Skip to main content
Erschienen in: Pediatric Nephrology 6/2014

01.06.2014 | Review

Is the renin–angiotensin system actually hypertensive?

verfasst von: Etienne Bérard, Olivier Niel, Amandine Rubio

Erschienen in: Pediatric Nephrology | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

The historical view of the renin–angiotensin system (RAS) is that of an endocrine hypertensive system that is controlled by renin and mediated via the action of angiotensin II on its type 1 receptor. Numerous new angiotensins (Ang) and receptors have been described, the majority being hypotensive and natriuretic, namely Ang-(1-7) and its receptor rMas. Renin and its precursor (pro-renin) can bind their common receptor. In addition to the production of Ang II, this receptor triggers intracellular effects. Given the control of renin production by intracellular calcium, calcium homeostasis is of particular importance. Ang-(1-12), which is not controlled by renin, is converted to several different angiotensin peptides and is a new pathway of the RAS. Local RAS enzymes produce or transform the different hyper- or hypotensive angiotensin within vessels and organs, but also in blood through circulating forms of the enzymes. In the kidney, a powerful local vascular RAS allows for the independence of renal vascularization from systemic control. Moreover, the kidney also contains an independent urinary RAS, which counterbalances the systemic RAS and coordinates proximal and distal sodium reabsorption. The systemic and local effects of renal RAS cannot be analyzed without taking into account the antagonistic effect of renalase. Our concept of RAS needs to evolve to take into account its dual potentiality (hyper- or hypotensive).
Literatur
1.
Zurück zum Zitat Tigerstedt R, Bergma PG (1898) Niere eine kreilauf. Scand Arch Physiol 8:223–227CrossRef Tigerstedt R, Bergma PG (1898) Niere eine kreilauf. Scand Arch Physiol 8:223–227CrossRef
3.
Zurück zum Zitat Lorenz JN, Weihprecht H, Schnermann J, Skøtt O, Briggs JP (1991) Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol 260:F486–F493PubMed Lorenz JN, Weihprecht H, Schnermann J, Skøtt O, Briggs JP (1991) Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol 260:F486–F493PubMed
4.
Zurück zum Zitat Yang J, Chen C, Ren H, Han Y, He D, Zhou L, Hopfer U, Jose PA, Zeng C (2012) Angiotensin II AT2 receptor decreases AT1 receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats. J Hypertens 30:1176–1184PubMedCentralPubMedCrossRef Yang J, Chen C, Ren H, Han Y, He D, Zhou L, Hopfer U, Jose PA, Zeng C (2012) Angiotensin II AT2 receptor decreases AT1 receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats. J Hypertens 30:1176–1184PubMedCentralPubMedCrossRef
5.
Zurück zum Zitat Hakam AC, Hussain T (2006) Angiotensin II AT2 receptors inhibit proximal tubular Na+−K+−ATPase activity via a NO/cGMP-dependent pathway. Am J Physiol Renal Physiol 290:F1430–F1436PubMedCrossRef Hakam AC, Hussain T (2006) Angiotensin II AT2 receptors inhibit proximal tubular Na+−K+−ATPase activity via a NO/cGMP-dependent pathway. Am J Physiol Renal Physiol 290:F1430–F1436PubMedCrossRef
6.
Zurück zum Zitat Horiuchi M, Iwanami J, Mogi M (2012) Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond) 123:193–203CrossRef Horiuchi M, Iwanami J, Mogi M (2012) Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond) 123:193–203CrossRef
7.
Zurück zum Zitat Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE (2011) Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond) 121:297–303 Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE (2011) Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond) 121:297–303
8.
Zurück zum Zitat Dilauro M, Burns KD (2009) Angiotensin-(1–7) and its effects in the kidney. Sci World J 9:522–535CrossRef Dilauro M, Burns KD (2009) Angiotensin-(1–7) and its effects in the kidney. Sci World J 9:522–535CrossRef
9.
