Skip to main content
Erschienen in: Molecular Cancer 1/2010

Open Access 01.12.2010 | Research

Kinome profiling of myxoid liposarcoma reveals NF-kappaB-pathway kinase activity and Casein Kinase II inhibition as a potential treatment option

verfasst von: Stefan M Willems, Yvonne M Schrage, Inge H Briaire-de Bruijn, Karoly Szuhai, Pancras CW Hogendoorn, Judith VMG Bovée

Erschienen in: Molecular Cancer | Ausgabe 1/2010

Abstract

Background

Myxoid liposarcoma is a relatively common malignant soft tissue tumor, characterized by a (12;16) translocation resulting in a FUS-DDIT3 fusion gene playing a pivotal role in its tumorigenesis. Treatment options in patients with inoperable or metastatic myxoid liposarcoma are relatively poor though being developed and new hope is growing.

Results

Using kinome profiling and subsequent pathway analysis in two cell lines and four primary cultures of myxoid liposarcomas, all of which demonstrated a FUS-DDIT3 fusion gene including one new fusion type, we aimed at identifying new molecular targets for systemic treatment. Protein phosphorylation by activated kinases was verified by Western Blot and cell viability was measured before and after treatment of the myxoid liposarcoma cells with kinase inhibitors. We found kinases associated with the atypical nuclear factor-kappaB and Src pathways to be the most active in myxoid liposarcoma. Inhibition of Src by the small molecule tyrosine kinase inhibitor dasatinib showed only a mild effect on cell viability of myxoid liposarcoma cells. In contrast, inhibition of the nuclear factor-kappaB pathway, which is regulated by the FUS-DDIT3 fusion product, in myxoid liposarcoma cells using casein kinase 2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) showed a significant decrease in cell viability, decreased phosphorylation of nuclear factor-kappaB pathway proteins, and caspase 3 mediated apoptosis. Combination of dasatinib and TBB showed an enhanced effect.

Conclusion

Kinases associated with activation of the atypical nuclear factor-kappaB and the Src pathways are the most active in myxoid liposarcoma in vitro and inhibition of nuclear factor-kappaB pathway activation by inhibiting casein kinase 2 using TBB, of which the effect is enhanced by Src inhibition using dasatinib, offers new potential therapeutic strategies for myxoid liposarcoma patients with advanced disease.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-9-257) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

SMW carried out kinome studies, immunoblotting, in vitro studies and DNA sequencing and drafted the manuscript. YMS participated in design of the kinome assay, immunoblotting and statistical analysis. IHB participated in kinome studies and immunoblotting. KS carried out the karyotyping, analysis of DNA sequences and participated in design of cell culturing. PCWH participated in design and coordination and helped to draft the manuscript. JVMGB designed and supervised the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Background

