Skip to main content
Erschienen in: Current Cardiovascular Imaging Reports 3/2013

01.06.2013 | Cardiac Computed Tomography (TC Villines and S Achenbach, Section Editors)

Iterative Reconstruction Techniques: What do they Mean for Cardiac CT?

verfasst von: Marc Kachelrieß

Erschienen in: Current Cardiovascular Imaging Reports | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Abstract

Cardiac computed tomography (CT) is a highly demanding and relatively new CT application that has evolved during the last two decades and for the last decade has been regarded as a routine technology. The success of cardiac CT mainly depends on two classes of technology: CT hardware and image reconstruction software. The technical requirements of cardiac CT are easy to state: increased temporal resolution, increased spatial resolution, decreased patient dose, and improved workflow. Faster rotation times, dual source dual detector gantries, improved z-coverage, smaller slice thicknesses and improved dose management are solutions on the hardware side that help to fulfil these requirements. The solutions on the software side are more complex. There have been several new developments in the area of reconstruction techniques and these are typically subsumed under the term “iterative image reconstruction” to indicate that this is a step beyond conventional filtered back projection. The main developments in iterative image reconstruction for clinical CT aim at noise reduction, contrast enhancement and motion artifact reduction. The major CT vendors implement different approaches in their products, while in parallel, research departments are proposing future solutions. Most of the well-known iterative approaches are not specific to cardiac CT. Some vendors, however, provide specific cardiac CT solutions. This article reviews the current approaches, product as well as prototype software, with a focus on vendor activities.
Literatur
1.
Zurück zum Zitat Lackner K, Thurn P. Computed tomography of the heart: ECG-gated and continuous scans. Radiology. 1981;140:413–20.PubMed Lackner K, Thurn P. Computed tomography of the heart: ECG-gated and continuous scans. Radiology. 1981;140:413–20.PubMed
2.
Zurück zum Zitat Shemesh J, Apter S, Rozenman J, et al. Calcification of coronary arteries: detection and quantification with double-helix CT. Radiology. 1995;197:779–83.PubMed Shemesh J, Apter S, Rozenman J, et al. Calcification of coronary arteries: detection and quantification with double-helix CT. Radiology. 1995;197:779–83.PubMed
3.
Zurück zum Zitat Boyd D, Lipton M. Cardiac computed tomography. Proc IEEE. 1983;71:281.CrossRef Boyd D, Lipton M. Cardiac computed tomography. Proc IEEE. 1983;71:281.CrossRef
4.
Zurück zum Zitat Kachelrieß M, Kalender WA. Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys. 1998;25(12):2417–31.PubMedCrossRef Kachelrieß M, Kalender WA. Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys. 1998;25(12):2417–31.PubMedCrossRef
5.
Zurück zum Zitat Kachelrieß M, Ulzheimer S, Kalender WA. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys. 2000;27(8):1881–902.PubMedCrossRef Kachelrieß M, Ulzheimer S, Kalender WA. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys. 2000;27(8):1881–902.PubMedCrossRef
6.
Zurück zum Zitat Ohnesorge B, Flohr T, Becker C, et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT – initial experience. Radiology. 2000;217:564–71.PubMed Ohnesorge B, Flohr T, Becker C, et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT – initial experience. Radiology. 2000;217:564–71.PubMed
7.
Zurück zum Zitat Achenbach S, Ulzheimer S, Baum U, et al. Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation. 2000;102:2823–8.PubMedCrossRef Achenbach S, Ulzheimer S, Baum U, et al. Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation. 2000;102:2823–8.PubMedCrossRef
8.
Zurück zum Zitat Achenbach S, Giesler T, Ropers D, et al. Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram gated multislice spiral computed tomography. Invest Radiol. 2003;38(2):119–28.PubMedCrossRef Achenbach S, Giesler T, Ropers D, et al. Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram gated multislice spiral computed tomography. Invest Radiol. 2003;38(2):119–28.PubMedCrossRef
9.
Zurück zum Zitat Flohr T, McCollough C, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16:256–68.PubMedCrossRef Flohr T, McCollough C, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16:256–68.PubMedCrossRef
10.
Zurück zum Zitat Kachelrieß M, Knaup M, Kalender WA. Multi-threaded cardiac CT. Med Phys. 2006;33(7):2435–47.PubMedCrossRef Kachelrieß M, Knaup M, Kalender WA. Multi-threaded cardiac CT. Med Phys. 2006;33(7):2435–47.PubMedCrossRef
11.
Zurück zum Zitat Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500–7.PubMedCrossRef Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500–7.PubMedCrossRef
12.
Zurück zum Zitat Alkadhi H, Leschka S. Radiation dose of cardiac computed tomography – what has been achieved and what needs to be done. Eur Radiol. 2011;21:505–9.PubMedCrossRef Alkadhi H, Leschka S. Radiation dose of cardiac computed tomography – what has been achieved and what needs to be done. Eur Radiol. 2011;21:505–9.PubMedCrossRef