Zurück zum Zitat Lambert D, Hooper NM, Turner AJ (2008) Angiotensin-converting enzyme 2 and new insights into the renin angiotensin system. Biochem Pharmacol 75:781–786PubMedCrossRef Lambert D, Hooper NM, Turner AJ (2008) Angiotensin-converting enzyme 2 and new insights into the renin angiotensin system. Biochem Pharmacol 75:781–786PubMedCrossRef
10.
Zurück zum Zitat Nguyen Dinh Cat A, Touyz RM (2011) A new look at the renin–angiotensin system-focusing on the vascular system. Peptides 32:2141–2150PubMedCrossRef Nguyen Dinh Cat A, Touyz RM (2011) A new look at the renin–angiotensin system-focusing on the vascular system. Peptides 32:2141–2150PubMedCrossRef
11.
Zurück zum Zitat Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383:45–51PubMedCentralPubMedCrossRef Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383:45–51PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686PubMed Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686PubMed
13.
14.
Zurück zum Zitat Daniels D, Mietlicki EG, Nowak EL, Fluharty SJ (2009) Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways in rats. Exp Physiol 94:130–137PubMedCentralPubMedCrossRef Daniels D, Mietlicki EG, Nowak EL, Fluharty SJ (2009) Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways in rats. Exp Physiol 94:130–137PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Allred AJ, Diz DI, Ferrario CM, Chappell MC (2000) Pathways for angiotensin-(1–7) metabolism in pulmonary and renal tissues. Am J Renal Physiol 279:F841–F850 Allred AJ, Diz DI, Ferrario CM, Chappell MC (2000) Pathways for angiotensin-(1–7) metabolism in pulmonary and renal tissues. Am J Renal Physiol 279:F841–F850
16.
Zurück zum Zitat Jackman HL, Massad MG, Sekosan M, Tan F, Brovkovych V, Marcic BM, Erdos EG (2002) Angiotensin 1–9 and 1–7 release in human heart: role of cathepsin A. Hypertension 39:976–981PubMedCrossRef Jackman HL, Massad MG, Sekosan M, Tan F, Brovkovych V, Marcic BM, Erdos EG (2002) Angiotensin 1–9 and 1–7 release in human heart: role of cathepsin A. Hypertension 39:976–981PubMedCrossRef
17.
Zurück zum Zitat Flores-Muñoz M, Smith NJ, Haggerty C, Milligan G, Nicklin SA (2011) Angiotensin1-9 antagonises pro-hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor. J Physiol 589:939–951PubMedCentralPubMedCrossRef Flores-Muñoz M, Smith NJ, Haggerty C, Milligan G, Nicklin SA (2011) Angiotensin1-9 antagonises pro-hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor. J Physiol 589:939–951PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, Hooper NM (2006) Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension 48:914–920PubMedCrossRef Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, Hooper NM (2006) Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension 48:914–920PubMedCrossRef
19.
Zurück zum Zitat Jankowski V, Vanholder R, van der Giet M, Tölle M, Karadogan S, Gobom J, Furkert J, Oksche A, Krause E, Tran TN, Tepel M, Schuchardt M, Schlüter H, Wiedon A, Beyermann M, Bader M, Todiras M, Zidek W, Jankowski J (2007) Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol 27:297–302PubMedCrossRef Jankowski V, Vanholder R, van der Giet M, Tölle M, Karadogan S, Gobom J, Furkert J, Oksche A, Krause E, Tran TN, Tepel M, Schuchardt M, Schlüter H, Wiedon A, Beyermann M, Bader M, Todiras M, Zidek W, Jankowski J (2007) Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol 27:297–302PubMedCrossRef
20.
