Skip to main content
Erschienen in:

06.11.2019 | Topic Paper

Kidney regeneration approaches for translation

verfasst von: Heejo Yang, Anthony Atala, James J. Yoo

Erschienen in: World Journal of Urology | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Abstract

The increase in the incidence of chronic kidney diseases that progress to end-stage renal disease has become a significant health problem worldwide. While dialysis can maintain and prolong survival, the only definitive treatment that can restore renal function is transplantation. Unfortunately, many of these patients die waiting for transplantable kidneys due to the severe shortage of donor organs. Tissue engineering and regenerative medicine approaches have been applied in recent years to develop viable therapies that could provide solutions to these patients. Cell-based and cell-free approaches have been proposed to address the challenges associated with chronic kidney diseases. Strategies and progress toward developing alternative therapeutic options will be reviewed.
Literatur
1.
Zurück zum Zitat Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB et al (2017) Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet (London, England). 390(10105):1888–1917 Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB et al (2017) Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet (London, England). 390(10105):1888–1917
2.
Zurück zum Zitat Hart A, Smith JM, Skeans MA, Gustafson SK, Wilk AR, Robinson A et al (2018) OPTN/SRTR 2016 annual data report: kidney. Am J Transpl 18:18–113 Hart A, Smith JM, Skeans MA, Gustafson SK, Wilk AR, Robinson A et al (2018) OPTN/SRTR 2016 annual data report: kidney. Am J Transpl 18:18–113
3.
Zurück zum Zitat Saran R, Robinson B, Abbott KC, Agodoa LYC, Bhave N, Bragg-Gresham J et al (2018) US renal data system 2017 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 71(3:Suppl1):A7PubMedPubMedCentral Saran R, Robinson B, Abbott KC, Agodoa LYC, Bhave N, Bragg-Gresham J et al (2018) US renal data system 2017 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 71(3:Suppl1):A7PubMedPubMedCentral
4.
Zurück zum Zitat Schena FP (1998) Role of growth factors in acute renal failure. Kidney Int Suppl 66:S11–S15PubMed Schena FP (1998) Role of growth factors in acute renal failure. Kidney Int Suppl 66:S11–S15PubMed
5.
Zurück zum Zitat Carley WW, Milici AJ, Madri JA (1988) Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp Cell Res 178(2):426–434PubMed Carley WW, Milici AJ, Madri JA (1988) Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp Cell Res 178(2):426–434PubMed
6.
Zurück zum Zitat Harris RC (1997) Growth factors and cytokines in acute renal failure. Adv Ren Replace Ther 4(2 Suppl 1):43–53PubMed Harris RC (1997) Growth factors and cytokines in acute renal failure. Adv Ren Replace Ther 4(2 Suppl 1):43–53PubMed
7.
Zurück zum Zitat Bussolati B, Camussi G (2015) Therapeutic use of human renal progenitor cells for kidney regeneration. Nat Rev Nephrol 11:695PubMed Bussolati B, Camussi G (2015) Therapeutic use of human renal progenitor cells for kidney regeneration. Nat Rev Nephrol 11:695PubMed
8.
Zurück zum Zitat Aggarwal S, Grange C, Iampietro C, Camussi G, Bussolati B (2016) Human CD133(+) renal progenitor cells induce erythropoietin production and limit fibrosis after acute tubular injury. Sci Rep 6:37270PubMedPubMedCentral Aggarwal S, Grange C, Iampietro C, Camussi G, Bussolati B (2016) Human CD133(+) renal progenitor cells induce erythropoietin production and limit fibrosis after acute tubular injury. Sci Rep 6:37270PubMedPubMedCentral
9.
Zurück zum Zitat Qi W, Johnson DW, Vesey DA, Pollock CA, Chen X (2007) Isolation, propagation and characterization of primary tubule cell culture from human kidney. Nephrology (Carlton, Vic). 12(2):155–159 Qi W, Johnson DW, Vesey DA, Pollock CA, Chen X (2007) Isolation, propagation and characterization of primary tubule cell culture from human kidney. Nephrology (Carlton, Vic). 12(2):155–159
10.
Zurück zum Zitat Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS et al (2007) Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 18(12):3128–3138PubMed Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS et al (2007) Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 18(12):3128–3138PubMed
11.
Zurück zum Zitat Kim K, Lee KM, Han DJ, Yu E, Cho YM (2008) Adult stem cell-like tubular cells reside in the corticomedullary junction of the kidney. Int J Clin Exp Pathol 1(3):232–241PubMedPubMedCentral Kim K, Lee KM, Han DJ, Yu E, Cho YM (2008) Adult stem cell-like tubular cells reside in the corticomedullary junction of the kidney. Int J Clin Exp Pathol 1(3):232–241PubMedPubMedCentral
12.
Zurück zum Zitat Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMed Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMed
13.
Zurück zum Zitat Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568PubMed Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568PubMed
14.
Zurück zum Zitat Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12):7634–7638PubMedPubMedCentral Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12):7634–7638PubMedPubMedCentral
15.
Zurück zum Zitat Roufosse C, Cook HT (2008) Stem cells and renal regeneration. Nephron Exp Nephrol 109(2):e39–e45PubMed Roufosse C, Cook HT (2008) Stem cells and renal regeneration. Nephron Exp Nephrol 109(2):e39–e45PubMed