Myxoid liposarcoma accounts for 40% of all liposarcomas and occurs most commonly in the extremities [1]. In about 95% of cases, myxoid liposarcoma is cytogenetically characterized by t(12;16)(q13;p11), creating a chimerical FUS/DDIT3 gene which has been thought to play a pivotal role in its tumourigenesis [24]. The cornerstone of curative treatment for myxoid liposarcoma is surgery with an overall 10 years survival of 80%. Prognosis is mainly determined by the percentage of round cell component of the tumor. Myxoid liposarcoma with more than 5% round cell component are defined as high-grade and prone to metastasis[5]. Treatment options for patients with inoperable or metastatic disease are relatively poor, though trials with new drugs reveal good perspectives for the future [6, 7]. Therefore, clinical trials to test and validate new treatment options for liposarcoma subtypes (such as myxoid liposarcoma) are necessary[6]. Nowadays, (neo) adjuvant chemotherapy of liposarcoma patients is limited with only ifosfamide and anthracyclins showing 20-40% response rates in untreated patients[8]. Trabectedin (Yondelis, ET 743) is a novel chemotherapeutic agent derived from the marine tunicate Ecteinascidia turbinate. By binding to the DNA minor groove, ET-743 forms covalent adducts with the N2-position of guanine through its carbinolamine moiety. As a result, the minor groove bends toward the major groove. The cytotoxic activity of ET-743 is largely based on its interaction with nucleoside excision repair machinery, as well as through the induction of double strand breaks[911]. Phase I and II studies showed promising results in myxoid liposarcoma patients with advanced disease though recent studies reported an increasing number of side effects[12, 13]. During the last years, tumor specific targeted therapy has shown to be effective in many cancers, including sarcomas. Especially kinase inhibitors are an emerging class of small molecule inhibitors that target unique kinase conformational forms and binding sites[14]. Notable advantages are higher specificity and generally more manageable and reversible side effects [15]. This necessitates the study of separate soft tissue tumour entities[7]. In the present study, we explored the activated pathways in myxoid liposarcoma cells using kinome profiling to find new treatment possibilities. Kinases phosphorylate tyrosine, threonine or serine residues on proteins, thereby serving as a switch to (in) activate pathways involved in cell cycle, cell survival and differentiation. Moreover, kinases are promising targets for anti-cancer therapy as they do not require new protein synthesis, therefore act rapidly and are also promising in slow-cycling tumors [16, 17].
Data on activated pathways in myxoid liposarcoma are sparse[18, 19]. By using a kinase substrate specific protein array chip combining 1024 different kinase substrates, we identified kinases associated with Src and NF-kappaB pathways to be active in myxoid liposarcoma. NF-kappaB is an inducible cellular transcription factor that regulates a variety of cellular genes, including those involved in immune regulation, inflammation, cell survival and cell proliferation. Hereby, active NF-kappaB plays a pivotal role in tumorigenesis and increased expression of the phosphorylated NF-kappaB protein is found in many tumors[20, 21]. We showed that in myxoid liposarcoma cells, inhibition of kinases associated with the NF-kappaB pathway (by TBB) resulted in decreased viability and that this effect was enhanced by Src-inhibitor dasatinib. These results show that targeting NF-kappaB pathway might be a potential treatment option in myxoid liposarcoma patients with advanced disease.

Results

Molecular and cytogenetic analysis

FISH of the primary myxoid liposaromas showed the tumor specific t(12;16) in three out of four cases (table 1). All four primary cultures showed the FUS/DDIT3 fusion transcripts[22]. Case L1187 showed a 1033 bp long fusion transcript involving exon 11 of the FUS and exon 2 of the DDIT3 gene, which has not been reported previously (figure 1). This chimera includes the RNA-binding domain (exon 8-11) of the FUS gene as in fusion type 8, which is absent in the other fusion types. This new FUS/DDIT3 fusion type was deposited in GenBank (GenBank accession number GU933437). COBRA-FISH of both myxoid liposarcoma cell lines showed the myxoid liposarcoma specific t(12;16) translocation. The precise karyotype of 402-91 was: 46, X, der(Y)t(Y;19)(q11;p11), t(1;7)(p12;p12), der(8)t(8;21)(p11;p11)[7], der(8)t(8;9)(p11;p11)[7], del(8)(p11)[4], del(10)(p11), t(12;16)(q13;p11), del(18)(p11), -19,+20, -21[7][cp20], several additional, non-clonal rearrangements involving chromosomes 4, 5, 6 and 8 with various partner chromosomes. The precise karyotype of 1765-92 was 90-99, XX, der(1)inv(1)(p32q31)t(1;10)(p33;p12), der(1)inv(1)(p32q31)t(1;10) (p33;p12), -1, del(2)(p11), -3, +5, der(6)t(4;6)(4q, 6q), der(6)t(6;10)(p;q), +der(6)t(6;10) (p;q), der(8)t(3;8), i(8)(q10), +i(8)(q10), +9, der(10)t(1;10)(1p32, p12), der(10)t(1;10) (1p32, p12), -10, +11, t(12;16)(q13;p11), t(12;16)(q13;p11), -13, der(13)t(6;13)(q;q), +14, +15, +18, +20, +20 [cp20].
Table 1
Clinicopathological and genetic data of myxoid liposarcoma samples
 
