Skip to main content
Erschienen in: European Radiology 1/2020

01.08.2019 | Head and Neck

Joint intracranial and carotid vessel wall imaging in 5 minutes using compressed sensing accelerated DANTE-SPACE

verfasst von: Sen Jia, Lei Zhang, Lijie Ren, Yulong Qi, Jinhao Ly, Na Zhang, Ye Li, Xin Liu, Hairong Zheng, Dong Liang, Yiu-cho Chung

Erschienen in: European Radiology | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To compare visualization of joint intracranial and carotid vessel walls between 5× compressed sensing accelerated three-dimensional DANTE-SPACE sequence (CS VWI) acquired in 5 min and the same sequence accelerated by 2.7× parallel imaging (PI VWI) which takes 9–10 min currently.

Methods

Following institutional review board approval and informed consent, 28 subjects including 20 stroke patients underwent PI and CS VWI examinations with an acquired spatial resolution of isotropic 0.55 mm and joint coverage of intracranial and carotid arteries. Quantitative wall thickness measurements of CS VWI and PI VWI were compared on healthy volunteers and patients with wall thickening respectively. Subjective wall visualizations of the two VWI methods on patients were scored by two radiologists blindly and independently using a 4-point scale followed by inter-rater reproducibility analysis.

Results

Linear regression analysis of wall thickness measurements showed excellent agreement between CS VWI and PI VWI in both healthy volunteers (r = 0.99) and stroke patients with wall thickening (r = 0.99). Subjective wall visualization score of CS VWI was slightly lower than PI VWI (3.13 ± 0.41 vs. 3.31 ± 0.79) but still had good diagnostic quality (> 3 based on a 4-point scale). The two radiologists’ scores agreed excellently, evidenced by the intraclass correlation coefficient (ICC) values being higher than 0.75 (p < 0.001).

Conclusions

Compressed sensing expedients joint intracranial and carotid VWI acquired at an isotropic resolution of 0.55 mm in 5 min without compromising quantitative vessel wall thickness measurement or diagnostic wall visualization.

