Skip to main content
Erschienen in: Medical Oncology 2/2013

01.06.2013 | Original Paper

KCNN4 Channels participate in the EMT induced by PRL-3 in colorectal cancer

verfasst von: Wei Lai, Lu Liu, Yujie Zeng, Heng Wu, Heyang Xu, Shuang Chen, Zhonghua Chu

Erschienen in: Medical Oncology | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten

Abstract

Studies have shown that phosphatase of regenerating liver-3 (PRL-3) promotes the invasion, migration, and metastasis of human tumor cells by facilitating an epithelial–mesenchymal transition (EMT). However, the mechanism by which PRL-3 induces tumor cell EMT is unknown. Our previous research revealed that PRL-3 promotes LoVo cell proliferation by up-regulating KCNN4 channels. In the current study, we explored the mechanism by which PRL-3 mediates EMT. We demonstrated that PRL-3 induced the expression of KCNN4 channels, leading to EMT and the down-regulation of E-cadherin. Further studies revealed that KCNN4 channels increased intracellular calcium levels and activated components of cell signaling downstream of calcium, including CaM-kinase II and glycogen synthase kinase-3 beta (GSK-3 beta), which increased Snail expression. Inhibiting KCNN4 with siRNA and TRAM-34, a specific inhibitor, restored E-cadherin expression and inhibited Snail expression. These results implicated the up-regulation of KCNN4 channels in the PRL-3-mediated induction of EMT and promotion of cancer metastasis.
Literatur
1.
Zurück zum Zitat Acloque H, Adams MS, Fishwick K, et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438–49.PubMedCrossRef Acloque H, Adams MS, Fishwick K, et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438–49.PubMedCrossRef
2.
Zurück zum Zitat Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.PubMedCrossRef Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.PubMedCrossRef
3.
Zurück zum Zitat Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.PubMedCrossRef Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.PubMedCrossRef
4.
Zurück zum Zitat Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.PubMedCrossRef Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.PubMedCrossRef
5.
Zurück zum Zitat Miskad UA, Semba S, Kato H, et al. High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: an in situ hybridization study. Virchows Arch. 2007;450:303–10.PubMedCrossRef Miskad UA, Semba S, Kato H, et al. High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: an in situ hybridization study. Virchows Arch. 2007;450:303–10.PubMedCrossRef
6.
Zurück zum Zitat Fagerli UM, Holt RU, Holien T, et al. Overexpression and involvement in migration by the metastasis-associated phosphatase PRL-3 in human myeloma cells. Blood. 2008;111:806–15.PubMedCrossRef Fagerli UM, Holt RU, Holien T, et al. Overexpression and involvement in migration by the metastasis-associated phosphatase PRL-3 in human myeloma cells. Blood. 2008;111:806–15.PubMedCrossRef
7.
Zurück zum Zitat Liang F, Liang J, Wang WQ, et al. PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. J Biol Chem. 2007;282:5413–9.PubMedCrossRef Liang F, Liang J, Wang WQ, et al. PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. J Biol Chem. 2007;282:5413–9.PubMedCrossRef
8.
Zurück zum Zitat Fiordalisi JJ, Keller PJ, Cox AD. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res. 2006;66:3153–61.PubMedCrossRef Fiordalisi JJ, Keller PJ, Cox AD. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res. 2006;66:3153–61.PubMedCrossRef
9.
Zurück zum Zitat Wang H, Quah SY, Dong JM, et al. RL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res. 2007;67:2922–6.PubMedCrossRef Wang H, Quah SY, Dong JM, et al. RL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res. 2007;67:2922–6.PubMedCrossRef
10.
Zurück zum Zitat Peng L, Xing X, Li W, et al. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin beta1-ERK1/2 and-MMP2 signaling. Mol Cancer. 2009;8:110.PubMedCrossRef Peng L, Xing X, Li W, et al. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin beta1-ERK1/2 and-MMP2 signaling. Mol Cancer. 2009;8:110.PubMedCrossRef
11.
Zurück zum Zitat Liu Y, Zhou J, Chen J, et al. PRL-3 promotes epithelial mesenchymal transition by regulating cadherin directly. Cancer Biol Ther. 2009;8:1352–9.PubMedCrossRef Liu Y, Zhou J, Chen J, et al. PRL-3 promotes epithelial mesenchymal transition by regulating cadherin directly. Cancer Biol Ther. 2009;8:1352–9.PubMedCrossRef
12.
Zurück zum Zitat Fanger CM, Ghanshan S, Logsdon NJ, et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J Biol Chem. 1999;274:5746–54.PubMedCrossRef Fanger CM, Ghanshan S, Logsdon NJ, et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J Biol Chem. 1999;274:5746–54.PubMedCrossRef
13.