13.
Zurück zum Zitat Nielsen T, Manzke R, Proksa R, Grass M. Cardiac cone-beam CT volume reconstruction using ART. Med Phys. 2005;32(4):851–60.PubMedCrossRef Nielsen T, Manzke R, Proksa R, Grass M. Cardiac cone-beam CT volume reconstruction using ART. Med Phys. 2005;32(4):851–60.PubMedCrossRef
14.
Zurück zum Zitat Bruder H, Raupach R, Sunnegardh J, et al. Adaptive iterative reconstruction. Proc SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 79610 J. p. 1–12. Bruder H, Raupach R, Sunnegardh J, et al. Adaptive iterative reconstruction. Proc SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 79610 J. p. 1–12.
15.
Zurück zum Zitat Kachelrieß M, Watzke O, Kalender WA. Generalized multi-dimensional adaptive filtering (MAF) for conventional and spiral single-slice, multi-slice and cone-beam CT. Med Phys. 2001;28(4):475–90.PubMedCrossRef Kachelrieß M, Watzke O, Kalender WA. Generalized multi-dimensional adaptive filtering (MAF) for conventional and spiral single-slice, multi-slice and cone-beam CT. Med Phys. 2001;28(4):475–90.PubMedCrossRef
16.
Zurück zum Zitat Willemink M, Jong P, Leiner T, et al. Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol. 2013. doi:10.1007/s00330-012-2765-y. Willemink M, Jong P, Leiner T, et al. Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol. 2013. doi:10.​1007/​s00330-012-2765-y.
17.
Zurück zum Zitat Nelson R, Feuerlein S, Boll D. New iterative reconstruction techniques for cardiovascular computed tomography: How do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr. 2011;5:286–92.PubMedCrossRef Nelson R, Feuerlein S, Boll D. New iterative reconstruction techniques for cardiovascular computed tomography: How do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr. 2011;5:286–92.PubMedCrossRef
18.
Zurück zum Zitat Leipsic J, Heilbron B, Hague C. Iterative reconstruction for coronary CT angiography: finding its way. Int J Cardiovasc Imaging. 2012;28:613–20.PubMedCrossRef Leipsic J, Heilbron B, Hague C. Iterative reconstruction for coronary CT angiography: finding its way. Int J Cardiovasc Imaging. 2012;28:613–20.PubMedCrossRef
19.
Zurück zum Zitat Marin D, Nelson R, Schindera S, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm – initial clinical experience. Radiology. 2010;254:145–53.PubMedCrossRef Marin D, Nelson R, Schindera S, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm – initial clinical experience. Radiology. 2010;254:145–53.PubMedCrossRef
20.
Zurück zum Zitat Leipsic J, LaBounty T, Heilbron B, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol. 2010;195(3):655–60.PubMedCrossRef Leipsic J, LaBounty T, Heilbron B, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol. 2010;195(3):655–60.PubMedCrossRef
21.
Zurück zum Zitat • Scheffel H, Stolzmann P, Christopher L, et al. Coronary artery plaques: cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol. 2012;81:363–9. Recent cardiac CT study evaluating Veo.CrossRef • Scheffel H, Stolzmann P, Christopher L, et al. Coronary artery plaques: cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol. 2012;81:363–9. Recent cardiac CT study evaluating Veo.CrossRef
22.
Zurück zum Zitat Cornfeld D, Israel G, Detroy E, et al. Impact of adaptive statistical iterative reconstruction (ASIR) on radiation dose and image quality in aortic dissecion studies: a qualitative and quantiative analysis. AJR Am J Roentgenol. 2011;196(3):336–40.CrossRef Cornfeld D, Israel G, Detroy E, et al. Impact of adaptive statistical iterative reconstruction (ASIR) on radiation dose and image quality in aortic dissecion studies: a qualitative and quantiative analysis. AJR Am J Roentgenol. 2011;196(3):336–40.CrossRef
23.
Zurück zum Zitat Mieville F, Gudinchet F, Rizzo E, et al. Paediatric cardiac CT examinations: imapct of the iterative reconstruction method ASIR on image quality – preliminary findings. Pediatr Radiol. 2011;41:1154–64.PubMedCrossRef Mieville F, Gudinchet F, Rizzo E, et al. Paediatric cardiac CT examinations: imapct of the iterative reconstruction method ASIR on image quality – preliminary findings. Pediatr Radiol. 2011;41:1154–64.PubMedCrossRef
24.
Zurück zum Zitat Sato J, Akahane M, Inano S, et al. Effect of radiation dose and adaptive statistical iterative reconstruction on image quality of pulmonary computed tomography. Jpn J Radiol. 2012;30:146–53.PubMedCrossRef Sato J, Akahane M, Inano S, et al. Effect of radiation dose and adaptive statistical iterative reconstruction on image quality of pulmonary computed tomography. Jpn J Radiol. 2012;30:146–53.PubMedCrossRef
25.
Zurück zum Zitat Leipsic J, Labounty T, Heilbron B, et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol. 2010;195(3):649–54.PubMedCrossRef Leipsic J, Labounty T, Heilbron B, et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol. 2010;195(3):649–54.PubMedCrossRef
26.
Zurück zum Zitat Thibault JB, Sauer K, Bouman C, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. 2007;34:4526–44.PubMedCrossRef Thibault JB, Sauer K, Bouman C, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. 2007;34:4526–44.PubMedCrossRef
