Skip to main content
Erschienen in: Strahlentherapie und Onkologie 9/2022

22.06.2022 | Original Article

Isodoses—a set theory-based patient-specific QA measure to compare planned and delivered isodose distributions in photon radiotherapy

verfasst von: Mateusz Baran, Zbisław Tabor, Damian Kabat, Monika Tulik, Kinga Jeleń, Krzysztof Rzecki, Bohdan Forostianyi, Konrad Bałabuszek, Robert Koziarski, Michael P. R. Waligórski

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

The gamma index and dose–volume histogram (DVH)-based patient-specific quality assurance (QA) measures commonly applied in radiotherapy planning are unable to simultaneously deliver detailed locations and magnitudes of discrepancy between isodoses of planned and delivered dose distributions. By exploiting statistical classification performance measures such as sensitivity or specificity, compliance between a planned and delivered isodose may be evaluated locally, both for organs-at-risk (OAR) and the planning target volume (PTV), at any specified isodose level. Thus, a patient-specific QA tool may be developed to supplement those presently available in clinical radiotherapy.

Materials and methods

A method was developed to locally establish and report dose delivery errors in three-dimensional (3D) isodoses of planned (reference) and delivered (evaluated) dose distributions simultaneously as a function the dose level and of spatial location. At any given isodose level, the total volume of delivered dose containing the reference and the evaluated isodoses is locally decomposed into four subregions: true positive—subregions within both reference and evaluated isodoses, true negative—outside of both of these isodoses, false positive—inside the evaluated isodose but not the reference isodose, and false negatives—inside the reference isodose but not the evaluated isodose. Such subregions may be established over the whole volume of delivered dose. This decomposition allows the construction of a confusion matrix and calculation of various indices to quantify the discrepancies between the selected planned and delivered isodose distributions, over the complete range of values of dose delivered. The 3D projection and visualization of the spatial distribution of these discrepancies facilitates the application of the developed method in clinical practice.

Results

Several clinical photon radiotherapy plans were analyzed using the developed method. In some plans at certain isodose levels, dose delivery errors were found at anatomically significant locations. These errors were not otherwise highlighted—neither by gamma analysis nor by DVH-based QA measures. A specially developed 3D projection tool to visualize the spatial distribution of such errors against anatomical features of the patient aids in the proposed analysis of therapy plans.

