Skip to main content
Erschienen in: Critical Care 5/2014

Open Access 01.10.2014 | Editorial

Is nosocomial infection really the major cause of death in sepsis?

verfasst von: Neil M Goldenberg, Aleksandra Leligdowicz, Arthur S Slutsky, Jan O Friedrich, Warren L Lee

Erschienen in: Critical Care | Ausgabe 5/2014

Abstract

No abstract.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13054-014-0540-y) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Introduction

Over 25 clinical trials for sepsis have failed [1],[2], suggesting that our current understanding of its pathogenesis is incomplete. Deaths occur days to weeks after diagnosis and have been attributed to one of two phenomena [3]. First, a subset of patients succumbs to an overwhelming acute inflammatory response driven by the innate immune system, leading to death within days of the initial infection. However, most patients survive this phase and the repeated failure of anti-inflammatory therapies for sepsis (for example, anti-tumor necrosis factor antibodies [4], high-dose corticosteroids [5]) indicates that inflammation per se is unlikely to be a major cause of death. Most sepsis deaths occur later and have been associated with dysfunction of the innate and adaptive immune systems [6], characterized by decreased cytokine production and lymphocyte apoptosis [7]. These mechanisms have been postulated to cause immunosuppression [3],[8],[9], predisposing patients to fatal nosocomial infections. Based on this hypothesis, immunoadjuvant therapy to boost the immune system has been proposed recently as a therapeutic approach.

The argument against nosocomial infection

The notion of death due to nosocomial infection is at odds with our clinical experience, in which patients with sepsis die despite broad-spectrum antibiotics and negative microbial cultures. Indeed, two studies often cited as evidence for this theory are open to alternative interpretations. The first study reported a high (~80 %) rate of infected foci in those patients dying from sepsis [10]. Yet it was unclear whether culture data reflected only postmortem or perimortem cultures, or incorporated laboratory results taken earlier during hospitalization - a period in which positive cultures would be expected. The second study did not report the incidence of positive cultures in patients who died from sepsis, a critical statistic for determining the contribution of nosocomial infection to mortality [1]. This study described three phases of mortality, divided into deaths occurring within hospital days 0 to 5 (phase I), days 6 to 15 (phase II) and days 16 to 150 (phase III). Despite the fact that phase III included the largest number of days by far, the mortality rate was highest in phase I, arguing against late nosocomial infection being the main cause of death.
A recent retrospective analysis in our own center has provided further evidence against this theory. We considered all patients admitted to the ICU who were screened for a sepsis study of heparin (Heparin Anticoagulation to Improve Outcomes in Septic Shock; ClinicalTrials.gov NCT 1648036) and subsequently died. From these patients, we selected those who actually had sepsis and looked for evidence of a secondary nosocomial infection, defined as a detected new microbial isolate prior to death. Of 26 consecutive patients dying of septic shock in a mixed medical-surgical ICU, only three (14 %) patients had evidence of a new infection at the time of death (Table 1). While our study is not definitive, taken together with other results, the theory that nosocomial infection is the predominant cause of death from sepsis seems tenuous.
Table 1
Lack of evidence of nosocomial infection in a retrospective cohort of patients dying of sepsis
Age range (years)
Source of infection
SOFA score
ICU LOS (days)
Days from diagnosis to death
Days from final culture to death
Final culture result
Cause of death
Evidence of nosocomial infection
70 to 79
Lung
12
16
13
1
No growth
Cancer
No nosocomial infection
60 to 69
Skin and soft tissue
9
55
55
5
No growth
CHF
No nosocomial infection
80 to 89
Genitourinary
12
1
14
2
No growth
CHF
No nosocomial infection
70 to 79
Bloodstream
15
17
17
2
Original organism
IE/sepsis
No nosocomial infection
80 to 89
Lung
18
54
73
<1
Original organism
Ischemic bowel
No nosocomial infection
40 to 49
Intra-abdominal
12
14
14
14
No growth
Liver failure
No nosocomial infection
80 to 89
Lung
11
12
10
1
No growth
MI
No nosocomial infection
70 to 79
Lung
10
5
3
1
Original organism
MI
No nosocomial infection
40 to 49
Bloodstream
21
14
4
1
No growth
MOF
No nosocomial infection
50 to 59
Bloodstream
15
16
33
3
No growth
MOF
No nosocomial infection
40 to 49
Intra-abdominal
17
4
5
1
No growth
MOF
No nosocomial infection
70 to 79
Intra-abdominal
16
42
43
3
No growth
MOF
No nosocomial infection
60 to 69
Lung
9
19
18
2
No growth
MOF
No nosocomial infection
50 to 59
Skin and soft tissue
13
10
11
1
No growth
MOF
No nosocomial infection
60 to 69
Skin and soft tissue
14
76
57
2
No growth
MOF
No nosocomial infection
<30
Skin and soft tissue
14
86
85
<1
No growth
MOF
No nosocomial infection
80 to 89
Genitourinary
16
1
1
1
Original organism
MOF
No nosocomial infection
70 to 79
Lung
4
34
22
3
No growth
Tumor lysis
No nosocomial infection
40 to 49
Intra-abdominal
7
46
74
1
New organism
MOF
Nosocomial infection
70 to 79
Intra-abdominal
5
6
6
1
New organism
MOF
Nosocomial infection
<30
Intra-abdominal
12
37
37
<1
New organism
Pancreatitis
Nosocomial infection
60 to 69
Intra-abdominal
5
1
7
3
New organism
MOF
Indeterminate
50 to 59
Skin and soft tissue
12
37
37
4
No growth
MOF
Indeterminate
40 to 49
Lung
16
68
50
6
No growth
MOF
Indeterminate
70 to 79
Lung
13
17
17
13
Original organism
MOF
Indeterminate
70 to 79
Intra-abdominal
14
3
13
<1
No growth
Sepsis
Indeterminate
The initial antibiotic therapy was checked against culture and sensitivity results to record the appropriateness of antibiotic therapy for the initial isolate. Results of the final culture before death and the time from that culture until death are indicated (<1 means the same day as death). CHF, congestive heart failure; IE, infective endocarditis; LOS, length of stay; MI, myocardial infarction; MOF, multiorgan failure; SOFA, Sequential Organ Failure Assessment.