27.
Zurück zum Zitat Singh S, Kalra M, Do S, et al. Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. J Comput Assist Tomogr. 2012;36(3):347–53.PubMedCrossRef Singh S, Kalra M, Do S, et al. Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. J Comput Assist Tomogr. 2012;36(3):347–53.PubMedCrossRef
28.
Zurück zum Zitat • Hosch W, Stiller W, Mueller D, et al. Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction. Eur Radiol. 2012;81:3568–76. Recent cardiac CT study evaluating iDose.CrossRef • Hosch W, Stiller W, Mueller D, et al. Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction. Eur Radiol. 2012;81:3568–76. Recent cardiac CT study evaluating iDose.CrossRef
29.
Zurück zum Zitat Hou Y, Liu X, Xv S, et al. Comparison of image quality and radiation dose between iterative reconstruction and filtered back projection reconstruction algorithms in 256-MDCT coronary angiography. AJR Am J Roentgenol. 2012;199:588–94.PubMedCrossRef Hou Y, Liu X, Xv S, et al. Comparison of image quality and radiation dose between iterative reconstruction and filtered back projection reconstruction algorithms in 256-MDCT coronary angiography. AJR Am J Roentgenol. 2012;199:588–94.PubMedCrossRef
30.
Zurück zum Zitat Rajiah P, Schoenhagen P, Mehta D, et al. Low-dose wide-detector array thoracic aortic CT angiography using an iterative reconstruction technique results in improved image qualtiy with lower noise and fewer artifacts. J Cardiovasc Comput Tomogr. 2012;6(3):205–13.PubMedCrossRef Rajiah P, Schoenhagen P, Mehta D, et al. Low-dose wide-detector array thoracic aortic CT angiography using an iterative reconstruction technique results in improved image qualtiy with lower noise and fewer artifacts. J Cardiovasc Comput Tomogr. 2012;6(3):205–13.PubMedCrossRef
31.
Zurück zum Zitat Bonner J. CT vendors concentrate on new systems cost-effectiveness and lower doses. ECR Today. 2012;2:17–8. Bonner J. CT vendors concentrate on new systems cost-effectiveness and lower doses. ECR Today. 2012;2:17–8.
32.
Zurück zum Zitat Kligerman S, Read K, Dhanantwari A, et al. Iterative model reconstruction (IMR): a novel method of noise reduction to improve diagnostic confidence in obese patients undergoing CT pulmonary angiography (CTPA). Radiological Society of North America 2012 Scientific Assembly and Annual Meeting 2011. Available from: rsna2012.rsna.org/search/event_display.cfm?em_id = 12033970. Kligerman S, Read K, Dhanantwari A, et al. Iterative model reconstruction (IMR): a novel method of noise reduction to improve diagnostic confidence in obese patients undergoing CT pulmonary angiography (CTPA). Radiological Society of North America 2012 Scientific Assembly and Annual Meeting 2011. Available from: rsna2012.rsna.org/search/event_display.cfm?em_id = 12033970.
33.
Zurück zum Zitat Bittencourt M, Schmidt B, Seltmann M, et al. Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience. Int J Cardiovasc Imaging. 2011;27:1081–7.PubMedCrossRef Bittencourt M, Schmidt B, Seltmann M, et al. Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience. Int J Cardiovasc Imaging. 2011;27:1081–7.PubMedCrossRef
34.
Zurück zum Zitat Park E, Lee W, Kim K, et al. Iterative reconstruction of dual-source coronary CT angiography: assessment of image quality and radiation dose. Int J Cardiovasc Imaging. 2012;28(7):1775–86.PubMedCrossRef Park E, Lee W, Kim K, et al. Iterative reconstruction of dual-source coronary CT angiography: assessment of image quality and radiation dose. Int J Cardiovasc Imaging. 2012;28(7):1775–86.PubMedCrossRef
35.
Zurück zum Zitat Renker M, Ramachandra A, Schoepf U, et al. Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr. 2011;5(4):225–30.PubMedCrossRef Renker M, Ramachandra A, Schoepf U, et al. Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr. 2011;5(4):225–30.PubMedCrossRef
36.
Zurück zum Zitat Ebersberger U, Tricarico F, Schoepf U, et al. CT evaluation of coronary artery stents with iterative image reconstruction: improvements in image quality and potential for radiation dose reduction. Eur Radiol. 2013;23(1):125–32.PubMedCrossRef Ebersberger U, Tricarico F, Schoepf U, et al. CT evaluation of coronary artery stents with iterative image reconstruction: improvements in image quality and potential for radiation dose reduction. Eur Radiol. 2013;23(1):125–32.PubMedCrossRef
37.
Zurück zum Zitat Han B, Grant K, Garberich R, et al. Assessment of an iterative reconstruction algorithm (SAFIRE) on image quality in pediatric cardiac CT datasets. J Cardiovasc Comput Tomogr. 2012;6(3):200–4.PubMedCrossRef Han B, Grant K, Garberich R, et al. Assessment of an iterative reconstruction algorithm (SAFIRE) on image quality in pediatric cardiac CT datasets. J Cardiovasc Comput Tomogr. 2012;6(3):200–4.PubMedCrossRef
38.
Zurück zum Zitat Moscariello A, Takx R, Schoepf U, et al. Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique – comparison with traditional filtered back projection. Eur Radiol. 2011;21(10):2130–8.PubMedCrossRef Moscariello A, Takx R, Schoepf U, et al. Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique – comparison with traditional filtered back projection. Eur Radiol. 2011;21(10):2130–8.PubMedCrossRef