Sample ID
Type
Gender
Age
P/R/M
Location
FUS/DDIT3 transcript size
FUS/DDIT3 transcript type
(COBRA) FISH
1
L1187
primary culture
F
20
P
left hamstrings
1033 bp
X
t(12;16)
2
L1357
primary culture
M
50
P
left hamstrings
654 bp
I
t(12;16)
3
L1434
primary culture
F
43
P
right hamstrings
654 bp
I
t(12;16)
4
L2187
primary culture
F
42
P
left thigh, subcutaneously
378 bp
II
N/A
5
402-91
cell line
M
unknown
unknown
unknown
unknown
N/A
t(12;16)
6
1765-92
cell line
unknown
unknown
unknown
unknown
unknown
N/A
t(12;16)
Primary cultures of samples L1187, L1357, L1434 and L2187 were obtained from fresh tumors. Tumors L1187 and L1357 were high grade (> 5% round cell component), whereas L1434 and L2187 were low-grade (< 5% round cell component). These differences in grade however were not reflected in growth rate of the primary cultures (doubling times of primary cultures were all ~ 4 days; doubling times of cell lines ~ 2 days).

Identification of active kinases and pathways

A list of phosphorylated targets and their corresponding active kinases was created by kinome profiling of two cell lines and four primary cultures of myxoid liposarcoma. Average spot intensity and target frequency of the top 100 phosphorylated substrates revealed the most activated kinases in myxoid liposarcoma (table 2). Both in myxoid liposarcoma cell lines as well as in primary cultures, casein kinase 2, alpha 1 (ck2a1), lymphocyte-specific protein tyrosine kinase (lck), fyn oncogene related to SRC (fyn), Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (fgr), v-yes-1 Yamaguchi sarcoma viral oncogene homolog (yes), calcium/calmodulin-dependent protein kinase II beta (camk2b) and protein kinase, cAMP-dependent, catalytic, alpha (prkaca) were most activated (table 2). There were no clear differences between the cell lines and the primary cultures. The specificity of the list of substrates for myxoid liposarcomas was verified by comparing the intensity of the signals with those for normal MSCs which served as a normal control for this tumor type, using Limma (additional file 1). Specificity of the activated kinases in this type of cancer (i.e. myxoid liposarcoma) was additionally verified by comparison with the same analysis in four colorectal carcinoma cell lines and thirteen chondrosarcoma cell lines and cultures using Limma, which revealed a different list of substrates and kinases[16]. Pathway analysis based on the most active kinases (table 3) identified kinases associated with NF-kappaB pathway (ck2a1, fgr, inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase (ikk), protein kinase RNA-activated (pkr), v-akt murine thymoma viral oncogene homolog (akt), NF-kappa-beta-inducing kinase (nik), mitogen-activated protein kinase kinase kinase 3 (mekk3) and focal adhesion kinase 1 (fak1) to be most activated. Also kinases associated with Src-pathway (lck, fyn) were highly active. In addition, retinoic acid receptor pathway (RAR) and peroxisome proliferator-activated receptor (PPAR) activation pathway were found. The top 5 of activated pathways was identical in cell lines and primary cultures. Results of the analysis leaving out all cell cycle related kinases (27% of all kinases detectable), which might be artificially upregulated due to cell culturing, and results of analysis after starvation of the cell lines are shown in table 3.
Table 2
Top 100 activated kinases and targeted drugs in myxoid liposarcoma cell lines and primary cultures.
 