Zurück zum Zitat Jankowski V, Tölle M, Santos RA, Günthner T, Krause E, Beyermann M, Welker P, Bader M, Pinheiro SV, Sampaio WO, Lautner R, Kretschmer A, van der Giet M, Zidek W, Jankowski J (2011) Angioprotectin: an angiotensin II-like peptide causing vasodilatory effects. FASEB J 25:2987–2995PubMedCrossRef Jankowski V, Tölle M, Santos RA, Günthner T, Krause E, Beyermann M, Welker P, Bader M, Pinheiro SV, Sampaio WO, Lautner R, Kretschmer A, van der Giet M, Zidek W, Jankowski J (2011) Angioprotectin: an angiotensin II-like peptide causing vasodilatory effects. FASEB J 25:2987–2995PubMedCrossRef
21.
Zurück zum Zitat Pratt RE, Carleton JE, Richie JP, Heusser C, Dzau VJ (1987) Human renin biosynthesis and secretion in normal and ischemic kidneys. Proc Natl Acad Sci USA 84:7837–7840PubMedCentralPubMedCrossRef Pratt RE, Carleton JE, Richie JP, Heusser C, Dzau VJ (1987) Human renin biosynthesis and secretion in normal and ischemic kidneys. Proc Natl Acad Sci USA 84:7837–7840PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Danser AH, Deinum J (2005) Renin, prorenin and the putative (pro)renin receptor. Hypertension 46:1069–1076PubMedCrossRef Danser AH, Deinum J (2005) Renin, prorenin and the putative (pro)renin receptor. Hypertension 46:1069–1076PubMedCrossRef
23.
Zurück zum Zitat Toffelmire EB, Slater K, Corvol P, Menard J, Schambelan M (1989) Response of plasma prorenin and active renin to chronic and acute alterations of renin secretion in normal humans. Studies using a direct immunoradiometric assay. J Clin Invest 83:679–687PubMedCentralPubMedCrossRef Toffelmire EB, Slater K, Corvol P, Menard J, Schambelan M (1989) Response of plasma prorenin and active renin to chronic and acute alterations of renin secretion in normal humans. Studies using a direct immunoradiometric assay. J Clin Invest 83:679–687PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Skott O (1986) Episodic release of renin from single isolated perfused rat afferent arterioles. Pflugers Arch 407:41–45PubMedCrossRef Skott O (1986) Episodic release of renin from single isolated perfused rat afferent arterioles. Pflugers Arch 407:41–45PubMedCrossRef
25.
Zurück zum Zitat Batenburg WW, Krop M, Garrelds IM, de Vries R, de Bruin RJ, Burcklé CA, Müller DN, Bader M, Ngyen G, Danser AH (2007) Prorenin is the endogenous agonist of the (pro)renin receptor. Binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. J Hypertens 25:2441–2453PubMedCrossRef Batenburg WW, Krop M, Garrelds IM, de Vries R, de Bruin RJ, Burcklé CA, Müller DN, Bader M, Ngyen G, Danser AH (2007) Prorenin is the endogenous agonist of the (pro)renin receptor. Binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. J Hypertens 25:2441–2453PubMedCrossRef
27.
Zurück zum Zitat Nguyen G, Contrepas A (2008) The (pro)renin receptors. J Mol Med (Berl) 86:643–646CrossRef Nguyen G, Contrepas A (2008) The (pro)renin receptors. J Mol Med (Berl) 86:643–646CrossRef
28.
Zurück zum Zitat Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W (2006) Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 69:105–113PubMedCrossRef Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W (2006) Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 69:105–113PubMedCrossRef
29.
Zurück zum Zitat Huang Y, Noble NA, Zhang J, Xu C, Border WA (2007) Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int 72:45–52PubMedCrossRef Huang Y, Noble NA, Zhang J, Xu C, Border WA (2007) Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int 72:45–52PubMedCrossRef
30.
Zurück zum Zitat Nguyen G (2011) Renin, (pro)renin and receptor: an update. Clin Sci (Lond) 120:169–178CrossRef Nguyen G (2011) Renin, (pro)renin and receptor: an update. Clin Sci (Lond) 120:169–178CrossRef
31.
Zurück zum Zitat Batenburg WW, Danser AH (2012) (Pro)renin and its receptors: pathophysiological implications. Clin Sci (Lond) 123:121–123CrossRef Batenburg WW, Danser AH (2012) (Pro)renin and its receptors: pathophysiological implications. Clin Sci (Lond) 123:121–123CrossRef
32.