39.
Zurück zum Zitat • Wang R, Schoepf U, Wu R, et al. Image quality and radiation dose of low dose coronary CT angiography in obese patients: sinogram affirmed iterative reconstruction versus filtered back projection. Eur J Radiol. 2012;81(11):3141–5. Recent cardiac CT study evaluating SAFIRE.PubMedCrossRef • Wang R, Schoepf U, Wu R, et al. Image quality and radiation dose of low dose coronary CT angiography in obese patients: sinogram affirmed iterative reconstruction versus filtered back projection. Eur J Radiol. 2012;81(11):3141–5. Recent cardiac CT study evaluating SAFIRE.PubMedCrossRef
40.
Zurück zum Zitat Winklehner A, Karlo C, Puippe G, et al. Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol. 2011;21(12):2521–6.PubMedCrossRef Winklehner A, Karlo C, Puippe G, et al. Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol. 2011;21(12):2521–6.PubMedCrossRef
41.
Zurück zum Zitat Kaplan M, Yang Z, Zamyatin A. Multi-resolution diffusion tensor filter for preserving noise power spectrum in low-dose CT imaging. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Conference Record, M18–82. Kaplan M, Yang Z, Zamyatin A. Multi-resolution diffusion tensor filter for preserving noise power spectrum in low-dose CT imaging. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Conference Record, M18–82.
42.
Zurück zum Zitat Zamyatin A, Yang Z, Akino N, Nakanishi S. Streak artifacts and noise reduction in low dose computed tomography. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, MIC21.S-108. Zamyatin A, Yang Z, Akino N, Nakanishi S. Streak artifacts and noise reduction in low dose computed tomography. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, MIC21.S-108.
43.
Zurück zum Zitat Yang Z, Zamyatin A, Akino N. Effective data-domain noise and streak reduction for x-ray CT. 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 2011, p. 290–3. Yang Z, Zamyatin A, Akino N. Effective data-domain noise and streak reduction for x-ray CT. 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 2011, p. 290–3.
44.
Zurück zum Zitat Yang Z, Silver M, Noshi Y. Adaptive weighted anisotropic diffusion for computed tomography denoising, 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 2011, p. 11–5. Yang Z, Silver M, Noshi Y. Adaptive weighted anisotropic diffusion for computed tomography denoising, 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 2011, p. 11–5.
45.
Zurück zum Zitat Tomizawa N, Nojo T, Akahane M, et al. Adaptive iterative dose reduction in coronary CT angiography using 320-row CT: assessment of radiation dose reduction and image quality. J Cardiovasc Comput Tomogr. 2012;6:318–24.PubMedCrossRef Tomizawa N, Nojo T, Akahane M, et al. Adaptive iterative dose reduction in coronary CT angiography using 320-row CT: assessment of radiation dose reduction and image quality. J Cardiovasc Comput Tomogr. 2012;6:318–24.PubMedCrossRef
46.•
Zurück zum Zitat Chen M, Shanbhag S, Arai A. Submillisievert median radiation dose for coronary angiography with a second-generation 320-detector row CT scanner in 107 consecutive patients. Radiology. 2013. doi:10.1148/radiol.13122621. Recent cardiac CT study evaluating AIDR3D. Chen M, Shanbhag S, Arai A. Submillisievert median radiation dose for coronary angiography with a second-generation 320-detector row CT scanner in 107 consecutive patients. Radiology. 2013. doi:10.​1148/​radiol.​13122621. Recent cardiac CT study evaluating AIDR3D.
47.
Zurück zum Zitat Chen M, Steigner M, Leung S, et al. Simulated 50 % radiation dose reduction in coronary CT angiography using adaptive iterative dose reduction in three dimensions (AIDR3D). Int J Cardiovasc Imaging. 2013. doi:10.1007/s10554-013-0190-1. Chen M, Steigner M, Leung S, et al. Simulated 50 % radiation dose reduction in coronary CT angiography using adaptive iterative dose reduction in three dimensions (AIDR3D). Int J Cardiovasc Imaging. 2013. doi:10.​1007/​s10554-013-0190-1.
48.
Zurück zum Zitat Shi D, Zou Y, Zamyatin A. Weighted simultaneous algebraic reconstruction technique. 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine. 2011. p. 160–2. Shi D, Zou Y, Zamyatin A. Weighted simultaneous algebraic reconstruction technique. 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine. 2011. p. 160–2.
49.
Zurück zum Zitat Zamyatin A, Dinu M, Shi D. Multi-scale iterative reconstruction. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record of the 2011. MIC21.S-111. Zamyatin A, Dinu M, Shi D. Multi-scale iterative reconstruction. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record of the 2011. MIC21.S-111.
50.
Zurück zum Zitat Zamyatin A, Shi D, Dinu M. Extension of axial coverage and artifact reduction in iterative reconstruction in computed tomography. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record of the 2011, MIC21.S-102. Zamyatin A, Shi D, Dinu M. Extension of axial coverage and artifact reduction in iterative reconstruction in computed tomography. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record of the 2011, MIC21.S-102.
