. Gardner, and M.C. Clarke. 2011. Cell death, damage-associated molecular patterns, and sterile inflammation in cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (12): 2781–2786.CrossRefPubMed
4.
Zurück zum Zitat Koka, S., M. Xia, Y. Chen, O.M. Bhat, X. Yuan, K.M. Boini, and P.L. Li. 2017. Endothelial NLRP3 inflammasome activation and arterial neointima formation associated with acid sphingomyelinase during hypercholesterolemia. Redox Biology 13: 336–344.CrossRefPubMedPubMedCentral Koka, S., M. Xia, Y. Chen, O.M. Bhat, X. Yuan, K.M. Boini, and P.L. Li. 2017. Endothelial NLRP3 inflammasome activation and arterial neointima formation associated with acid sphingomyelinase during hypercholesterolemia. Redox Biology 13: 336–344.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Perakakis, N., G.A. Triantafyllou, J.M. Fernández-Real, J.Y. Huh, K.H. Park, J. Seufert, and C.S. Mantzoros. 2017. Physiology and role of irisin in glucose homeostasis. Nature Reviews. Endocrinology 13 (6): 324–337.CrossRefPubMed Perakakis, N., G.A. Triantafyllou, J.M. Fernández-Real, J.Y. Huh, K.H. Park, J. Seufert, and C.S. Mantzoros. 2017. Physiology and role of irisin in glucose homeostasis. Nature Reviews. Endocrinology 13 (6): 324–337.CrossRefPubMed
6.
Zurück zum Zitat Gouveia, M.C., J.P. Vella, F.R. Cafeo, F.L. Affonso Fonseca, and M.R. Bacci. 2016. Association between irisin and major chronic diseases: a review. European Review for Medical and Pharmacological Sciences 20 (19): 4072–4077.PubMed Gouveia, M.C., J.P. Vella, F.R. Cafeo, F.L. Affonso Fonseca, and M.R. Bacci. 2016. Association between irisin and major chronic diseases: a review. European Review for Medical and Pharmacological Sciences 20 (19): 4072–4077.PubMed
7.
Zurück zum Zitat Du, X.L., W.X. Jiang, and Z.T. Lv. 2016. Lower circulating irisin level in patients with diabetes mellitus: a systematic review and meta-analysis. Hormone and Metabolic Research 48 (10): 644–652.CrossRefPubMed Du, X.L., W.X. Jiang, and Z.T. Lv. 2016. Lower circulating irisin level in patients with diabetes mellitus: a systematic review and meta-analysis. Hormone and Metabolic Research 48 (10): 644–652.CrossRefPubMed
8.
Zurück zum Zitat Mahmoodnia, L., M. Sadoughi, A. Ahmadi, and M. Kafeshani. 2016. Relationship between serum irisin, glycemic indices, and renal function in type 2 diabetic patients. Journal of Renal Injury Prevention 6 (2): 88–92.CrossRefPubMedPubMedCentral Mahmoodnia, L., M. Sadoughi, A. Ahmadi, and M. Kafeshani. 2016. Relationship between serum irisin, glycemic indices, and renal function in type 2 diabetic patients. Journal of Renal Injury Prevention 6 (2): 88–92.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Chen, J.Q., Y.Y. Huang, A.M. Gusdon, and S. Qu. 2015. Irisin: a new molecular marker and target in metabolic disorder. Lipids in Health and Disease 14: 2.CrossRefPubMedPubMedCentral Chen, J.Q., Y.Y. Huang, A.M. Gusdon, and S. Qu. 2015. Irisin: a new molecular marker and target in metabolic disorder. Lipids in Health and Disease 14: 2.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Hou, N., G. Du, F. Han, J. Zhang, X. Jiao, and X. Sun. 2017. Irisin regulates heme oxygenase-1/adiponectin axis in perivascular adipose tissue and improves endothelial dysfunction in diet-induced obese mice. Cellular Physiology and Biochemistry 42 (2): 603–614.CrossRefPubMed Hou, N., G. Du, F. Han, J. Zhang, X. Jiao, and X. Sun. 2017. Irisin regulates heme oxygenase-1/adiponectin axis in perivascular adipose tissue and improves endothelial dysfunction in diet-induced obese mice. Cellular Physiology and Biochemistry 42 (2): 603–614.CrossRefPubMed
11.