Conclusions

The proposed method is able to spatially locate delivery errors at selected isodose levels and may supplement the presently applied gamma analysis and DVH-based QA measures in patient-specific radiotherapy planning.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB et al (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys 30:2089–2115CrossRef Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB et al (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys 30:2089–2115CrossRef
2.
Zurück zum Zitat Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D et al (2009) IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM task group 119. Med Phys 36:5359–5373CrossRef Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D et al (2009) IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM task group 119. Med Phys 36:5359–5373CrossRef
3.
Zurück zum Zitat Tabor Z, Kabat D, Tomaszuk M, Kycia R, Latała Z (2017) A generic multi-modular phantom for testing geometry of a linac c‑arm as a part of quality control in radiotherapy. Med Phys 44:4989–5000CrossRef Tabor Z, Kabat D, Tomaszuk M, Kycia R, Latała Z (2017) A generic multi-modular phantom for testing geometry of a linac c‑arm as a part of quality control in radiotherapy. Med Phys 44:4989–5000CrossRef
4.
Zurück zum Zitat Tulik M, Kabat D, Kycia R, Tabor Z, Woszczyna A, Latała Z (2018) A framework for calibration of on-board imagers of medical linear accelerators. Phys Med 47:80–85CrossRef Tulik M, Kabat D, Kycia R, Tabor Z, Woszczyna A, Latała Z (2018) A framework for calibration of on-board imagers of medical linear accelerators. Phys Med 47:80–85CrossRef
5.
Zurück zum Zitat Baran M, Rzecki K, Kabat D, Tulik M, Wydra A, Derda Z et al (2019) A simulation-based method for evaluating geometric tests of a linac c‑arm in quality control in radiotherapy. J Appl Clin Med Phys 20:133–142CrossRef Baran M, Rzecki K, Kabat D, Tulik M, Wydra A, Derda Z et al (2019) A simulation-based method for evaluating geometric tests of a linac c‑arm in quality control in radiotherapy. J Appl Clin Med Phys 20:133–142CrossRef
6.
Zurück zum Zitat Low DA, Moran JM, Dempsey JF, Dong L, Oldham M (2011) Dosimetry tools and techniques for IMRT. Med Phys 38:1313–1338CrossRef Low DA, Moran JM, Dempsey JF, Dong L, Oldham M (2011) Dosimetry tools and techniques for IMRT. Med Phys 38:1313–1338CrossRef
7.
Zurück zum Zitat Moran JM, Dempsey M, Eisbruch A, Fraass BA, Galvin JM, Ibbott GS et al (2011) Safety considerations for IMRT: executive summary. Med Phys 38:5067CrossRef Moran JM, Dempsey M, Eisbruch A, Fraass BA, Galvin JM, Ibbott GS et al (2011) Safety considerations for IMRT: executive summary. Med Phys 38:5067CrossRef
8.
Zurück zum Zitat Hartford AC, Galvin JM, Beyer DC, Eichler TJ, Ibbott GS, Kavanagh B et al (2012) American college of radiology (ACR) and American society for radiation oncology (ASTRO) practice guideline for intensity-modulated radiation therapy (IMRT). Am J Clin Oncol 35:612–617CrossRef Hartford AC, Galvin JM, Beyer DC, Eichler TJ, Ibbott GS, Kavanagh B et al (2012) American college of radiology (ACR) and American society for radiation oncology (ASTRO) practice guideline for intensity-modulated radiation therapy (IMRT). Am J Clin Oncol 35:612–617CrossRef
9.
Zurück zum Zitat Pawlicki T, Yoo S, Court LE, McMillan SK, Rice RK, Russell JD et al (2008) Moving from IMRT QA measurements toward independent computer calculations using control charts. Radiother Oncol 89:330–337CrossRef Pawlicki T, Yoo S, Court LE, McMillan SK, Rice RK, Russell JD et al (2008) Moving from IMRT QA measurements toward independent computer calculations using control charts. Radiother Oncol 89:330–337CrossRef
10.
Zurück zum Zitat Fan J, Li J, Chen L, Luo W, Du Plessis F, Xiong W et al (2006) A practical Monte Carlo MU verification tool for IMRT quality assurance. Phys Med Biol 51:2503–2514CrossRef Fan J, Li J, Chen L, Luo W, Du Plessis F, Xiong W et al (2006) A practical Monte Carlo MU verification tool for IMRT quality assurance. Phys Med Biol 51:2503–2514CrossRef
11.
Zurück zum Zitat Leal A, Sanchez-Doblado F, Arrans R, Rosello J, Pavon EC, Lagares JI (2003) Routine IMRT verification by means of an automated Monte Carlo simulation system. Int J Radiat Oncol Biol Phys 56:58–68CrossRef Leal A, Sanchez-Doblado F, Arrans R, Rosello J, Pavon EC, Lagares JI (2003) Routine IMRT verification by means of an automated Monte Carlo simulation system. Int J Radiat Oncol Biol Phys 56:58–68CrossRef
12.
Zurück zum Zitat Agnew A, Agnew CE, Grattan MWD, Hounsell AR, McGarry CK (2014) Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries. Phys Med Biol 59:N49–N63CrossRef Agnew A, Agnew CE, Grattan MWD, Hounsell AR, McGarry CK (2014) Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries. Phys Med Biol 59:N49–N63CrossRef
13.
Zurück zum Zitat Rangaraj D, Zhu M, Yang D, Palaniswaamy G, Yaddanapudi S, Wooten OH et al (2013) Catching errors with patient-specific pretreatment machine log file analysis. Pract Radiat Oncol 3:80–90CrossRef Rangaraj D, Zhu M, Yang D, Palaniswaamy G, Yaddanapudi S, Wooten OH et al (2013) Catching errors with patient-specific pretreatment machine log file analysis. Pract Radiat Oncol 3:80–90CrossRef
14.
Zurück zum Zitat Stell AM, Li JG, Zeidan OA, Dempsey JF (2004) An extensive log-file analysis of step-and-shoot intensity modulated radiation therapy segment delivery errors. Med Phys 31:1593–1602CrossRef Stell AM, Li JG, Zeidan OA, Dempsey JF (2004) An extensive log-file analysis of step-and-shoot intensity modulated radiation therapy segment delivery errors. Med Phys 31:1593–1602CrossRef
15.
Zurück zum Zitat Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A et al (2018) Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM task group no. 218. Med Phys 45:e53–e83CrossRef Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A et al (2018) Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM task group no. 218. Med Phys 45:e53–e83CrossRef
16.