Key Points

• CS VWI facilitates comprehensive visualization of intracranial and carotid vessel walls at an acquired isotropic resolution of 0.55 mm in a single 5-min scan.
• CS VWI affords comparable vessel wall visualization and morphology measurement as PI VWI with a shortened acquisition time by 45%.
• CS VWI alleviates the intensive trade-off between imaging resolution and scan time, and benefits the scan efficiency, motion robustness, and patient tolerance of high-resolution joint intracranial and carotid VWI.
Literatur
1.
Zurück zum Zitat Qureshi A, Caplan L (2014) Intracranial atherosclerosis. Lancet 383:984–998CrossRef Qureshi A, Caplan L (2014) Intracranial atherosclerosis. Lancet 383:984–998CrossRef
2.
Zurück zum Zitat Boussel L, Arora S, Rapp J et al (2009) Atherosclerotic plaque progression in carotid arteries: monitoring with high-spatial-resolution MR imaging-multicenter trial. Radiology 252:789–796CrossRef Boussel L, Arora S, Rapp J et al (2009) Atherosclerotic plaque progression in carotid arteries: monitoring with high-spatial-resolution MR imaging-multicenter trial. Radiology 252:789–796CrossRef
3.
Zurück zum Zitat Mandell DM, Mossa-Basha M, Qiao Y et al (2017) Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 38:218–229CrossRef Mandell DM, Mossa-Basha M, Qiao Y et al (2017) Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 38:218–229CrossRef
4.
Zurück zum Zitat Dieleman N, van der Kolk AG, Zwanenburg JJM et al (2014) Imaging intracranial vessel wall pathology with magnetic resonance imaging: current prospects and future directions. Circulation 130:192–201CrossRef Dieleman N, van der Kolk AG, Zwanenburg JJM et al (2014) Imaging intracranial vessel wall pathology with magnetic resonance imaging: current prospects and future directions. Circulation 130:192–201CrossRef
5.
Zurück zum Zitat Choi YJ, Jung SC, Lee DH (2015) Vessel wall imaging of the intracranial and cervical carotid arteries. J Stroke 17:238–255CrossRef Choi YJ, Jung SC, Lee DH (2015) Vessel wall imaging of the intracranial and cervical carotid arteries. J Stroke 17:238–255CrossRef
6.
Zurück zum Zitat Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J (2018) The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 286:12–28CrossRef Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J (2018) The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 286:12–28CrossRef
7.
Zurück zum Zitat Saba L, Yuan C, Hatsukami TS et al (2018) Carotid artery wall imaging: perspective and guidelines from the ASNR Vessel Wall Imaging Study Group and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 39:9–31CrossRef Saba L, Yuan C, Hatsukami TS et al (2018) Carotid artery wall imaging: perspective and guidelines from the ASNR Vessel Wall Imaging Study Group and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 39:9–31CrossRef
8.
Zurück zum Zitat Qiao Y, Steinman DA, Qin Q et al (2011) Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 tesla. J Magn Reson Imaging 34:22–30CrossRef Qiao Y, Steinman DA, Qin Q et al (2011) Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 tesla. J Magn Reson Imaging 34:22–30CrossRef
9.
Zurück zum Zitat Zhang L, Zhang N, Wu J et al (2015) High resolution three dimensional intracranial arterial wall imaging at 3T using T1 weighted SPACE. Magn Reson Imaging 33:1026–1034CrossRef Zhang L, Zhang N, Wu J et al (2015) High resolution three dimensional intracranial arterial wall imaging at 3T using T1 weighted SPACE. Magn Reson Imaging 33:1026–1034CrossRef
10.
Zurück zum Zitat Fan Z, Yang Q, Deng Z et al (2017) Whole-brain intracranial vessel wall imaging at 3 tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo. Magn Reson Med 77:1142–1150CrossRef Fan Z, Yang Q, Deng Z et al (2017) Whole-brain intracranial vessel wall imaging at 3 tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo. Magn Reson Med 77:1142–1150CrossRef
11.
Zurück zum Zitat Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C (2011) Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med 65:627–637CrossRef Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C (2011) Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med 65:627–637CrossRef
12.
Zurück zum Zitat Fan Z, Zhang Z, Chung YC et al (2010) Carotid arterial Wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 31:645–654CrossRef Fan Z, Zhang Z, Chung YC et al (2010) Carotid arterial Wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 31:645–654CrossRef
13.
Zurück zum Zitat Li L, Chai J, Biasiolli L et al (2014) Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging. Radiology 273:560–569CrossRef Li L, Chai J, Biasiolli L et al (2014) Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging. Radiology 273:560–569CrossRef
14.
Zurück zum Zitat Edjlali M, Roca P, Rabrait C, Naggara O, Oppenheim C (2014) 3D fast spin-echo T1 black-blood imaging for the diagnosis of cervical artery dissection. AJNR Am J Neuroradiol 34:103–106CrossRef Edjlali M, Roca P, Rabrait C, Naggara O, Oppenheim C (2014) 3D fast spin-echo T1 black-blood imaging for the diagnosis of cervical artery dissection. AJNR Am J Neuroradiol 34:103–106CrossRef
15.
Zurück zum Zitat Cuvinciuc V, Viallon M, Momjian-Mayor I, (2013) 3D fat-saturated T1 SPACE sequence for the diagnosis of cervical artery dissection. Neuroradiology 55:595–602 Cuvinciuc V, Viallon M, Momjian-Mayor I, (2013) 3D fat-saturated T1 SPACE sequence for the diagnosis of cervical artery dissection. Neuroradiology 55:595–602
16.
Zurück zum Zitat Han M, Rim NJ, Lee JS, Kim SY, Choi JW (2014) Feasibility of high-resolution MR imaging for the diagnosis of intracranial vertebrobasilar artery dissection. Eur Radiol 24:3017–3024CrossRef Han M, Rim NJ, Lee JS, Kim SY, Choi JW (2014) Feasibility of high-resolution MR imaging for the diagnosis of intracranial vertebrobasilar artery dissection. Eur Radiol 24:3017–3024CrossRef
17.
