Skip to main content
Erschienen in: Lasers in Medical Science 1/2021

25.06.2020 | Original Article

Irradiation by high-intensity red light-emitting diode enhances human bone marrow mesenchymal stem cells osteogenic differentiation and mineralization through Wnt/β-catenin signaling pathway

verfasst von: Yaru Ruan, Hirohito Kato, Yoichiro Taguchi, Nobuhiro Yamauchi, Makoto Umeda

Erschienen in: Lasers in Medical Science | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Photobiomodulation therapy (PBMT) using a light-emitting diode (LED) has been employed for various photomedicine studies. The aim of this study was to determine the effects of a high-intensity red LED on the proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs) and the related mechanism. BMSCs were subjected to high-intensity red LED (LZ1-00R205 Deep Red LED) irradiations for 0 to 40 s with energy densities ranging from 0 to 8 J/cm2. The distance from the LED to the cell layer was 40 mm. The spot size on the target was 4 cm2. Cell proliferation was measured at 3, 24, 48, and 72 h. The effects of LED irradiation on osteogenic differentiation and mineralization were examined with a particular focus on the Wnt/β-catenin signaling pathway. The high-intensity red LED irradiations did not alter BMSC proliferation after 72 h. LED exposure of 6 J/cm2 (30 s) led to significant enhancements of osteogenic differentiation and mineralization. Additionally, the high-intensity LED irradiation induced activation of Wnt/β-catenin. The effects of the high-intensity LED irradiation on BMSC osteogenic differentiation and mineralization were suppressed by treatment with the Wnt/β-catenin inhibitor XAV939. P < 0.05 was considered significant. The results indicate that high-intensity red LED irradiation increases BMSC osteogenic differentiation and mineralization via Wnt/β-catenin activation. Therefore, short duration irradiation with a portable high-intensity LED may be used as a potential approach in hard tissue regeneration therapy.
Literatur
2.
Zurück zum Zitat Mohammadi Z, Afshari JT, Keramati MR et al (2015) Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells. Iran J Basic Med Sci 18:259–266PubMedPubMedCentral Mohammadi Z, Afshari JT, Keramati MR et al (2015) Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells. Iran J Basic Med Sci 18:259–266PubMedPubMedCentral
15.
Zurück zum Zitat Cobb CM (2006) Lasers in periodontics: a review of the literature. J Periodontol 77(4):545–564CrossRef Cobb CM (2006) Lasers in periodontics: a review of the literature. J Periodontol 77(4):545–564CrossRef
18.
19.
Zurück zum Zitat Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(S1):S-157–S-165CrossRef Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(S1):S-157–S-165CrossRef
20.
Zurück zum Zitat Rahiotis C, Patsouri K, Silikas N et al (2010) Curing efficiency of high-intensity light-emitting diode (LED) devices. J Oral Sci 52(2):187–195CrossRef Rahiotis C, Patsouri K, Silikas N et al (2010) Curing efficiency of high-intensity light-emitting diode (LED) devices. J Oral Sci 52(2):187–195CrossRef
23.
Zurück zum Zitat Yang F, Yang D, Tu J et al (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29(6):981–991CrossRef Yang F, Yang D, Tu J et al (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29(6):981–991CrossRef
27.
Zurück zum Zitat Peng F, Wu H, Zheng Y et al (2012) The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 27(3):645–653CrossRef Peng F, Wu H, Zheng Y et al (2012) The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 27(3):645–653CrossRef
30.
Zurück zum Zitat Hou JF, Zhang H, Yuan X et al (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733CrossRef Hou JF, Zhang H, Yuan X et al (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733CrossRef
31.
Zurück zum Zitat Mvula B, Mathope T, Moore T et al (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23(3):277–282CrossRef Mvula B, Mathope T, Moore T et al (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23(3):277–282CrossRef
32.