Zurück zum Zitat Peters J (2008) Secretory and cytosolic (pro)renin in kidney, heart, and adrenal gland. J Mol Med (Berl) 86:711–714CrossRef Peters J (2008) Secretory and cytosolic (pro)renin in kidney, heart, and adrenal gland. J Mol Med (Berl) 86:711–714CrossRef
33.
Zurück zum Zitat Campbell DJ (2008) Critical review of prorenin and (pro)renin receptor research. Hypertension 515:1259–1264CrossRef Campbell DJ (2008) Critical review of prorenin and (pro)renin receptor research. Hypertension 515:1259–1264CrossRef
34.
Zurück zum Zitat Friis UG, Madsen K, Stubbe J, Hansen PB, Svenningsen P, Bie P, Skøtt O, Jensen BL (2013) Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Arch 465:25–37PubMedCrossRef Friis UG, Madsen K, Stubbe J, Hansen PB, Svenningsen P, Bie P, Skøtt O, Jensen BL (2013) Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Arch 465:25–37PubMedCrossRef
35.
Zurück zum Zitat Sequeira López ML, Pentz ES, Nomasa T, Smithies O, Gomez RA (2004) Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6:719–728PubMedCrossRef Sequeira López ML, Pentz ES, Nomasa T, Smithies O, Gomez RA (2004) Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6:719–728PubMedCrossRef
36.
Zurück zum Zitat Resnick LM, Laragh JH (1985) Renin, calcium metabolism and the pathophysiologic basis of antihypertensive therapy. Am J Cardiol 56:68H–74HPubMedCrossRef Resnick LM, Laragh JH (1985) Renin, calcium metabolism and the pathophysiologic basis of antihypertensive therapy. Am J Cardiol 56:68H–74HPubMedCrossRef
37.
Zurück zum Zitat Gal-Moscovici A, Sprague SM (2010) Use of vitamin D in chronic kidney disease patients. Kidney Int 78:146–151PubMedCrossRef Gal-Moscovici A, Sprague SM (2010) Use of vitamin D in chronic kidney disease patients. Kidney Int 78:146–151PubMedCrossRef
38.
Zurück zum Zitat Shroff R, Wan M, Rees L (2012) Can vitamin D slow down the progression of chronic kidney disease? Pediatr Nephrol 27:2167–2173PubMedCrossRef Shroff R, Wan M, Rees L (2012) Can vitamin D slow down the progression of chronic kidney disease? Pediatr Nephrol 27:2167–2173PubMedCrossRef
39.
Zurück zum Zitat Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP (2002) 1, 25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin–angiotensin system. J Clin Invest 110:229–238PubMedCentralPubMedCrossRef Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP (2002) 1, 25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin–angiotensin system. J Clin Invest 110:229–238PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Ortiz-Capisano MC, Ortiz PA, Harding P, Garvin JL, Beierwaltes WH (2007) Decreased intracellular calcium stimulates renin release via calcium-inhibitable adenylyl cyclase. Hypertension 49:162–169PubMedCrossRef Ortiz-Capisano MC, Ortiz PA, Harding P, Garvin JL, Beierwaltes WH (2007) Decreased intracellular calcium stimulates renin release via calcium-inhibitable adenylyl cyclase. Hypertension 49:162–169PubMedCrossRef
41.
43.