Zurück zum Zitat Van Dyk J, Barnett RB, Cygler JE, Shragge PC (1993) Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys 26:261–273CrossRef Van Dyk J, Barnett RB, Cygler JE, Shragge PC (1993) Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys 26:261–273CrossRef
17.
Zurück zum Zitat Harms WB Sr, Low DA, Wong JW, Purdy JA (1998) A software tool for the quantitative evaluation of 3D dose calculation algorithms. Med Phys 25:1830–1836CrossRef Harms WB Sr, Low DA, Wong JW, Purdy JA (1998) A software tool for the quantitative evaluation of 3D dose calculation algorithms. Med Phys 25:1830–1836CrossRef
18.
Zurück zum Zitat Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661CrossRef Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661CrossRef
19.
Zurück zum Zitat Blanck O, Masi L, Damme MC, Hildebrandt G, Dunst J, Siebert FA et al (2015) Film-based delivery quality assurance for robotic radiosurgery: commissioning and validation. Phys Med 31:476–483CrossRef Blanck O, Masi L, Damme MC, Hildebrandt G, Dunst J, Siebert FA et al (2015) Film-based delivery quality assurance for robotic radiosurgery: commissioning and validation. Phys Med 31:476–483CrossRef
20.
Zurück zum Zitat Heilemann G, Poppe B, Laub W (2013) On the sensitivity of common gamma-index evaluation methods to MLC misalignments in Rapidarc quality assurance. Med Phys 40:31702CrossRef Heilemann G, Poppe B, Laub W (2013) On the sensitivity of common gamma-index evaluation methods to MLC misalignments in Rapidarc quality assurance. Med Phys 40:31702CrossRef
21.
Zurück zum Zitat Tulik M, Kabat D, Baran M, Kycia R, Tabor Z (2019) Use of statistical approaches to improve the quality control of the dose delivery in radiotherapy. Phys Med Biol 64:145018CrossRef Tulik M, Kabat D, Baran M, Kycia R, Tabor Z (2019) Use of statistical approaches to improve the quality control of the dose delivery in radiotherapy. Phys Med Biol 64:145018CrossRef
22.
Zurück zum Zitat Olch AJ (2012) Evaluation of the accuracy of 3DVH software estimates of dose to virtual ion chamber and film in composite IMRT QA. Med Phys 39:81–86CrossRef Olch AJ (2012) Evaluation of the accuracy of 3DVH software estimates of dose to virtual ion chamber and film in composite IMRT QA. Med Phys 39:81–86CrossRef
23.
Zurück zum Zitat Nelms BE, Opp D, Robinson J, Wolf TK, Zhang G, Moros E et al (2012) VMAT QA: measurement-guided 4D dose reconstruction on a patient. Med Phys 39:4228–4238CrossRef Nelms BE, Opp D, Robinson J, Wolf TK, Zhang G, Moros E et al (2012) VMAT QA: measurement-guided 4D dose reconstruction on a patient. Med Phys 39:4228–4238CrossRef
24.
Zurück zum Zitat Stasi M, Bresciani S, Miranti A, Maggio A, Sapino V, Gabriele P (2012) Pretreatment patient-specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram. Med Phys 39:7626–7634CrossRef Stasi M, Bresciani S, Miranti A, Maggio A, Sapino V, Gabriele P (2012) Pretreatment patient-specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram. Med Phys 39:7626–7634CrossRef
25.
Zurück zum Zitat Visser R, Wauben DJ, de Groot M, Steenbakkers RJHM, Bijl HP, Godart J et al (2014) Evaluation of DVH-based treatment plan verification in addition to gamma passing rates for head and neck IMRT. Radiother Oncol 112:389–395CrossRef Visser R, Wauben DJ, de Groot M, Steenbakkers RJHM, Bijl HP, Godart J et al (2014) Evaluation of DVH-based treatment plan verification in addition to gamma passing rates for head and neck IMRT. Radiother Oncol 112:389–395CrossRef
26.
Zurück zum Zitat Rodriguez M, Sempau J, Brualla L (2013) PRIMO: a graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol 189:881–886CrossRef Rodriguez M, Sempau J, Brualla L (2013) PRIMO: a graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol 189:881–886CrossRef
27.
Zurück zum Zitat Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011—a code system for Monte Carlo simulation of electron and photon transport. OECD Nuclear Energy Agency, Issy-les-Moulineaux Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011—a code system for Monte Carlo simulation of electron and photon transport. OECD Nuclear Energy Agency, Issy-les-Moulineaux
29.
Zurück zum Zitat Ang KK, Zhang Q, Rosenthal DI, Nguyen-Tan PF, Sherman EJ, Weber RS, Galvin JM, Bonner JA, Harris J, El-Naggar AK, Gillison ML, Jordan RC, Konski AA, Thorstad WL, Trotti A, Beitler JJ, Garden AS, Spanos WJ, Yom SS, Axelrod RS (2014) Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol 32(27):2940–2950CrossRef Ang KK, Zhang Q, Rosenthal DI, Nguyen-Tan PF, Sherman EJ, Weber RS, Galvin JM, Bonner JA, Harris J, El-Naggar AK, Gillison ML, Jordan RC, Konski AA, Thorstad WL, Trotti A, Beitler JJ, Garden AS, Spanos WJ, Yom SS, Axelrod RS (2014) Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol 32(27):2940–2950CrossRef
30.
Zurück zum Zitat Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057CrossRef Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057CrossRef
31.
Zurück zum Zitat Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press, Cambridge; New YorkCrossRef Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press, Cambridge; New YorkCrossRef
32.
Zurück zum Zitat Tabor Z, Kabat D, Waligórski A (2021) DeepBeam—a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software. Radiat Oncol 16:124CrossRef Tabor Z, Kabat D, Waligórski A (2021) DeepBeam—a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software. Radiat Oncol 16:124CrossRef
Metadaten
Titel
Isodoses—a set theory-based patient-specific QA measure to compare planned and delivered isodose distributions in photon radiotherapy
verfasst von
Mateusz Baran
Zbisław Tabor
Damian Kabat
Monika Tulik
Kinga Jeleń
Krzysztof Rzecki
Bohdan Forostianyi
Konrad Bałabuszek
Robert Koziarski
Michael P. R. Waligórski
Publikationsdatum
22.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 9/2022
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-022-01964-9

Weitere Artikel der Ausgabe 9/2022

Strahlentherapie und Onkologie 9/2022 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.