Intensity
Kinase
Number of hits
Description
Drugs
1
7965,340
CK2
9
Casein kinase 2, alpha 1
4,5,6,7-tetrabromobenzotriazole
2
5932,666
LCK
3
Lymphocyte-specific protein tyrosine kinase
dasatinib
3
5932,666
FYN
2
FYN oncogene related to SRC, FGR, YES
dasatinib
4
4716,473
CAMK2B
5
Calcium/calmodulin-dependent protein kinase II beta
 
5
3998,331
PRKACA
8
Protein kinase, cAMP-dependent, catalytic, alpha
 
6
3922,920
MAPK1
4
Mitogen-activated protein kinase 1 [
 
7
3922,920
KIT
1
V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
dasatinib, sunitinib ao
8
3402,973
CSNK1A1
1
Casein kinase 1, alpha 1
 
9
3402,973
CIB
2
Calcium and integrin binding family
 
10
3317,951
GSK3
2
Glycogen synthase kinase 3
 
11
3144,082
LYN
1
V-yes-1 Yamaguchi sarcoma viral related oncogene homolog
 
12
3144,082
BTK
1
Bruton agammaglobulinemia tyrosine kinase
 
13
3114,907
PKC
19
Protein kinase C
 
14
3057,647
AKT1
3
V-akt murine thymoma viral oncogene homolog 1
enzastaurin
15
3033,443
PKM2
1
Pyruvate kinase, muscle
 
16
2928,117
CAMK1
1
Calcium/calmodulin-dependent protein kinase I
 
17
2893,922
CHEK1
1
CHK1 checkpoint homolog
 
18
2893,922
CHEK2
2
CHK2 checkpoint homolog
 
19
2893,922
PLK3
2
Polo-like kinase 3
 
20
2890,210
TTN
1
Titin
 
21
2712,053
ABL
2
Abelson murine leukemia viral (v-abl) oncogene homolog
imatinib, temozolomide
22
2596,825
INSR
1
Insulin receptor
lispro, aspart, glargine
23
2596,825
EGFR
2
Epidermal growth factor receptor
cetuximab, canertinib ao
24
2596,825
MET
1
Met proto-oncogene
 
25
2483,173
SRC
6
V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog
 
26
2443,714
RPS6
4
Ribosomal protein S6
 
27
2382,003
CK
1
Choline kinase
 
28
2314,823
MAP2K3
1
Mitogen-activated protein kinase kinase 3
 
29
2294,228
GRK1
2
G protein-coupled receptor kinase 1
 
31
2216,637
JAK1
1
Janus kinase 1
 
32
2214,443
MAPKAPK2
1
Mitogen-activated protein kinase-activated protein kinase 2
 
33
2179,345
ALK
1
Anaplastic lymphoma receptor tyrosine kinase
 
34
2052,700
ATM
2
Ataxia telangiectasia mutated
 
35
2040,371
PKN1
2
Protein kinase N1
 
36
1913,813
PDGFRB
1
Platelet-derived growth factor receptor, beta polypeptide
dasatinib, sunitib ao
37
1870,956
CDK2
1
Cyclin-dependent kinase 2
BMS-387032, flavopiridol
38
1849,628
CCRK
1
Cell cycle related kinase
 
39
1806,824
CDC2
1
Cell division cycle 2, G1 to S and G2 to M
flavopiridol
Top list of kinases was based on the intensity of incorporated radioactively labeled phosphorus, corresponding with kinase activity. The number of hits corresponds to the number of substrates to be phosphorylated by a specific kinase, not necessarily associated with kinase activity as substrates were not equally covered by the different kinases.
Table 3
Top lists of activated kinases and pathways in different conditions
 
top five activated kinases
top activated signalling pathway
normal medium condition (including all kinases in the analysis)
ck2a1
NF-kappaB
 
lck
Src
 
fyn
RAR
 
fgr
PPAR
 
yes
 
normal medium condition (leaving out cell cycle related kinases in the analysis)
ck2a1
NF-kappaB
 
lck
Src
 
fyn
RAR
 
camk2b
PPAR
 
prkcd
 
starved medium condition
mapk14
NF-kappaB
 
ck2a1
RAR
 
akt1
p53
 
egfr
G1/S transition of the cell cycle
 
erbb2
oxidative stress response
Whereas activated kinases differed between cells grown in normal medium (RMPI supplemented with 10% inactivated calf serum), top five of activated signaling pathways were identical. Results were identical for cell lines and primary cultures. Cell lines cultured in starved medium conditions revealed a different top list of both kinases and activated signaling pathways. However, in all three different conditions, NF-kappaB was the most activated signaling pathway identified.
prkcd: protein kinase C, delta; mapk14: mitogen-activated protein kinase 14; egfr: epidermal growth factor receptor; erbb2: v-erb-b2 erythroblastic leukemia viral oncogene homolog 2