16.
Zurück zum Zitat Huls M, Russel FG, Masereeuw R (2008) Insights into the role of bone marrow-derived stem cells in renal repair. Kidney Blood Press Res 31(2):104–110PubMed Huls M, Russel FG, Masereeuw R (2008) Insights into the role of bone marrow-derived stem cells in renal repair. Kidney Blood Press Res 31(2):104–110PubMed
17.
Zurück zum Zitat Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115(7):1756–1764PubMedPubMedCentral Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115(7):1756–1764PubMedPubMedCentral
18.
Zurück zum Zitat Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843PubMed Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843PubMed
19.
Zurück zum Zitat Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10(2):228–241PubMed Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10(2):228–241PubMed
20.
Zurück zum Zitat Shukla D, Box GN, Edwards RA, Tyson DR (2008) Bone marrow stem cells for urologic tissue engineering. World J Urol 26(4):341–349PubMed Shukla D, Box GN, Edwards RA, Tyson DR (2008) Bone marrow stem cells for urologic tissue engineering. World J Urol 26(4):341–349PubMed
21.
Zurück zum Zitat Humphreys BD, Bonventre JV (2008) Mesenchymal stem cells in acute kidney injury. Annu Rev Med 59(1):311–325PubMed Humphreys BD, Bonventre JV (2008) Mesenchymal stem cells in acute kidney injury. Annu Rev Med 59(1):311–325PubMed
22.
Zurück zum Zitat Park DH, Eve DJ (2009) Regenerative medicine: advances in new methods and technologies. Med Sci Monit 15(11):RA233–RA251PubMed Park DH, Eve DJ (2009) Regenerative medicine: advances in new methods and technologies. Med Sci Monit 15(11):RA233–RA251PubMed
23.
Zurück zum Zitat Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63(5):492–496PubMed Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63(5):492–496PubMed
24.
Zurück zum Zitat Bryksin AV, Brown AC, Baksh MM, Finn MG, Barker TH (2014) Learning from nature—novel synthetic biology approaches for biomaterial design. Acta Biomater 10(4):1761–1769PubMedPubMedCentral Bryksin AV, Brown AC, Baksh MM, Finn MG, Barker TH (2014) Learning from nature—novel synthetic biology approaches for biomaterial design. Acta Biomater 10(4):1761–1769PubMedPubMedCentral
25.
Zurück zum Zitat Dan P, Velot E, Francius G, Menu P, Decot V (2017) Human-derived extracellular matrix from Wharton’s jelly: an untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Acta Biomater 48:227–237PubMed Dan P, Velot E, Francius G, Menu P, Decot V (2017) Human-derived extracellular matrix from Wharton’s jelly: an untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Acta Biomater 48:227–237PubMed
26.
Zurück zum Zitat Borges FT, Schor N (2018) Regenerative medicine in kidney disease: where we stand and where to go. Pediatr Nephrol 33(9):1457–1465PubMed Borges FT, Schor N (2018) Regenerative medicine in kidney disease: where we stand and where to go. Pediatr Nephrol 33(9):1457–1465PubMed
27.
Zurück zum Zitat O’Neill JD, Freytes DO, Anandappa AJ, Oliver JA, Vunjak-Novakovic GV (2013) The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials 34(38):9830–9841PubMed O’Neill JD, Freytes DO, Anandappa AJ, Oliver JA, Vunjak-Novakovic GV (2013) The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials 34(38):9830–9841PubMed
28.
Zurück zum Zitat Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C et al (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347PubMedPubMedCentral Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C et al (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347PubMedPubMedCentral
29.
Zurück zum Zitat Ross EA, Abrahamson DR, St John P, Clapp WL, Williams MJ, Terada N et al (2012) Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis 8(2):49–55PubMedPubMedCentral Ross EA, Abrahamson DR, St John P, Clapp WL, Williams MJ, Terada N et al (2012) Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis 8(2):49–55PubMedPubMedCentral
30.
Zurück zum Zitat Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16(7):2207–2216PubMedPubMedCentral Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16(7):2207–2216PubMedPubMedCentral
31.
Zurück zum Zitat Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19(5):646–651PubMedPubMedCentral Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19(5):646–651PubMedPubMedCentral
32.
Zurück zum Zitat Orlando G, Farney AC, Iskandar SS, Mirmalek-Sani SH, Sullivan DC, Moran E et al (2012) Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Ann Surg 256(2):363–370PubMed Orlando G, Farney AC, Iskandar SS, Mirmalek-Sani SH, Sullivan DC, Moran E et al (2012) Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Ann Surg 256(2):363–370PubMed
33.
Zurück zum Zitat Orlando G, Booth C, Wang Z, Totonelli G, Ross CL, Moran E et al (2013) Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 34(24):5915–5925PubMed Orlando G, Booth C, Wang Z, Totonelli G, Ross CL, Moran E et al (2013) Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 34(24):5915–5925PubMed
34.
Zurück zum Zitat Peloso A, Petrosyan A, Da Sacco S, Booth C, Zambon JP, O’brien T et al (2015) Renal extracellular matrix scaffolds from discarded kidneys maintain glomerular morphometry and vascular resilience and retains critical growth factors. Transplantation 99(9):1807–1816PubMed Peloso A, Petrosyan A, Da Sacco S, Booth C, Zambon JP, O’brien T et al (2015) Renal extracellular matrix scaffolds from discarded kidneys maintain glomerular morphometry and vascular resilience and retains critical growth factors. Transplantation 99(9):1807–1816PubMed