If not infection, what else?

Mitochondrial dysfunction

There is substantial evidence for mitochondrial dysfunction in sepsis [11]. The theory is that if perfusion and oxygen content are adequate but organ dysfunction still exists, the cells must be unable to use oxygen. Several factors, including reactive oxygen species, hormonal deficiencies, and the impact of systemic inflammation on mitochondrial gene transcription, are thought to contribute [11],[12]. Furthermore, leukocytes from septic patients have been shown to possess abnormal oxygen metabolism [13], and mitochondrial dysfunction has been associated with poor outcomes in septic shock [14]. While trials of antioxidant therapy have been unsuccessful (reviewed in [2]), further trials are needed to determine the validity of this approach.

Microvascular leak

Another theory for death from sepsis implicates systemic vascular leak (Figure 1) [15],[16]. Loss of endothelial barrier integrity leads to tissue edema, hypoperfusion, and organ dysfunction. These features are characteristic of human sepsis but until recently were absent from animal models. Importantly, various lines of evidence for this theory exist. In mice, buttressing the endothelial barrier directly protected against death from sepsis [17],[18]. In humans, limiting fluids accelerated recovery in acute respiratory distress syndrome [19], while a positive fluid balance was associated with worse outcome in sepsis [20]; most recently, in a post hoc subgroup of the sickest sepsis patients, albumin therapy - which would limit edema formation - was also protective [21].

Conclusion

Sepsis has been termed a pharmaceutical `graveyard’ [22] due to repeated failure of human clinical trials. Despite calls for a trial of immunoadjuvant therapy, the evidence supporting nosocomial infection as the main cause of death is weak. A small study of granulocyte-macrophage colony-stimulating factor in patients with severe sepsis/septic shock observed improvements in monocyte function but no significant change in a host of clinical parameters except for the duration of mechanical ventilation [23]. Practically, if most patients who die from sepsis have sterile cultures, it is unlikely that boosting the immune system or adding additional antibiotics will improve outcomes. Further research into the contribution of nosocomial infection to sepsis mortality is thus necessary, as well as research into other potential contributors such as systemic microvascular leak.

Acknowledgements

The retrospective chart review was approved by the Research Ethics Board at St Michael's Hospital, Toronto, Ontario, Canada (#REB 13-273c). The authors would like to thank the Heparin Anticoagulation to Improve Outcomes in Septic Shock research nurses and personnel for their help with this study.