Verification of kinome profiling

Western blotting showed that all myxoid liposarcoma samples (both cell lines and primary cultures) expressed comparable amounts of total Src and NF-kappaB p65. Phosphorylation of Src (Y419) was present in all samples (figure 2) confirming activation of Src pathway. Likewise, western blotting showed the presence of ck2a1 and phosphorylated NF-kappaB p65 (S468) in all samples, confirming the results of the IPA analysis that kinases associated with NF-kappaB pathway are active in myxoid liposarcoma cells.

In vitro targeting of kinases associated with Src and NF-kappaB pathways by dasatinib and TBB

WST-1 analysis of GIST882 showed a profound decrease in cell viability of up to ~ 80% relative to the DMSO control at even low dosages of Src-inhibitor dasatinib (figure 3). The decrease in cell viability of myxoid liposarcoma cells treated with dasatinib was rather mild as WST-1 analysis of all four cell cultures and 1 out of 2 cell lines showed a maximum decrease in cell viability of 40% at higher doses (figure 3). Cell line 1765-92 did not respond to dasatinib. In contrast, myxoid liposarcoma cells showed a decline of more than 50% in viability after treatment with casein kinase 2-inhibitor TBB in two out of four cultures and in both cell lines. This effect was also observed in Jurkat cells as described (positive control)[23]. There was no relation between the response rate and type of fusion gene. For combination experiments, the two cell lines (402-91 and 1765-92) and the two most sensitive myxoid liposarcoma primary cultures (L1357 and L2187) were treated with both dasatinib and TBB. Combined administration of both drugs led to a dramatic decrease in cell viability and showed an enhanced effect (figure 3D), for instance: L1357 cells show 80% viability at maximum dasatinib dose (5000 nM), whereas viability was only 5% at lower concentration of dasatinib (500 nM) at IC 50 for TBB (figure 3D).

Dasatinib inhibits phosphorylation of Src but does not cause apoptosis

To investigate the effect of dasatinib on Src signalling, a good responsive (60% cell viability at 500 nM; figure 3A) myxoid liposarcoma cell culture (L1357) was treated with 50, 200 and 500 nM of dasatinib for 6 hours. Whereas levels of total Src did not visibly decrease upon dasatinib treatment, a decrease in phosphorylated Src (p-Src) (Y419) was found (figure 4). At a dose of 200 nM dasatinib p-Src staining the lower band faded and at 500 nM both bands disappeared. Interestingly, a similar decrease in p-Src was also observed at 200 nM dasatinib when post-treated with TBB. There was no effect of dasatinib treatment on total NF-kappaB p65 or phosphorylated NF-kappaB p65 and there was no caspase-3 mediated apoptosis, since the level of caspase-3 did not increase upon dasatinib treatment (figure 4).

TBB inhibits NF-kappaB p65-phosphorylation resulting in caspase-3 mediated apoptosis

To investigate the effect of TBB on kinases associated with NF-kappaB signalling, L1357 was treated with increasing doses for 6 hours. Whereas levels of total NF-kappaB p65 did not decrease upon treatment, a decrease in phosphorylated p65 (p-p65) was found (figure 4). At a dose of 20 μM TBB p-p65 staining slightly started to fade and obviously decreased at 200 μM TBB. Casein Kinase 2 levels of TBB treated samples were lower than the DMSO control, but remained unchanged compared to samples treated with various concentrations TBB or dasatinib, suggesting that TBB does not alter the overall expression of casein Kinase 2, which is in accordance with the literature[24]. TBB treatment had no effect on the levels of total Src and phosphorylated Src. Strikingly, the effect of TBB was increased by pretreatment with dasatinib (figure 4), which was also visible in the viability assay (figure 3D). Moreover, there was a gradual increase in caspase-3 levels upon treatment with TBB, suggesting caspase-3 mediated apoptosis.