35.
Zurück zum Zitat Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM et al (2015) Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transpl 15(1):64–75 Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM et al (2015) Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transpl 15(1):64–75
36.
Zurück zum Zitat Figliuzzi M, Bonandrini B, Remuzzi A (2017) Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater 15(4):e326–e333PubMed Figliuzzi M, Bonandrini B, Remuzzi A (2017) Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater 15(4):e326–e333PubMed
37.
Zurück zum Zitat Bissell MJ, Aggeler J (1987) Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res 249:251–262PubMed Bissell MJ, Aggeler J (1987) Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res 249:251–262PubMed
38.
Zurück zum Zitat Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F et al (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A 20(9–10):1486–1498PubMedPubMedCentral Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F et al (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A 20(9–10):1486–1498PubMedPubMedCentral
39.
Zurück zum Zitat Remuzzi A, Figliuzzi M, Bonandrini B, Silvani S, Azzollini N, Nossa R et al (2017) Experimental evaluation of kidney regeneration by organ scaffold recellularization. Sci Rep 7:43502PubMedPubMedCentral Remuzzi A, Figliuzzi M, Bonandrini B, Silvani S, Azzollini N, Nossa R et al (2017) Experimental evaluation of kidney regeneration by organ scaffold recellularization. Sci Rep 7:43502PubMedPubMedCentral
40.
Zurück zum Zitat Poornejad N, Buckmiller E, Schaumann L, Wang H, Wisco J, Roeder B et al (2017) Re-epithelialization of whole porcine kidneys with renal epithelial cells. J Tissue Eng 8:2041731417718809PubMedPubMedCentral Poornejad N, Buckmiller E, Schaumann L, Wang H, Wisco J, Roeder B et al (2017) Re-epithelialization of whole porcine kidneys with renal epithelial cells. J Tissue Eng 8:2041731417718809PubMedPubMedCentral
41.
Zurück zum Zitat Swaminathan M, Stafford-Smith M, Chertow GM, Warnock DG, Paragamian V, Brenner RM et al (2018) Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. J Am Soc Nephrol 29(1):260–267PubMed Swaminathan M, Stafford-Smith M, Chertow GM, Warnock DG, Paragamian V, Brenner RM et al (2018) Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. J Am Soc Nephrol 29(1):260–267PubMed
42.
Zurück zum Zitat Miller BLK, Garg P, Bronstein B, LaPointe E, Lin H, Charytan DM et al (2018) Extracorporeal stromal cell therapy for subjects with dialysis-dependent acute kidney injury. Kidney Int Rep 3(5):1119–1127PubMedPubMedCentral Miller BLK, Garg P, Bronstein B, LaPointe E, Lin H, Charytan DM et al (2018) Extracorporeal stromal cell therapy for subjects with dialysis-dependent acute kidney injury. Kidney Int Rep 3(5):1119–1127PubMedPubMedCentral
43.
Zurück zum Zitat Miya M, Maeshima A, Mishima K, Sakurai N, Ikeuchi H, Kuroiwa T et al (2011) Enhancement of in vitro human tubulogenesis by endothelial cell-derived factors: implications for in vivo tubular regeneration after injury. Am J Physiol Renal Physiol 301(2):F387–F395PubMed Miya M, Maeshima A, Mishima K, Sakurai N, Ikeuchi H, Kuroiwa T et al (2011) Enhancement of in vitro human tubulogenesis by endothelial cell-derived factors: implications for in vivo tubular regeneration after injury. Am J Physiol Renal Physiol 301(2):F387–F395PubMed
44.
Zurück zum Zitat Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31(24):6279–6308PubMed Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31(24):6279–6308PubMed
45.
Zurück zum Zitat Ko IK, Ju YM, Chen T, Atala A, Yoo JJ, Lee SJ (2012) Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB J 26(1):158–168PubMed Ko IK, Ju YM, Chen T, Atala A, Yoo JJ, Lee SJ (2012) Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB J 26(1):158–168PubMed
46.
Zurück zum Zitat Elia R, Fuegy PW, VanDelden A, Firpo MA, Prestwich GD, Peattie RA (2010) Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials 31(17):4630–4638PubMedPubMedCentral Elia R, Fuegy PW, VanDelden A, Firpo MA, Prestwich GD, Peattie RA (2010) Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials 31(17):4630–4638PubMedPubMedCentral
47.
Zurück zum Zitat Reis LA, Borges FT, Simoes MJ, Borges AA, Sinigaglia-Coimbra R, Schor N (2012) Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One 7(9):e44092PubMedPubMedCentral Reis LA, Borges FT, Simoes MJ, Borges AA, Sinigaglia-Coimbra R, Schor N (2012) Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One 7(9):e44092PubMedPubMedCentral
48.
Zurück zum Zitat Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L et al (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 7(3):e33115PubMedPubMedCentral Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L et al (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 7(3):e33115PubMedPubMedCentral
Metadaten
Titel
Kidney regeneration approaches for translation
verfasst von
Heejo Yang
Anthony Atala
James J. Yoo
Publikationsdatum
06.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
World Journal of Urology / Ausgabe 9/2020
Print ISSN: 0724-4983
Elektronische ISSN: 1433-8726
DOI
https://doi.org/10.1007/s00345-019-02999-x