Zurück zum Zitat Xu Y, Yuan C, Zhou Z et al (2016) Co-existing intracranial and extracranial carotid artery atherosclerotic plaques and recurrent stroke risk: a three-dimensional multicontrast cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 18:90–97CrossRef Xu Y, Yuan C, Zhou Z et al (2016) Co-existing intracranial and extracranial carotid artery atherosclerotic plaques and recurrent stroke risk: a three-dimensional multicontrast cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 18:90–97CrossRef
18.
Zurück zum Zitat Zhou Z, Li R, Zhao X et al (2015) Evaluation of 3D multi-contrast joint intra- and extracranial vessel wall cardiovascular magnetic resonance. J Cardiovasc Magn Reson 17:41–51CrossRef Zhou Z, Li R, Zhao X et al (2015) Evaluation of 3D multi-contrast joint intra- and extracranial vessel wall cardiovascular magnetic resonance. J Cardiovasc Magn Reson 17:41–51CrossRef
19.
Zurück zum Zitat Xu Y, Li D, Yuan C et al (2018) Association of severity between carotid and intracranial artery atherosclerosis. Ann Clin Transl Neurol 5:843–849CrossRef Xu Y, Li D, Yuan C et al (2018) Association of severity between carotid and intracranial artery atherosclerosis. Ann Clin Transl Neurol 5:843–849CrossRef
20.
Zurück zum Zitat Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D (2016) Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med 75:2286–2294CrossRef Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D (2016) Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med 75:2286–2294CrossRef
21.
Zurück zum Zitat Hu X, Li Y, Zhang L, Zhang X, Liu X, Chung YC (2016) A 32-channel coil system for MR vessel wall imaging of intracranial and extracranial arteries at 3T. Magn Reson Imaging 36:86–92CrossRef Hu X, Li Y, Zhang L, Zhang X, Liu X, Chung YC (2016) A 32-channel coil system for MR vessel wall imaging of intracranial and extracranial arteries at 3T. Magn Reson Imaging 36:86–92CrossRef
22.
Zurück zum Zitat Zhang L, Zhang N, Wu J, Liu X, Chung YC (2017) High resolution simultaneous imaging of intracranial and extracranial arterial wall with improved cerebrospinal fluid suppression. Magn Reson Imaging 44:65–71CrossRef Zhang L, Zhang N, Wu J, Liu X, Chung YC (2017) High resolution simultaneous imaging of intracranial and extracranial arterial wall with improved cerebrospinal fluid suppression. Magn Reson Imaging 44:65–71CrossRef
23.
Zurück zum Zitat Murphy M, Alley M, Demmel J, Keutzer K, Vasanawala S, Lustig M (2012) Fast l(1)-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans Med Imaging 31:1250–1262CrossRef Murphy M, Alley M, Demmel J, Keutzer K, Vasanawala S, Lustig M (2012) Fast l(1)-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans Med Imaging 31:1250–1262CrossRef
24.
Zurück zum Zitat Zhang T, Chowdhury S, Lustig M et al (2014) Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imaging 40:13–25CrossRef Zhang T, Chowdhury S, Lustig M et al (2014) Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imaging 40:13–25CrossRef
25.
Zurück zum Zitat Hansen SM, Sørensen TS (2013) Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 69:1768–1776CrossRef Hansen SM, Sørensen TS (2013) Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 69:1768–1776CrossRef
26.
Zurück zum Zitat Zhang N, Fan Z, Deng Z et al (2018) 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions. J Cardiovasc Magn Reson 20:39–50CrossRef Zhang N, Fan Z, Deng Z et al (2018) 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions. J Cardiovasc Magn Reson 20:39–50CrossRef
27.
Zurück zum Zitat Okuchi S, Fushimi Y, Okada T et al (2019) Visualization of carotid vessel wall and atherosclerotic plaque: T1-SPACE vs. compressed sensing T1-SPACE. Eur Radiol 29:1452–1459CrossRef Okuchi S, Fushimi Y, Okada T et al (2019) Visualization of carotid vessel wall and atherosclerotic plaque: T1-SPACE vs. compressed sensing T1-SPACE. Eur Radiol 29:1452–1459CrossRef
28.
Zurück zum Zitat Zhu C, Tian B, Chen L et al (2017) Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE). MAGMA 31:457–467CrossRef Zhu C, Tian B, Chen L et al (2017) Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE). MAGMA 31:457–467CrossRef
29.
Zurück zum Zitat Li L, Miller KL, Jezzard P (2012) DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med 68:1423–1438CrossRef Li L, Miller KL, Jezzard P (2012) DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med 68:1423–1438CrossRef
30.
Zurück zum Zitat Wang J, Helle M, Zhou Z, Börnert P, Hatsukami TS, Yuan C (2016) Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI. Magn Reson Med 75:831–838CrossRef Wang J, Helle M, Zhou Z, Börnert P, Hatsukami TS, Yuan C (2016) Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI. Magn Reson Med 75:831–838CrossRef
31.
Zurück zum Zitat Xue H, Inati S, Sørensen TS, Kellman P, Hansen MS (2015) Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med 73:1015–1025CrossRef Xue H, Inati S, Sørensen TS, Kellman P, Hansen MS (2015) Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med 73:1015–1025CrossRef
32.
Zurück zum Zitat Qiao Y, Zeiler SR, Mirbagheri S et al (2014) Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology 271:534–542CrossRef Qiao Y, Zeiler SR, Mirbagheri S et al (2014) Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology 271:534–542CrossRef
33.
Zurück zum Zitat Mossa-Basha M, Hwang WD, Havenon AD et al (2015) Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic proces. Stroke 46:1567–1573CrossRef Mossa-Basha M, Hwang WD, Havenon AD et al (2015) Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic proces. Stroke 46:1567–1573CrossRef
34.
Zurück zum Zitat Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRef Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRef
Metadaten
Titel
Joint intracranial and carotid vessel wall imaging in 5 minutes using compressed sensing accelerated DANTE-SPACE
verfasst von
Sen Jia
Lei Zhang
Lijie Ren
Yulong Qi
Jinhao Ly
Na Zhang
Ye Li
Xin Liu
Hairong Zheng
Dong Liang
Yiu-cho Chung
Publikationsdatum
01.08.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 1/2020
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06366-7

Weitere Artikel der Ausgabe 1/2020

European Radiology 1/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.