Discussion

Treatment options for myxoid liposarcoma patients with advanced disease are poor. Recently, the chemotherapeutic drug Trabectedin showed promising results in phase I and II trials in advanced disease though adverse effects have also been reported[13, 25]. Small molecule targeting, especially with kinase inhibitors, has shown to be effective and more specific in many tumors with less severe side effects than conventional chemotherapeutic agents. To identify new potential treatment options for myxoid liposarcoma patients with advanced disease, we explored the kinome of myxoid liposarcoma cells in vitro and performed subsequent pathway analysis.
We previously established the reliability of kinome profiling using Pepchip in untreated versus imatinib treated GIST882 cell line which correctly identified the pathways known to be involved in GIST[16]. Moreover, we previously demonstrated the reliability of our analysis which is based on averaging results of a number of samples to get an impression of the most activated kinases in a series of tumors[16]. By additionally performing the Pepchip experiments in the myxoid liposarcomas cell lines after serum starvation as well as by excluding cell cycle related kinases from the analysis we determined that the detected kinases in the present analysis are indeed tumor specific and not related to the high proliferation rate of the myxoid liposarcoma cell lines. Moreover, by comparing with previously analyzed series of colorectal cancer and chondrosarcoma, as well as by comparing with mesenchymal stem cells we could confirm that the list of kinases was specific for myxoid liposarcomas.
We could demonstrate activation of the peroxisome proliferator-activated receptor gamma pathway, which could be expected since it has been shown to play a pivotal role in adipocytic differentiation and is regulated by the FUS-DDIT3 fusion product[2628](Figure 5). The DDIT3 gene encodes a DNA-damage inducible member of the C/EBP family of transcription factors and inhibits adipocytic conversion of preadipocytes[29, 30]. Transfection of primary mesenchymal progenitor and human fibrosarcoma cells with the FUS/DDIT3 fusion protein induces a myxoid liposarcoma phenotype[31, 32]. Treatment of myxoid liposarcoma cells in vitro and in vivo with peroxisome proliferator-activated receptors gamma agonists induced terminal differentiation[33], although phase II studies with the peroxisome proliferator-activated receptors gamma agonist Rosiglitasone did not show the antitumor effect in advanced myxoid liposarcoma patients[34]. Until today, nine different types of FUS/DDIT3 fusion genes have been described, involving predominantly the central and C-terminal parts of the FUS-gene and nearly always the whole DDIT3 gene[22]. We describe here for the first time a new fusion type (Figure 1) including the RNA binding domain of the FUS gene, which is not found in the other fusion types except for type 8. Whether this new rare fusion gene will be translated to a protein or will have any promoting effect on tumor development is not clear and is hard to study due to the rarity of these variants. We found no differences between the type of FUS/DDIT3 fusion gene and kinases activated. Till now, the molecular variability of fusion types has not shown to have any effect on transforming capacities, adipogenesis nor prognosis in myxoid liposarcoma[5, 35].
We showed that kinases associated with NF-kappaB pathway were highly active in myxoid liposarcoma. In the atypical (IKK independent) NF-kappaB pathway, phosphorylation of inhibitors of NF-kappaB (IkB), and subsequent activation of NF-kappaB (p65) is controlled by casein kinase 2 and tyrosine kinase-dependent pathways (figure 5)[36, 37]. We did not measure NF-kappaB pathway activation by analysis of downstream products or electrophoretic mobility shift assays. Göransson et al. has recently s hown that NF-kappaB is a major factor controlling IL8 transcription in FUS-DDIT3 expressing cells. This could be explained by direct binding of FUS/DDIT3 to the C/EBP-NF-kappaB composite site of the immediate promoter region of IL8. Moreover, FUS/DDIT3-GFP expressing cell lines showed upregulation of the NF-kappaB controlled genes LCN2 and MMP1 whereas DDIT3 had little effect. These findings were also quantitatively confirmed by RT-PCR[17]. Active (phosphorylated) p65 was present in cell lysates of myxoid liposarcoma cell cultures and cell lines. We did not explicitly show that the phosphorylated p65 protein was located in the nucleus/nuclear fraction. Phosphorylation of p65 could be counteracted by TBB, an inhibitor of the casein kinase 2 and resulted in decreased cell viability as shown in figure 3 and 4. This suggests that NF-kappaB signaling is active in myxoid liposarcoma and that its activation is, at least in part, regulated via the atypical pathway. This is an important finding which suggests that NF-kappaB pathway inhibition might be beneficial in myxoid liposarcoma patients with advanced disease.