51.
Zurück zum Zitat Shi D, Zamyatin A, Dinu M. Total variation regularized weighted simultaneous algebraic reconstruction technique – a parallel scheme. Proceedings of the 2nd International Conference on Image Formation in X-Ray Computed Tomography. 2011. p. 57–60. Shi D, Zamyatin A, Dinu M. Total variation regularized weighted simultaneous algebraic reconstruction technique – a parallel scheme. Proceedings of the 2nd International Conference on Image Formation in X-Ray Computed Tomography. 2011. p. 57–60.
52.
Zurück zum Zitat Do S, Cho S, Karl W, et al. Accurate model-based high resolution cardiac image reconstruction in dual source CT. Trans Med Imaging. 2009;330–3. Do S, Cho S, Karl W, et al. Accurate model-based high resolution cardiac image reconstruction in dual source CT. Trans Med Imaging. 2009;330–3.
53.
Zurück zum Zitat Do S, Karl W, Liang Z, et al. A decomposition-based CT reconstruction formulation for reducing blooming artifacts. Phys Med Biol. 2011;56:7109–25.PubMedCrossRef Do S, Karl W, Liang Z, et al. A decomposition-based CT reconstruction formulation for reducing blooming artifacts. Phys Med Biol. 2011;56:7109–25.PubMedCrossRef
54.
Zurück zum Zitat Achenbach S, Ropers D, Holle J, et al. In-plane coronary arterial motion velocity: measurement with electron beam CT. Radiology. 2000;216:457–63.PubMed Achenbach S, Ropers D, Holle J, et al. In-plane coronary arterial motion velocity: measurement with electron beam CT. Radiology. 2000;216:457–63.PubMed
55.
Zurück zum Zitat Schöndube H, Allmendinger T, Kappler S,et al. Temporal resolution and motion artifacts in dual-source cardiac CT and single-source CT with iterative reconstruction. Proceedings of the Second International Conference on Image Formation in X-ray Computed Tomography. 2012. p. 135–9. Schöndube H, Allmendinger T, Kappler S,et al. Temporal resolution and motion artifacts in dual-source cardiac CT and single-source CT with iterative reconstruction. Proceedings of the Second International Conference on Image Formation in X-ray Computed Tomography. 2012. p. 135–9.
56.
Zurück zum Zitat Maaß C, Kachelrieß M. Quantification of temporal resolution and its reliability in the context of TRI-PICCS and dual source CT. Proc SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 79611 M. p. 1–7 Maaß C, Kachelrieß M. Quantification of temporal resolution and its reliability in the context of TRI-PICCS and dual source CT. Proc SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 79611 M. p. 1–7
57.
Zurück zum Zitat Bhagalia R, Pack J, Miller J, Iatrou M. Nonrigid registration-based coronary artery motion correction for cardiac computed tomography. Med Phys. 2012;39(7):4245–54.PubMedCrossRef Bhagalia R, Pack J, Miller J, Iatrou M. Nonrigid registration-based coronary artery motion correction for cardiac computed tomography. Med Phys. 2012;39(7):4245–54.PubMedCrossRef
58.
Zurück zum Zitat Pack J, Claus B. An analysis of motion artifacts in CT and implications for motion compensation. Proceedings of the 2nd International Conference on Image Formation in X-ray Computed Tomography. 2011. p. 322–5. Pack J, Claus B. An analysis of motion artifacts in CT and implications for motion compensation. Proceedings of the 2nd International Conference on Image Formation in X-ray Computed Tomography. 2011. p. 322–5.
59.
Zurück zum Zitat Stevendaal U, Berg J, Lorenz C, Grass M. A motion-compensated scheme for helical cone-beam reconstruction in cardiac CT angiography. Med Phys. 2008;35(7):3239–51.PubMedCrossRef Stevendaal U, Berg J, Lorenz C, Grass M. A motion-compensated scheme for helical cone-beam reconstruction in cardiac CT angiography. Med Phys. 2008;35(7):3239–51.PubMedCrossRef
60.
Zurück zum Zitat Isola A, Metz C, Schaap M, et al. Coronary segmentation based motion corrected cardiac CT reconstruction. Proc IEEE. 2010;2026–9. Isola A, Metz C, Schaap M, et al. Coronary segmentation based motion corrected cardiac CT reconstruction. Proc IEEE. 2010;2026–9.
61.
Zurück zum Zitat Isola A, Ziegler A, Schäfer D, et al. Motion compensated iterative reconstruction of a region of interest in cardiac cone-beam CT. Comput Med Imaging Graph. 2010;34:149–59.PubMedCrossRef Isola A, Ziegler A, Schäfer D, et al. Motion compensated iterative reconstruction of a region of interest in cardiac cone-beam CT. Comput Med Imaging Graph. 2010;34:149–59.PubMedCrossRef
62.
Zurück zum Zitat Isola A, Grass M, Niessen W. Fully automatic nonrigid registration-based local motion estimation for motion-corrected iterative cardiac CT reconstruction. Med Phys. 2010;37(3):1093–109.PubMedCrossRef Isola A, Grass M, Niessen W. Fully automatic nonrigid registration-based local motion estimation for motion-corrected iterative cardiac CT reconstruction. Med Phys. 2010;37(3):1093–109.PubMedCrossRef
63.
Zurück zum Zitat Isola A, Metz, Schaap M, Klein S, et al. Cardiac motion-corrected iterative cone-beam CT reconstruction using semi-automatic minimum cost path-based coronary centerline extraction. Comput Med Imaging Graph. 2012;36:215–26.PubMedCrossRef Isola A, Metz, Schaap M, Klein S, et al. Cardiac motion-corrected iterative cone-beam CT reconstruction using semi-automatic minimum cost path-based coronary centerline extraction. Comput Med Imaging Graph. 2012;36:215–26.PubMedCrossRef