Competing interests

The authors declare that they have no competing interests.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Otto GP, Sossdorf M, Claus RA, Rödel J, Menge K, Reinhart K, Bauer M, Riedemann NC: The late phase of sepsis is characterized by an increased microbiological burden and death rate.Crit Care 2011, 15:R183., Otto GP, Sossdorf M, Claus RA, Rödel J, Menge K, Reinhart K, Bauer M, Riedemann NC: The late phase of sepsis is characterized by an increased microbiological burden and death rate.Crit Care 2011, 15:R183.,
2.
Zurück zum Zitat Riedemann NC, Guo R-F, Ward PA: Novel strategies for the treatment of sepsis. Nat Med. 2003, 9: 517-524. 10.1038/nm0503-517.CrossRef Riedemann NC, Guo R-F, Ward PA: Novel strategies for the treatment of sepsis. Nat Med. 2003, 9: 517-524. 10.1038/nm0503-517.CrossRef
3.
Zurück zum Zitat Hotchkiss RS, Monneret G, Payen D: Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013, 13: 260-268. 10.1016/S1473-3099(13)70001-X.CrossRef Hotchkiss RS, Monneret G, Payen D: Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013, 13: 260-268. 10.1016/S1473-3099(13)70001-X.CrossRef
4.
Zurück zum Zitat Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, Bone R, Wenzel RP, Balk R, Allred R: Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA. 1995, 273: 934-941. 10.1001/jama.1995.03520360048038.CrossRef Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, Bone R, Wenzel RP, Balk R, Allred R: Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA. 1995, 273: 934-941. 10.1001/jama.1995.03520360048038.CrossRef
5.
Zurück zum Zitat Bone RC, Fisher CJ, Clemmer TP, Slotman GJ, Metz CA, Balk RA: A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987, 317: 653-658. 10.1056/NEJM198709103171101.CrossRef Bone RC, Fisher CJ, Clemmer TP, Slotman GJ, Metz CA, Balk RA: A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987, 317: 653-658. 10.1056/NEJM198709103171101.CrossRef
6.
Zurück zum Zitat Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS: Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011, 306: 2594-2605. 10.1001/jama.2011.1829.CrossRef Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS: Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011, 306: 2594-2605. 10.1001/jama.2011.1829.CrossRef
7.
Zurück zum Zitat Hotchkiss RS, Monneret G, Payen D: Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013, 13: 862-874. 10.1038/nri3552.CrossRef Hotchkiss RS, Monneret G, Payen D: Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013, 13: 862-874. 10.1038/nri3552.CrossRef
8.
Zurück zum Zitat Payen D, Monneret G, Hotchkiss R: Immunotherapy - a potential new way forward in the treatment of sepsis.Crit Care 2013, 17:118., Payen D, Monneret G, Hotchkiss R: Immunotherapy - a potential new way forward in the treatment of sepsis.Crit Care 2013, 17:118.,
9.
Zurück zum Zitat Unsinger J, Kazama H, McDonough JS, Griffith TS, Hotchkiss RS, Ferguson TA: Sepsis-induced apoptosis leads to active suppression of delayed-type hypersensitivity by CD8+ regulatory T cells through a TRAIL-dependent mechanism. J Immunol. 2010, 184: 6766-6772. 10.4049/jimmunol.0904054.CrossRef Unsinger J, Kazama H, McDonough JS, Griffith TS, Hotchkiss RS, Ferguson TA: Sepsis-induced apoptosis leads to active suppression of delayed-type hypersensitivity by CD8+ regulatory T cells through a TRAIL-dependent mechanism. J Immunol. 2010, 184: 6766-6772. 10.4049/jimmunol.0904054.CrossRef
10.
Zurück zum Zitat Torgersen C, Moser P, Luckner G, Mayr V, Jochberger S, Hasibeder WR, Dünser MW: Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis. Anesth Analg. 2009, 108: 1841-1847. 10.1213/ane.0b013e318195e11d.CrossRef Torgersen C, Moser P, Luckner G, Mayr V, Jochberger S, Hasibeder WR, Dünser MW: Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis. Anesth Analg. 2009, 108: 1841-1847. 10.1213/ane.0b013e318195e11d.CrossRef
11.
Zurück zum Zitat Singer M: The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014, 5: 66-72. 10.4161/viru.26907.CrossRef Singer M: The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014, 5: 66-72. 10.4161/viru.26907.CrossRef
12.
Zurück zum Zitat Singer M: Powering up failed organs. Am J Respir Crit Care Med. 2007, 176: 733-734. 10.1164/rccm.200707-964ED.CrossRef Singer M: Powering up failed organs. Am J Respir Crit Care Med. 2007, 176: 733-734. 10.1164/rccm.200707-964ED.CrossRef
13.
Zurück zum Zitat Belikova I, Lukaszewicz AC, Faivre V, Damoisel C, Singer M, Payen D: Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit Care Med. 2007, 35: 2702-2708. 10.1097/01.CCM.0000295593.25106.C4.CrossRef Belikova I, Lukaszewicz AC, Faivre V, Damoisel C, Singer M, Payen D: Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit Care Med. 2007, 35: 2702-2708. 10.1097/01.CCM.0000295593.25106.C4.CrossRef