Zurück zum Zitat Vaidya A, Forman JP, Hopkins PN, Seely EW, Williams JS (2011) 25-hydroxyvitamin D is associated with plasma renin activity and the pressor response to dietary sodium intake in Caucasians. J Renin Angiotensin Aldosterone Syst 12:311–319PubMedCentralPubMedCrossRef Vaidya A, Forman JP, Hopkins PN, Seely EW, Williams JS (2011) 25-hydroxyvitamin D is associated with plasma renin activity and the pressor response to dietary sodium intake in Caucasians. J Renin Angiotensin Aldosterone Syst 12:311–319PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Kuipers I, van der Harst P, Kuipers F, van Genne L, Goris M, Lehtonen JY, van Veldhuisen DJ, van Gilst WH, de Boer RA (2010) Activation of liver X receptor-alpha reduces activation of the renal and cardiac renin-angiotensin-aldosterone system. Lab Invest 90:630–636PubMedCrossRef Kuipers I, van der Harst P, Kuipers F, van Genne L, Goris M, Lehtonen JY, van Veldhuisen DJ, van Gilst WH, de Boer RA (2010) Activation of liver X receptor-alpha reduces activation of the renal and cardiac renin-angiotensin-aldosterone system. Lab Invest 90:630–636PubMedCrossRef
45.
Zurück zum Zitat Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K (2006) Isolation and identification of proangiotensin-12, a possible component of the renin–angiotensin system. Biochem Biophys Res Commun 350:1026–1031PubMedCrossRef Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K (2006) Isolation and identification of proangiotensin-12, a possible component of the renin–angiotensin system. Biochem Biophys Res Commun 350:1026–1031PubMedCrossRef
46.
Zurück zum Zitat Nagata S, Kato J, Kuwasako K, Kitamura K (2010) Plasma and tissue levels of proangiotensin-12 and components of the renin–angiotensin system (RAS) following low- or high-salt feeding in rats. Peptides 31:889–892PubMedCrossRef Nagata S, Kato J, Kuwasako K, Kitamura K (2010) Plasma and tissue levels of proangiotensin-12 and components of the renin–angiotensin system (RAS) following low- or high-salt feeding in rats. Peptides 31:889–892PubMedCrossRef
47.
Zurück zum Zitat Westwood BM, Chappell MC (2012) Divergent pathways for the angiotensin-(1-12) metabolism in the rat circulation and kidney. Peptides 35:190–195PubMedCentralPubMedCrossRef Westwood BM, Chappell MC (2012) Divergent pathways for the angiotensin-(1-12) metabolism in the rat circulation and kidney. Peptides 35:190–195PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Jessup JA, Trask AJ, Chappell MC, Nagata S, Kato J, Kitamura K, Ferrario CM (2008) Localization of the novel angiotensin peptide, angiotensin-(1–12), in heart and kidney of hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol 294:2614–2618CrossRef Jessup JA, Trask AJ, Chappell MC, Nagata S, Kato J, Kitamura K, Ferrario CM (2008) Localization of the novel angiotensin peptide, angiotensin-(1–12), in heart and kidney of hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol 294:2614–2618CrossRef
49.
Zurück zum Zitat Ferrario CM, Varagic J, Habibi J, Nagata S, Kato J, Chappell MC, Trask AJ, Kitamura K, Whaley-Connell A, Sowers JR (2009) Differential regulation of angiotensin-(1–12) in plasma and cardiac tissue in response to bilateral nephrectomy. Am J Physiol Heart Circ Physiol 296:H1184–H1192PubMedCentralPubMedCrossRef Ferrario CM, Varagic J, Habibi J, Nagata S, Kato J, Chappell MC, Trask AJ, Kitamura K, Whaley-Connell A, Sowers JR (2009) Differential regulation of angiotensin-(1–12) in plasma and cardiac tissue in response to bilateral nephrectomy. Am J Physiol Heart Circ Physiol 296:H1184–H1192PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Campbell DJ (1987) Tissue renin-angiotensin system: sites of angiotensin formation. J Cardiovasc Pharmacol 10:S1–S8PubMedCrossRef Campbell DJ (1987) Tissue renin-angiotensin system: sites of angiotensin formation. J Cardiovasc Pharmacol 10:S1–S8PubMedCrossRef
51.
Zurück zum Zitat Wei L, Alhenc-Gelas F, Soubrier F, Michaud A, Corvol P, Clauser E (1991) Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J Biol Chem 266:5540–5546PubMed Wei L, Alhenc-Gelas F, Soubrier F, Michaud A, Corvol P, Clauser E (1991) Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J Biol Chem 266:5540–5546PubMed
52.