64.
Zurück zum Zitat Schöndube H, Kunze H, Bruder H, Stierstorfer K. Using the positivity constraint to enhance temporal resolution in CT. Proceedings of the First International Conference on Image Formation in X-ray Computed Tomography. 2010. p. 189–93. Schöndube H, Kunze H, Bruder H, Stierstorfer K. Using the positivity constraint to enhance temporal resolution in CT. Proceedings of the First International Conference on Image Formation in X-ray Computed Tomography. 2010. p. 189–93.
65.
Zurück zum Zitat Schöndube H, Allmendinger T, Stierstorfer K, et al. Evaluation of a novel CT image reconstruction algorithm with enhanced temporal resolution. Proc SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 79610 N. p. 1–7. Schöndube H, Allmendinger T, Stierstorfer K, et al. Evaluation of a novel CT image reconstruction algorithm with enhanced temporal resolution. Proc SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 79610 N. p. 1–7.
66.
Zurück zum Zitat Apfaltrer P, Schöndube H, Schoepf U, et al. Enhanced temporal resolution at cardiac CT with a novel CT image reconstruction algorithm: Initial patient experience. Eur J Radiol. 2013;82:270–4.PubMedCrossRef Apfaltrer P, Schöndube H, Schoepf U, et al. Enhanced temporal resolution at cardiac CT with a novel CT image reconstruction algorithm: Initial patient experience. Eur J Radiol. 2013;82:270–4.PubMedCrossRef
67.
Zurück zum Zitat Rohkohl C, Bruder H, Stierstorfer K, Flohr T. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization. Proceedings of the 2nd International Conference on Image Formation in X-Ray Computed Tomography. 2011. p. 1–4. Rohkohl C, Bruder H, Stierstorfer K, Flohr T. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization. Proceedings of the 2nd International Conference on Image Formation in X-Ray Computed Tomography. 2011. p. 1–4.
68.
Zurück zum Zitat •• Rohkohl C, Bruder H, Stierstorfer K, Flohr T. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization. Med Phys. 2013;40(3):031901. Motion compensation approach that does not require adjacent phases to be reconstructed and thus has the potential to improve temporal resolution at minimum patient dose.PubMedCrossRef •• Rohkohl C, Bruder H, Stierstorfer K, Flohr T. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization. Med Phys. 2013;40(3):031901. Motion compensation approach that does not require adjacent phases to be reconstructed and thus has the potential to improve temporal resolution at minimum patient dose.PubMedCrossRef
69.
Zurück zum Zitat Katsevich A, Zamyatin A, Silver M. A novel motion estimation algorithm. Proceedings of the 2nd International Conference on Image Formation in X-Ray Computed Tomography 2012. p. 326–9. Katsevich A, Zamyatin A, Silver M. A novel motion estimation algorithm. Proceedings of the 2nd International Conference on Image Formation in X-Ray Computed Tomography 2012. p. 326–9.
70.
Zurück zum Zitat Krylov R, Zamyatin A. Algebraic reconstruction technique with motion compensation, Proc SPIE 8668, paper 8668-45 Krylov R, Zamyatin A. Algebraic reconstruction technique with motion compensation, Proc SPIE 8668, paper 8668-45
71.
Zurück zum Zitat Segars W, Mahes M, Beck T, et al. Realistic CT simulation using the 4D XCAT phantom. Med Phys. 2008;35(8):3800–8.PubMedCrossRef Segars W, Mahes M, Beck T, et al. Realistic CT simulation using the 4D XCAT phantom. Med Phys. 2008;35(8):3800–8.PubMedCrossRef
72.
Zurück zum Zitat Cammin J, Taguchi K. Motion compensated filtered back projection for non-rigid deformation. Proceedings of the first International Conference on Image Formation in X-Ray Computed Tomography. 2010. p. 162–5. Cammin J, Taguchi K. Motion compensated filtered back projection for non-rigid deformation. Proceedings of the first International Conference on Image Formation in X-Ray Computed Tomography. 2010. p. 162–5.
73.
Zurück zum Zitat Cammin J, Khurd P, Kamen A, et al. Combined motion estimation and motion-compensated FBP for cardiac CT. 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 201. p. 136–9. Cammin J, Khurd P, Kamen A, et al. Combined motion estimation and motion-compensated FBP for cardiac CT. 11th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 201. p. 136–9.
74.
Zurück zum Zitat Tang Q, Cammin J, Srivastava S, Taguchi K. A fully four-dimensional, iterative motion estimation and compensation method for cardiac CT. Med Phys. 2012;39(7):4291–305.PubMedCrossRef Tang Q, Cammin J, Srivastava S, Taguchi K. A fully four-dimensional, iterative motion estimation and compensation method for cardiac CT. Med Phys. 2012;39(7):4291–305.PubMedCrossRef
75.
Zurück zum Zitat Chen G, Tang J, Hsieh J. Temporal resolution improvement using PICCS in MDCT cardiac imaging. Med Phys. 2009;36(6):2130–5.PubMedCrossRef Chen G, Tang J, Hsieh J. Temporal resolution improvement using PICCS in MDCT cardiac imaging. Med Phys. 2009;36(6):2130–5.PubMedCrossRef
76.