Neu im Fachgebiet Urologie

Adjuvanter PD-L1-Hemmer verhindert Rezidive bei Hochrisiko-Urothelkarzinom

Sind Menschen mit muskelinvasivem Urothelkarzinom für die neoadjuvante platinbasierte Therapie nicht geeignet oder sprechen sie darauf nicht gut an, ist Pembrolizumab eine adjuvante Alternative: Die krankheitsfreie Lebenszeit wird dadurch mehr als verdoppelt.

Nierenzellkarzinom: Kein Nachteil durch subkutan appliziertes Nivolumab

Die subkutane Applikation von Nivolumab ist nach Daten einer Phase-3-Studie ähnlich gut wirksam wie die intravenöse: Die Pharmakokinetik ist vergleichbar, die objektive Response war in der Studie sogar leicht besser als in der Gruppe mit Infusionen.

Auf weichem Fahrradsattel ist nicht gut Kinder zeugen

Männer, die sich gern sportlich verausgaben, riskieren möglicherweise, fürs Vaterwerden nicht genug Kräfte übrig zu haben. In einer Studie fanden sich dafür zwar allenfalls schwache Anzeichen. Es gab jedoch eine Ausnahme.

Vorteile für Androgenentzug plus Androgenrezeptorblockade

Für Männer mit metastasiertem hormonsensitivem Prostata-Ca. (mHSPC), die keine Hormonchemotherapie wollen oder vertragen, ist der Androgenentzug plus Darolutamid eine Alternative: Das Progressionsrisiko wird im Vergleich zum alleinigen Androgenentzug fast halbiert.

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.