Zurück zum Zitat Song, H., F. Wu, Y. Zhang, Y. Zhang, F. Wang, M. Jiang, Z. Wang, M. Zhang, S. Li, L. Yang, X.L. Wang, T. Cui, and D. Tang. 2014. Irisin promotes human umbilical vein endothelial cell proliferation through the ERK signaling pathway and partly suppresses high glucose-induced apoptosis. PLoS One 9 (10): e110273.CrossRefPubMedPubMedCentral Song, H., F. Wu, Y. Zhang, Y. Zhang, F. Wang, M. Jiang, Z. Wang, M. Zhang, S. Li, L. Yang, X.L. Wang, T. Cui, and D. Tang. 2014. Irisin promotes human umbilical vein endothelial cell proliferation through the ERK signaling pathway and partly suppresses high glucose-induced apoptosis. PLoS One 9 (10): e110273.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Zhu, D., H. Wang, J. Zhang, X. Zhang, C. Xin, F. Zhang, Y. Lee, L. Zhang, K. Lian, W. Yan, X. Ma, Y. Liu, and L. Tao. 2015. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. Journal of Molecular and Cellular Cardiology 87: 138–147.CrossRefPubMed Zhu, D., H. Wang, J. Zhang, X. Zhang, C. Xin, F. Zhang, Y. Lee, L. Zhang, K. Lian, W. Yan, X. Ma, Y. Liu, and L. Tao. 2015. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. Journal of Molecular and Cellular Cardiology 87: 138–147.CrossRefPubMed
13.
Zurück zum Zitat Xu, Y., L. Feng, S. Wang, Q. Zhu, Z. Zheng, P. Xiang, B. He, and D. Tang. 2011. Calycosin protects HUVECs from advanced glycation end products-induced macrophage infiltration. Journal of Ethnopharmacology 137 (1): 359–370.CrossRefPubMed Xu, Y., L. Feng, S. Wang, Q. Zhu, Z. Zheng, P. Xiang, B. He, and D. Tang. 2011. Calycosin protects HUVECs from advanced glycation end products-induced macrophage infiltration. Journal of Ethnopharmacology 137 (1): 359–370.CrossRefPubMed
14.
Zurück zum Zitat Sun, X., X. Jiao, Y. Ma, Y. Liu, L. Zhang, Y. He, and Y. Chen. 2016. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochemical and Biophysical Research Communications 481 (1–2): 63–70.CrossRefPubMed Sun, X., X. Jiao, Y. Ma, Y. Liu, L. Zhang, Y. He, and Y. Chen. 2016. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochemical and Biophysical Research Communications 481 (1–2): 63–70.CrossRefPubMed
15.
Zurück zum Zitat Gistera, A., and G.K. Hansson. 2017. The immunology of atherosclerosis. Nature Reviews. Nephrology 13 (6): 368–380.CrossRefPubMed Gistera, A., and G.K. Hansson. 2017. The immunology of atherosclerosis. Nature Reviews. Nephrology 13 (6): 368–380.CrossRefPubMed
16.
Zurück zum Zitat Karasawa, T., and M. Takahashi. 2017. Role of NLRP3 inflammasomes in atherosclerosis. Journal of Atherosclerosis and Thrombosis 24 (5): 443–451.CrossRefPubMedPubMedCentral Karasawa, T., and M. Takahashi. 2017. Role of NLRP3 inflammasomes in atherosclerosis. Journal of Atherosclerosis and Thrombosis 24 (5): 443–451.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Bando, S., D. Fukuda, T. Soeki, et al. 2015. Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis. Atherosclerosis 242 (2): 407–414.CrossRefPubMed Bando, S., D. Fukuda, T. Soeki, et al. 2015. Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis. Atherosclerosis 242 (2): 407–414.CrossRefPubMed
18.
Zurück zum Zitat Afrasyab, A., P. Qu, Y. Zhao, K. Peng, H. Wang, D. Lou, N. Niu, and D. Yuan. 2016. Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart and Vessels 31 (8): 1218–1229.CrossRefPubMed Afrasyab, A., P. Qu, Y. Zhao, K. Peng, H. Wang, D. Lou, N. Niu, and D. Yuan. 2016. Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart and Vessels 31 (8): 1218–1229.CrossRefPubMed
19.
Zurück zum Zitat Wang, L., P. Qu, J. Zhao, and Y. Chang. 2014. NLRP3 and downstream cytokine expression elevated in the monocytes of patients with coronary artery disease. Archives of Medical Science 10 (4): 791–800.CrossRefPubMedPubMedCentral Wang, L., P. Qu, J. Zhao, and Y. Chang. 2014. NLRP3 and downstream cytokine expression elevated in the monocytes of patients with coronary artery disease. Archives of Medical Science 10 (4): 791–800.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Feng, H., J. Gu, F. Gou, W. Huang, C. Gao, G. Chen, Y. Long, X. Zhou, M. Yang, S. Liu, S. Lü, Q. Luo, and Y. Xu. 2016. High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells. Journal of Diabetes Research 2016: 6973175.CrossRefPubMedPubMedCentral Feng, H., J. Gu, F. Gou, W. Huang, C. Gao, G. Chen, Y. Long, X. Zhou, M. Yang, S. Liu, S. Lü, Q. Luo, and Y. Xu. 2016. High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells. Journal of Diabetes Research 2016: 6973175.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Haslund-Vinding, J., G. McBean, V. Jaquet, and F. Vilhardt. 2017. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. British Journal of Pharmacology 174 (12): 1733–1749.CrossRefPubMed Haslund-Vinding, J., G. McBean, V. Jaquet, and F. Vilhardt. 2017. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. British Journal of Pharmacology 174 (12): 1733–1749.CrossRefPubMed
23.