14.
Zurück zum Zitat Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M: Association between mitochondrial dysfunction and severity and outcome of septic shock. The Lancet. 2002, 360: 219-223. 10.1016/S0140-6736(02)09459-X.CrossRef Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M: Association between mitochondrial dysfunction and severity and outcome of septic shock. The Lancet. 2002, 360: 219-223. 10.1016/S0140-6736(02)09459-X.CrossRef
15.
Zurück zum Zitat Lee WL, Slutsky AS: Sepsis and endothelial permeability. N Engl J Med. 2010, 363: 689-691. 10.1056/NEJMcibr1007320.CrossRef Lee WL, Slutsky AS: Sepsis and endothelial permeability. N Engl J Med. 2010, 363: 689-691. 10.1056/NEJMcibr1007320.CrossRef
16.
Zurück zum Zitat Goldenberg NM, Steinberg BE, Slutsky AS, Lee WL: Broken barriers: a new take on sepsis pathogenesis.Sci Transl Med 2011, 3:88ps25., Goldenberg NM, Steinberg BE, Slutsky AS, Lee WL: Broken barriers: a new take on sepsis pathogenesis.Sci Transl Med 2011, 3:88ps25.,
17.
Zurück zum Zitat London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, Chen L, Kaminoh Y, Chan AC, Passi SF, Day CW, Barnard DL, Zimmerman GA, Krasnow MA, Li DY: Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza.Sci Transl Med 2010, 2:23ra19., London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, Chen L, Kaminoh Y, Chan AC, Passi SF, Day CW, Barnard DL, Zimmerman GA, Krasnow MA, Li DY: Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza.Sci Transl Med 2010, 2:23ra19.,
18.
Zurück zum Zitat Kümpers P, Gueler F, David S, Slyke PV, Dumont DJ, Park J-K, Bockmeyer CL, Parikh SM, Pavenstadt H, Haller H, Shushakova N: The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis.Crit Care 2011, 15:R261., Kümpers P, Gueler F, David S, Slyke PV, Dumont DJ, Park J-K, Bockmeyer CL, Parikh SM, Pavenstadt H, Haller H, Shushakova N: The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis.Crit Care 2011, 15:R261.,
19.
Zurück zum Zitat Heart N, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, DeBoisblanc B, Connors AF, Hite RD, Harabin AL: Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006, 354: 2564-2575. 10.1056/NEJMoa062200.CrossRef Heart N, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, DeBoisblanc B, Connors AF, Hite RD, Harabin AL: Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006, 354: 2564-2575. 10.1056/NEJMoa062200.CrossRef
20.
Zurück zum Zitat Boyd JH, Forbes J, Nakada T-A, Walley KR, Russell JA: Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011, 39: 259-265. 10.1097/CCM.0b013e3181feeb15.CrossRef Boyd JH, Forbes J, Nakada T-A, Walley KR, Russell JA: Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011, 39: 259-265. 10.1097/CCM.0b013e3181feeb15.CrossRef
21.
Zurück zum Zitat Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, Fanizza C, Caspani L, Faenza S, Grasselli G, Iapichino G, Antonelli M, Parrini V, Fiore G, Latini R, Gattinoni L, ALBIOS Study Investigators: Albumin replacement in patients with severe sepsis or septic shock.N Engl J Med 2014, 371:84., Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, Fanizza C, Caspani L, Faenza S, Grasselli G, Iapichino G, Antonelli M, Parrini V, Fiore G, Latini R, Gattinoni L, ALBIOS Study Investigators: Albumin replacement in patients with severe sepsis or septic shock.N Engl J Med 2014, 371:84.,
22.
Zurück zum Zitat Riedemann NC, Guo R-F, Ward PA: The enigma of sepsis. J Clin Invest. 2003, 112: 460-467. 10.1172/JCI200319523.CrossRef Riedemann NC, Guo R-F, Ward PA: The enigma of sepsis. J Clin Invest. 2003, 112: 460-467. 10.1172/JCI200319523.CrossRef
23.
Zurück zum Zitat Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J, Weber-Carstens S, Hasper D, Keh D, Zuckermann H, Reinke P, Volk H-D: Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009, 180: 640-648. 10.1164/rccm.200903-0363OC.CrossRef Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J, Weber-Carstens S, Hasper D, Keh D, Zuckermann H, Reinke P, Volk H-D: Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009, 180: 640-648. 10.1164/rccm.200903-0363OC.CrossRef
Metadaten
Titel
Is nosocomial infection really the major cause of death in sepsis?
verfasst von
Neil M Goldenberg
Aleksandra Leligdowicz
Arthur S Slutsky
Jan O Friedrich
Warren L Lee
Publikationsdatum
01.10.2014
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 5/2014
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-014-0540-y

Weitere Artikel der Ausgabe 5/2014

Critical Care 5/2014 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.