Zurück zum Zitat Matos JE, Sausbier M, Beranek G, et al. Role of cholinergic-activated KCa1.1 (BK), KCa3.1 (SK4) and KV7.1 (KCNQ1) channels in mouse colonic Cl- secretion. Acta Physiol (Oxf). 2007;189:251–8.CrossRef Matos JE, Sausbier M, Beranek G, et al. Role of cholinergic-activated KCa1.1 (BK), KCa3.1 (SK4) and KV7.1 (KCNQ1) channels in mouse colonic Cl- secretion. Acta Physiol (Oxf). 2007;189:251–8.CrossRef
14.
Zurück zum Zitat Dong H, Smith A, Hovaida M, et al. Role of Ca2+ -activated K+ channels in duodenal mucosal ion transport and bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol. 2006;291:G1120–8.PubMedCrossRef Dong H, Smith A, Hovaida M, et al. Role of Ca2+ -activated K+ channels in duodenal mucosal ion transport and bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol. 2006;291:G1120–8.PubMedCrossRef
15.
Zurück zum Zitat Wang ZH, Shen B, Yao HL, et al. Blockage of intermediate-conductance-Ca2+ -activated K+ channels inhibits progression of human endometrial cancer. Oncogene. 2007;26:5107–14.PubMedCrossRef Wang ZH, Shen B, Yao HL, et al. Blockage of intermediate-conductance-Ca2+ -activated K+ channels inhibits progression of human endometrial cancer. Oncogene. 2007;26:5107–14.PubMedCrossRef
16.
Zurück zum Zitat Lallet-Daher H, Roudbaraki M, Bavencoffe A, et al. Intermediate-conductance Ca2+ -activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene. 2009;28:1792–806.PubMedCrossRef Lallet-Daher H, Roudbaraki M, Bavencoffe A, et al. Intermediate-conductance Ca2+ -activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene. 2009;28:1792–806.PubMedCrossRef
17.
Zurück zum Zitat Matter WF, Estridge T, Zhang C, et al. Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochem Biophys Res Commun. 2001;283:1061–8.PubMedCrossRef Matter WF, Estridge T, Zhang C, et al. Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochem Biophys Res Commun. 2001;283:1061–8.PubMedCrossRef
18.
Zurück zum Zitat Lai W, Chen S, Wu H, et al. PRL-3 promotes the proliferation of LoVo cells via the upregulation of KCNN4 channels. Oncol Rep. 2011;26:909–17.PubMed Lai W, Chen S, Wu H, et al. PRL-3 promotes the proliferation of LoVo cells via the upregulation of KCNN4 channels. Oncol Rep. 2011;26:909–17.PubMed
19.
Zurück zum Zitat Pertz O, Bozic D, Koch AW, et al. A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J. 1999;18:1738–47.PubMedCrossRef Pertz O, Bozic D, Koch AW, et al. A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J. 1999;18:1738–47.PubMedCrossRef
20.
Zurück zum Zitat Fanger CM, Rauer H, Neben AL, et al. Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J Biol Chem. 2001;276:12249–56.PubMedCrossRef Fanger CM, Rauer H, Neben AL, et al. Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J Biol Chem. 2001;276:12249–56.PubMedCrossRef
21.
Zurück zum Zitat Gao YD, Hanley PJ, Rinné S, et al. Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages. Cell Calcium. 2010;48:19–27.PubMedCrossRef Gao YD, Hanley PJ, Rinné S, et al. Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages. Cell Calcium. 2010;48:19–27.PubMedCrossRef
22.
Zurück zum Zitat Kahl CR, Means AR. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev. 2003;24:719–36.PubMedCrossRef Kahl CR, Means AR. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev. 2003;24:719–36.PubMedCrossRef
23.
Zurück zum Zitat Song B, Lai B, Zheng Z, et al. Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival. J Biol Chem. 2010;285:41122–34.PubMedCrossRef Song B, Lai B, Zheng Z, et al. Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival. J Biol Chem. 2010;285:41122–34.PubMedCrossRef
24.
Zurück zum Zitat Soderling TR, Chang B, Brickey D. Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 2001;276:3719–22.PubMedCrossRef Soderling TR, Chang B, Brickey D. Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 2001;276:3719–22.PubMedCrossRef
25.
Zurück zum Zitat Doble BW, Woodgett JR. Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs. 2007;185:73–84.PubMedCrossRef Doble BW, Woodgett JR. Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs. 2007;185:73–84.PubMedCrossRef
26.
Zurück zum Zitat Baranwal S, Alahari SK. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun. 2009;384:6–11.PubMedCrossRef Baranwal S, Alahari SK. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun. 2009;384:6–11.PubMedCrossRef
Metadaten
Titel
KCNN4 Channels participate in the EMT induced by PRL-3 in colorectal cancer
verfasst von
Wei Lai
Lu Liu
Yujie Zeng
Heng Wu
Heyang Xu
Shuang Chen
Zhonghua Chu
Publikationsdatum
01.06.2013
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 2/2013
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-013-0566-z

Weitere Artikel der Ausgabe 2/2013

Medical Oncology 2/2013 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.