The exact driving force behind NF-kappaB activation in myxoid liposarcoma is unclear. Gene expression studies revealed that p50 was significantly upregulated in FUS/DDIT3 transfected fibroblastic cell lines[38]. This suggests that NF-kappaB (p50) transcription in myxoid liposarcoma might be regulated by the FUS/DDIT3 fusion gene. After translocation to the nucleus, transcriptional activation of NF-kappaB requires multiple co-activating proteins[39]. The C-terminus of FUS co-activates p65 and plays a pivotal role in NF-kappaB mediated transcription though this C-terminus is lost in the FUS/DDIT3 fusion protein. Recent studies showed that the FUS/DDIT3 fusion protein facilitates NF-kappaB binding to its target genes, probably in an indirect manner[19, 3941]. The FUS-DDIT3 fusion protein deregulates NF-kappaB controlled genes by interaction with nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor zeta (NFKBIZ)[19]. This synergistic role between a fusion protein and activation of NF-kappaB signaling might also be important in other translocation based sarcomas and has already been shown in Bcr-Abl mediated leukemias[42].
In all myxoid liposarcoma samples we showed overexpression of casein kinase 2, which has been shown in many other neoplasms[43]. We showed inhibition of casein kinase 2 and subsequent decreased levels of active p65 to be associated with decreased viability and increase in caspase 3 protein expression in myxoid liposarcoma cells. Caspase 3 is released by cleavage of its inactive precursor procaspase 3, and mediates apoptosis[44, 45]. Decreased cell viability with increased levels of the effector caspase 3 therefore suggests caspase 3 mediated apoptosis. Recently, phase I trials have been started to test the effect of casein kinase 2 inhibitors in vivo which seems to be promising[46].
In addition to kinases associated with NF-kappaB, Fyn, Lck and Yes were most active as indicated by specific sequences on the chip. They are members of the Src family of kinases. Src plays an important role in embryonic development, cell growth and cell survival and activating mutations in Src have been reported in colorectal carcinoma[47, 48]. Src signaling can lead to downstream activation of ERK/MAPK and PI3K/AKT signaling. Activation of both pathways in myxoid liposarcoma is associated with more aggressive behavior[49]. The Src pathway can be inhibited by the small molecule tyrosine kinase inhibitor dasatinib limiting cell growth in various cancers in vitro, thereby having promising therapeutic potential[16, 50, 51]. Immunoblotting confirmed the expression of Src and phosphorylation of Src at Y419 in myxoid liposarcoma cell cultures and cell lines. Dasatinib treatment showed a reduction in phosphorylated (active) Src and a decrease in cell viability. However, this latter effect was only very mild with maximum decrease in viability of only 40% maximally, and no IC50 levels could be calculated. This might be explained by Src pathway activation occurring upstream, close to its receptor (figure 5) and that the effect of the inhibition of Src phosphorylation might be (partly) circumvented by crosstalk activation downstream. Our data suggest that the active Src pathway is not crucial for myxoid liposarcoma survival and that monotherapy with dasatinib is no suitable option for treatment, although the additional effect of dasatinib in vivo through inhibition of angiogenesis is not encountered here.
Combinations of different drugs (including dasatinib) have been shown to act synergistically in many tumors and combination drug therapy is commonly used in cancer treatment[50]. Recently, a synergistic effect of dasatinib when combined with other drugs (i.e. oxaliplatin) has been described in colorectal carcinoma[50]. Since we showed NF-kappaB and Src to be the two most active pathways we studied the effect of combination of dasatinib and TBB and we found a enhanced effect on cell viability of myxoid liposarcoma cells in vitro. To be more specific: L1357 cells show 80% viability at maximum dasatinib dose (5000 nM), whereas viability was only 5% at lower concentration of dasatinib (500 nM) at IC50 for TBB (figure 3). However, it was not possible to calculate if this enhancement was also a true synergistic effect as IC50 values for dasatinib could not be calculated (figure 3)[52]. IC50 values for TBB (but not for dasatinib) could be calculated for most primary cultures and cell lines, but not for L1187 and L1434. Though cell line 1765-92 responded well to TBB treatment, no enhancement could be observed upon addition of dasatinib, which might be related to a relative resistance of 1765-92 cells to dasatinib as also visible from figure 3A. Future experiments, for instance studying the changes at the kinome level upon dasatinib treatment may reveal (1) why dasatinib is not effective as a monotherapy but is effective in combination with TBB, and (2) what might be the exact underlying mechanism why 1765-92 myxoid liposarcoma cells showed resistance for dasatinib treatment and thereby the absence of enhancement in combination treatment as was observed for the other cell line and primary cultures.