Zurück zum Zitat McKenzie CA, Zhu X, Forrester TE, Luke A, Adeyemo AA, Bouzekri N, Cooper RS (2008) A genome-wide search replicates evidence of a quantitative trait locus for circulating angiotensin I-converting enzyme (ACE) unlinked to the ACE gene. BMC Med Genomics 1:23PubMedCentralPubMedCrossRef McKenzie CA, Zhu X, Forrester TE, Luke A, Adeyemo AA, Bouzekri N, Cooper RS (2008) A genome-wide search replicates evidence of a quantitative trait locus for circulating angiotensin I-converting enzyme (ACE) unlinked to the ACE gene. BMC Med Genomics 1:23PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Velez JC (2009) The importance of the intrarenal renin–angiotensin system. Nat Clin Pract Nephrol 5:89–100PubMedCrossRef Velez JC (2009) The importance of the intrarenal renin–angiotensin system. Nat Clin Pract Nephrol 5:89–100PubMedCrossRef
54.
Zurück zum Zitat Varagic J (2010) The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. Am J Renal Physiol 298:F1297–F1305CrossRef Varagic J (2010) The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. Am J Renal Physiol 298:F1297–F1305CrossRef
55.
Zurück zum Zitat Velez JC, Bland AM, Arthur JM, Raymond JR, Janech MG (2007) Characterization of renin–angiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol 293:F398–F407PubMedCrossRef Velez JC, Bland AM, Arthur JM, Raymond JR, Janech MG (2007) Characterization of renin–angiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol 293:F398–F407PubMedCrossRef
56.
Zurück zum Zitat Velez JC, Ryan KJ, Harbeson CE, Bland AM, Budisavljevic MN, Arthur JM, Fitzgibbon WR, Raymond JR, Janech MG (2008) Angiotensin I is largely converted to angiotensin (1–7) and angiotensin (2–10) by isolated rat glomeruli. Hypertension 53:790–797CrossRef Velez JC, Ryan KJ, Harbeson CE, Bland AM, Budisavljevic MN, Arthur JM, Fitzgibbon WR, Raymond JR, Janech MG (2008) Angiotensin I is largely converted to angiotensin (1–7) and angiotensin (2–10) by isolated rat glomeruli. Hypertension 53:790–797CrossRef
57.
Zurück zum Zitat Pinheiro SV, Simões E, Silva AC (2012) Angiotensin converting enzyme 2, angiotensin-(1–7), and receptor MAS axis in the kidney. Int J Hypertens 2012:414128PubMedCentralPubMed Pinheiro SV, Simões E, Silva AC (2012) Angiotensin converting enzyme 2, angiotensin-(1–7), and receptor MAS axis in the kidney. Int J Hypertens 2012:414128PubMedCentralPubMed
58.
Zurück zum Zitat Mamenko M, Zaika O, Ilatovskaya DV, Staruschenko A, Pochynyuk O (2012) Angiotensin II increases activity of the epithelial Na+ channel (ENaC) in distal nephron additively to aldosterone. J Biol Chem 287:660–671PubMedCentralPubMedCrossRef Mamenko M, Zaika O, Ilatovskaya DV, Staruschenko A, Pochynyuk O (2012) Angiotensin II increases activity of the epithelial Na+ channel (ENaC) in distal nephron additively to aldosterone. J Biol Chem 287:660–671PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Desir G (2012) Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatr Nephrol 27:719–725PubMedCrossRef Desir G (2012) Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatr Nephrol 27:719–725PubMedCrossRef
Metadaten
Titel
Is the renin–angiotensin system actually hypertensive?
verfasst von
Etienne Bérard
Olivier Niel
Amandine Rubio
Publikationsdatum
01.06.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 6/2014
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-013-2481-0

Weitere Artikel der Ausgabe 6/2014

Pediatric Nephrology 6/2014 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.