24.
Zurück zum Zitat Förstermann, U., N. Xia, and H. Li. 2017. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circulation Research 120 (4): 713–735.CrossRefPubMed Förstermann, U., N. Xia, and H. Li. 2017. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circulation Research 120 (4): 713–735.CrossRefPubMed
25.
Zurück zum Zitat Liu, P., Q. Xie, T. Wei, Y. Chen, H. Chen, and W. Shen. 2015. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats. Biochemical and Biophysical Research Communications 468: 319–325.CrossRefPubMed Liu, P., Q. Xie, T. Wei, Y. Chen, H. Chen, and W. Shen. 2015. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats. Biochemical and Biophysical Research Communications 468: 319–325.CrossRefPubMed
26.
Zurück zum Zitat Itoh, Y., H. Toriumi, S. Yamada, H. Hoshino, and N. Suzuki. 2010. Resident endothelial cells surrounding damaged arterial endothelium reendothelialize the lesion. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 1725–1732.CrossRefPubMed Itoh, Y., H. Toriumi, S. Yamada, H. Hoshino, and N. Suzuki. 2010. Resident endothelial cells surrounding damaged arterial endothelium reendothelialize the lesion. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 1725–1732.CrossRefPubMed
27.
Zurück zum Zitat Arias-Loste, M.T., I. Ranchal, M. Romero-Gómez, and J. Crespo. 2014. Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. International Journal of Molecular Sciences 15 (12): 23163–23178.CrossRefPubMedPubMedCentral Arias-Loste, M.T., I. Ranchal, M. Romero-Gómez, and J. Crespo. 2014. Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. International Journal of Molecular Sciences 15 (12): 23163–23178.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Lu, J., G. Xiang, M. Liu, W. Mei, L. Xiang, and J. Dong. 2015. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-null diabetic mice. Atherosclerosis 243 (2): 438–448.CrossRefPubMed Lu, J., G. Xiang, M. Liu, W. Mei, L. Xiang, and J. Dong. 2015. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-null diabetic mice. Atherosclerosis 243 (2): 438–448.CrossRefPubMed
29.
Zurück zum Zitat Gannon, N.P., R.A. Vaughan, R. Garcia-Smith, M. Bisoffi, and K.A. Trujillo. 2015. Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. International Journal of Cancer 136 (4): E197–E202.CrossRefPubMed Gannon, N.P., R.A. Vaughan, R. Garcia-Smith, M. Bisoffi, and K.A. Trujillo. 2015. Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. International Journal of Cancer 136 (4): E197–E202.CrossRefPubMed
30.
Zurück zum Zitat Zhang, Y., H. Song, Y. Zhang, et al. 2016. Irisin inhibits atherosclerosis by promoting endothelial proliferation through microRNA126-5p. Journal of the American Heart Association 5 (9): e004031.CrossRefPubMedPubMedCentral Zhang, Y., H. Song, Y. Zhang, et al. 2016. Irisin inhibits atherosclerosis by promoting endothelial proliferation through microRNA126-5p. Journal of the American Heart Association 5 (9): e004031.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Zheng, F., S. Xing, Z. Gong, W. Mu, and Q. Xing. 2014. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators of Inflammation 2014: 507208.PubMedPubMedCentral Zheng, F., S. Xing, Z. Gong, W. Mu, and Q. Xing. 2014. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators of Inflammation 2014: 507208.PubMedPubMedCentral
32.
Zurück zum Zitat Menu, P., M. Pellegrin, J.F. Aubert, K. Bouzourene, A. Tardivel, L. Mazzolai, and J. Tschopp. 2011. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death & Disease 2: e137.CrossRef Menu, P., M. Pellegrin, J.F. Aubert, K. Bouzourene, A. Tardivel, L. Mazzolai, and J. Tschopp. 2011. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death & Disease 2: e137.CrossRef
Metadaten
Titel
Irisin Alleviates Advanced Glycation End Products-Induced Inflammation and Endothelial Dysfunction via Inhibiting ROS-NLRP3 Inflammasome Signaling
verfasst von
Xian Deng
Wei Huang
Juan Peng
Ting-Ting Zhu
Xiao-Lei Sun
Xiang-Yu Zhou
Hui Yang
Jian-Feng Xiong
Hu-Qiang He
You-Hua Xu
Yan-Zheng He
Publikationsdatum
02.11.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0685-3

Weitere Artikel der Ausgabe 1/2018

Inflammation 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.