Zurück zum Zitat Tang J, Hsieh J, Chen G. Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS): performance studies. Med Phys. 2010;37(8):4377–88.PubMedCrossRef Tang J, Hsieh J, Chen G. Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS): performance studies. Med Phys. 2010;37(8):4377–88.PubMedCrossRef
77.
Zurück zum Zitat Ritschl L, Sawall S, Knaup M, Hess A, Kachelrieß M. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior. Phys Med Biol. 2012;57(6):1517–25.PubMedCrossRef Ritschl L, Sawall S, Knaup M, Hess A, Kachelrieß M. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior. Phys Med Biol. 2012;57(6):1517–25.PubMedCrossRef
78.
Zurück zum Zitat Hara A, Paden R, Silva A, et al. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol. 2009;193(3):764–71.PubMedCrossRef Hara A, Paden R, Silva A, et al. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol. 2009;193(3):764–71.PubMedCrossRef
79.
Zurück zum Zitat Leipsic J, Nguyen G, Brown J, et al. A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol. 2010;195(5):1095–9.PubMedCrossRef Leipsic J, Nguyen G, Brown J, et al. A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol. 2010;195(5):1095–9.PubMedCrossRef
80.
Zurück zum Zitat Nakaura T, Nakamura S, Maruyama N, et al. Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology. 2012;264(2):445–54.PubMedCrossRef Nakaura T, Nakamura S, Maruyama N, et al. Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology. 2012;264(2):445–54.PubMedCrossRef
81.
Zurück zum Zitat Kulkarni N, Uppot R, Eisner B, Sahani D. Radiation dose reduction at multidetector CT with adaptive statistical iterative reconstruction for evaluation of urolithiasis: how low can we go? Radiology. 2012;265(1):158–66.PubMedCrossRef Kulkarni N, Uppot R, Eisner B, Sahani D. Radiation dose reduction at multidetector CT with adaptive statistical iterative reconstruction for evaluation of urolithiasis: how low can we go? Radiology. 2012;265(1):158–66.PubMedCrossRef
82.
Zurück zum Zitat Schindera S, Diedrichsen L, Müller H, et al. Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology. 2011;260(2):454–62.PubMedCrossRef Schindera S, Diedrichsen L, Müller H, et al. Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology. 2011;260(2):454–62.PubMedCrossRef
83.
Zurück zum Zitat Ren Q, Dewan S, Li M, et al. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT. Eur J Radiol. 2012;81(10):2597–601.PubMedCrossRef Ren Q, Dewan S, Li M, et al. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT. Eur J Radiol. 2012;81(10):2597–601.PubMedCrossRef
84.
Zurück zum Zitat Yamada Y, Jinzaki M, Hosokawa T, et al. Dose reduction in chest CT: comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques. Eur J Radiol. 2012;81(12):4185–95.PubMedCrossRef Yamada Y, Jinzaki M, Hosokawa T, et al. Dose reduction in chest CT: comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques. Eur J Radiol. 2012;81(12):4185–95.PubMedCrossRef
85.
Zurück zum Zitat Martinsen A, Sather H, Hol P, et al. Iterative reconstruction reduces abdominal CT dose. Eur J Radiol. 2012;81(7):1483–7.PubMedCrossRef Martinsen A, Sather H, Hol P, et al. Iterative reconstruction reduces abdominal CT dose. Eur J Radiol. 2012;81(7):1483–7.PubMedCrossRef
86.
Zurück zum Zitat Gervaise A, Osemont B, Lecocg S, et al. CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol. 2012;22(2):295–301.PubMedCrossRef Gervaise A, Osemont B, Lecocg S, et al. CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol. 2012;22(2):295–301.PubMedCrossRef
87.
Zurück zum Zitat Prakash P, Kalra M, Digumarthy S, et al. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr. 2010;34(1):40–5.PubMedCrossRef Prakash P, Kalra M, Digumarthy S, et al. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr. 2010;34(1):40–5.PubMedCrossRef
88.
Zurück zum Zitat Pontana F, Duhamel A, Pagniez J, et al. Chest computed tomography using iterative reconstruction vs filtered back projection (part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol. 2011;21(3):636–43.PubMedCrossRef Pontana F, Duhamel A, Pagniez J, et al. Chest computed tomography using iterative reconstruction vs filtered back projection (part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol. 2011;21(3):636–43.PubMedCrossRef
89.
Zurück zum Zitat Noel P, Fingerle A, Renger B, et al. Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. AJR Am J Roentgenol. 2011;197(6):1404–9.PubMedCrossRef Noel P, Fingerle A, Renger B, et al. Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. AJR Am J Roentgenol. 2011;197(6):1404–9.PubMedCrossRef
90.
Zurück zum Zitat Sagara Y, Hara A, Pavlicek W, et al. Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol. 2010;195(3):713–9.PubMedCrossRef Sagara Y, Hara A, Pavlicek W, et al. Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol. 2010;195(3):713–9.PubMedCrossRef
91.
Zurück zum Zitat Hu X, Ding X, Wu R, Zhang M. Radiation dose of non-enhanced chest CT can be reduced 40 % by using iterative reconstruction in image space. Clin Radiol. 2011;66(11):1023–9.PubMedCrossRef Hu X, Ding X, Wu R, Zhang M. Radiation dose of non-enhanced chest CT can be reduced 40 % by using iterative reconstruction in image space. Clin Radiol. 2011;66(11):1023–9.PubMedCrossRef