Zurück zum Zitat Kim HK, Kim JH, Abbas AA et al (2008) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222CrossRef Kim HK, Kim JH, Abbas AA et al (2008) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222CrossRef
35.
Zurück zum Zitat Aubin JE, Liu F, Malaval L et al (1995) Osteoblast and chondroblast differentiation. Bone 17(2):S77–S83CrossRef Aubin JE, Liu F, Malaval L et al (1995) Osteoblast and chondroblast differentiation. Bone 17(2):S77–S83CrossRef
41.
Zurück zum Zitat He X, Semenov M, Tamai K et al (2004) LDL receptor-related proteins 5 and 6 in Wnt/ -catenin signaling: arrows point the way. Development 131(8):1663–1677CrossRef He X, Semenov M, Tamai K et al (2004) LDL receptor-related proteins 5 and 6 in Wnt/ -catenin signaling: arrows point the way. Development 131(8):1663–1677CrossRef
44.
Zurück zum Zitat Zhang RF, Wang Q, Zhang AA et al (2018) Low-level laser irradiation promotes the differentiation of bone marrow stromal cells into osteoblasts through the APN/Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 22(9):2860–2868PubMed Zhang RF, Wang Q, Zhang AA et al (2018) Low-level laser irradiation promotes the differentiation of bone marrow stromal cells into osteoblasts through the APN/Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 22(9):2860–2868PubMed
46.
Zurück zum Zitat You W, Fan L, Duan D et al (2014) Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation. Mol Cell Biochem 386:125–134CrossRef You W, Fan L, Duan D et al (2014) Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation. Mol Cell Biochem 386:125–134CrossRef
47.
Zurück zum Zitat Huang SMA, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signaling. Nature 461(7264):614–620CrossRef Huang SMA, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signaling. Nature 461(7264):614–620CrossRef
48.
Zurück zum Zitat Guo C, Yang RJ, Jang K et al (2017) Protective effects of pretreatment with quercetin against lipopolysaccharide-induced apoptosis and the inhibition of osteoblast differentiation via the MAPK and Wnt/β-catenin pathways in MC3T3-E1 cells. Cell Physiol Biochem 43(4):1547–1561. https://doi.org/10.1159/000481978CrossRefPubMed Guo C, Yang RJ, Jang K et al (2017) Protective effects of pretreatment with quercetin against lipopolysaccharide-induced apoptosis and the inhibition of osteoblast differentiation via the MAPK and Wnt/β-catenin pathways in MC3T3-E1 cells. Cell Physiol Biochem 43(4):1547–1561. https://​doi.​org/​10.​1159/​000481978CrossRefPubMed
49.
Zurück zum Zitat Listl S, Tu YK, Faggion CM Jr (2010) A cost-effectiveness evaluation of enamel matrix derivatives alone or in conjunction with regenerative devices in the treatment of periodontal intra-osseous defects. J Clin Periodontol 37(10):920–927CrossRef Listl S, Tu YK, Faggion CM Jr (2010) A cost-effectiveness evaluation of enamel matrix derivatives alone or in conjunction with regenerative devices in the treatment of periodontal intra-osseous defects. J Clin Periodontol 37(10):920–927CrossRef
50.
Zurück zum Zitat Esnouf A, Wright PA, Moore JC, Ahmed S (2007) Depth of penetration of an 850nm wavelength low level laser in human skin. Acupunct Electrother Res 32(1–2):81–86CrossRef Esnouf A, Wright PA, Moore JC, Ahmed S (2007) Depth of penetration of an 850nm wavelength low level laser in human skin. Acupunct Electrother Res 32(1–2):81–86CrossRef
51.
Zurück zum Zitat Opel DR, Hagstrom E, Pace AK et al (2015) Light-emitting diodes: a brief review and clinical experience. J Clin Aesthet Dermatol 8(6):36–44PubMedPubMedCentral Opel DR, Hagstrom E, Pace AK et al (2015) Light-emitting diodes: a brief review and clinical experience. J Clin Aesthet Dermatol 8(6):36–44PubMedPubMedCentral
Metadaten
Titel
Irradiation by high-intensity red light-emitting diode enhances human bone marrow mesenchymal stem cells osteogenic differentiation and mineralization through Wnt/β-catenin signaling pathway
verfasst von
Yaru Ruan
Hirohito Kato
Yoichiro Taguchi
Nobuhiro Yamauchi
Makoto Umeda
Publikationsdatum
25.06.2020
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2021
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-020-03002-5

Weitere Artikel der Ausgabe 1/2021

Lasers in Medical Science 1/2021 Zur Ausgabe