92.
Zurück zum Zitat Lee S, Park S, Kim A, et al. A prospective comparison of standard-dose CT enterography and 50 % reduced-dose CT enterography with and without noise reduction for evaluating Crohn disease. AJR Am J Roentgenol. 2011;197(1):50–7.PubMedCrossRef Lee S, Park S, Kim A, et al. A prospective comparison of standard-dose CT enterography and 50 % reduced-dose CT enterography with and without noise reduction for evaluating Crohn disease. AJR Am J Roentgenol. 2011;197(1):50–7.PubMedCrossRef
93.
Zurück zum Zitat May M, Wüst W, Brand M, et al. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography. Invest Radiol. 2011;46(7):46–70.CrossRef May M, Wüst W, Brand M, et al. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography. Invest Radiol. 2011;46(7):46–70.CrossRef
94.
Zurück zum Zitat Kambadakone A, Chaudhary N, Desai G, et al. Low-dose MDCT and CT enterography of patients with Crohn disease: feasibility of adaptive statistical iterative reconstruction. AJR Am J Roentgenol. 2011;196(6):743–52.CrossRef Kambadakone A, Chaudhary N, Desai G, et al. Low-dose MDCT and CT enterography of patients with Crohn disease: feasibility of adaptive statistical iterative reconstruction. AJR Am J Roentgenol. 2011;196(6):743–52.CrossRef
95.
Zurück zum Zitat Mitsumori L, Shuman W, Busey J, et al. Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose. Eur Radiol. 2012;22(1):138–43.PubMedCrossRef Mitsumori L, Shuman W, Busey J, et al. Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose. Eur Radiol. 2012;22(1):138–43.PubMedCrossRef
96.
Zurück zum Zitat Prakash P, Kalra M, Kambadakone A, et al. Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol. 2010;45(4):202–10.PubMedCrossRef Prakash P, Kalra M, Kambadakone A, et al. Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol. 2010;45(4):202–10.PubMedCrossRef
97.
Zurück zum Zitat Vorona G, Ceschin R, Clayton B, et al. Reducing abdominal CT radiation dose with the adaptive statistical iterative reconstruction technique in children: a feasibility study. Pediatr Radiol. 2011;41(9):1174–82.PubMedCrossRef Vorona G, Ceschin R, Clayton B, et al. Reducing abdominal CT radiation dose with the adaptive statistical iterative reconstruction technique in children: a feasibility study. Pediatr Radiol. 2011;41(9):1174–82.PubMedCrossRef
98.
Zurück zum Zitat Korn A, Fenchel M, Bender B, et al. Iterative reconstruction in head CT: image quality of routine and low-dose protocols in comparison with standard filtered back-projection. AJR Am J Neuroradiol. 2012;33(2):218–24.CrossRef Korn A, Fenchel M, Bender B, et al. Iterative reconstruction in head CT: image quality of routine and low-dose protocols in comparison with standard filtered back-projection. AJR Am J Neuroradiol. 2012;33(2):218–24.CrossRef
99.
Zurück zum Zitat Bulla S, Blanke P, Hassepass F, et al. Reducing the radiation dose for low-dose CT of the paranasal sinuses using iterative reconstruction: feasibility and image quality. Eur J Radiol. 2012;81(9):2246–50.PubMedCrossRef Bulla S, Blanke P, Hassepass F, et al. Reducing the radiation dose for low-dose CT of the paranasal sinuses using iterative reconstruction: feasibility and image quality. Eur J Radiol. 2012;81(9):2246–50.PubMedCrossRef
100.
Zurück zum Zitat Kilic K, Erbas G, Guryildirim M, et al. Lowering the dose in head CT using adaptive statistical iterative reconstruction. AJNR Am J Neuroradiol. 2011;32(9):1578–82.PubMedCrossRef Kilic K, Erbas G, Guryildirim M, et al. Lowering the dose in head CT using adaptive statistical iterative reconstruction. AJNR Am J Neuroradiol. 2011;32(9):1578–82.PubMedCrossRef
101.
Zurück zum Zitat Rapalino O, Kamalian S, Payabvash S, et al. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction. AJNR Am J Neuroradiol. 2012;33(4):609–15.PubMedCrossRef Rapalino O, Kamalian S, Payabvash S, et al. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction. AJNR Am J Neuroradiol. 2012;33(4):609–15.PubMedCrossRef
Metadaten
Titel
Iterative Reconstruction Techniques: What do they Mean for Cardiac CT?
verfasst von
Marc Kachelrieß
Publikationsdatum
01.06.2013
Verlag
Current Science Inc.
Erschienen in
Current Cardiovascular Imaging Reports / Ausgabe 3/2013
Print ISSN: 1941-9066
Elektronische ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-013-9203-7

Weitere Artikel der Ausgabe 3/2013

Current Cardiovascular Imaging Reports 3/2013 Zur Ausgabe

Cardiac Computed Tomography (TC Villines and S Achenbach, Section Editors)

Dual Energy CT of the Heart: Current Status and Future Applications

Cardiac Computed Tomography (TC Villines and S Achenbach, Section Editors)

High-Pitch Dual Spiral Cardiovascular Computed Tomography

Cardiac Computed Tomography (TC Villines and S Achenbach, Section Editors)

Coronary CT Angiography in the Emergency Department: Current Status

Cardiac Computed Tomography (TC Villines and S Achenbach, Section Editors)

Automated Interpretation and Reporting of Coronary CT Coronary Angiography

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.