Conclusion

In conclusion our results indicate that the NF-kappaB and Src pathway include the most active kinases in myxoid liposarcoma, and inhibition of casein kinase 2 and thereby interference with kinases associated with the NF-kappaB pathway decreases cell viability in vitro, the effect of which can be enhanced by inhibiting src- signalling using dasatinib.

Methods

Reagents

Dasatinib (Sprycel, BMS- 354825) was obtained from Bristol-Myers Squibb (New York, USA) and TBB from Calbiochem (San Diego, CA). Both drugs were dissolved in Dimethylsulfoxide (DMSO).

Cell cultures and cell lines

The two myxoid liposarcoma cell lines 402-91 and 1765-92, and gastro-intestinal stroma cell tumor cell line (GIST882) were kindly provided by Prof. Dr. P. Aman (Lundberg Laboratory for Cancer Research, Department of Pathology, Göteborg University, Goteburg, Sweden) and Prof. Dr. J. Fletcher (Brigham and Women's Hospital, Boston, USA) respectively[53, 54]. Jurkat and HeLa cell lines (American Type Culture Collection, Rockville, MD) were used as positive controls for Western blotting. Myxoid liposarcoma cell lines, primary cultures of four myxoid liposarcomas (L1187, L1357, L1434 and L2187) and two cell cultures of normal bone marrow derived mesenchymal stem cells (L2361 and L2370) were cultured in RPMI 1640 (Gibco, Invitrogen Life-Technologies, Scotland, UK), supplemented with 10% heat-inactivated fetal calf serum (Gibco). Cells were grown in a humidified incubator at 37°C with 5% CO2. In addition, two samples (402-19 and L1357) were analyzed after also culturing in starved RPMI 1640, containing 0,5% fetal calf serum.

RT-PCR and karyotyping

Diagnosis of the primary tumors from which the cultures were obtained was performed on histology. Primary tumors were analyzed for their tumor specific translocation with double-fusion fluorescence in situ hybridization (FISH) and cell lines were karyotyped with Combined Binary Ratio Labeling (COBRA) as previously described [5557]. In primary cultures, tumor cells were genotyped for the presence of the fusion gene by RT-PCR. Total RNA was isolated using TRIzol (Invitrogen, Breda, The Netherlands). Complementary DNA was synthesized from 1 μg of total RNA using oligo dT primers and Superscript II MMLV reverse transcriptase (Life Technologies, Carlsbad, CA). Reverse-transcription polymerase chain reaction (RT-PCR), sample purification and DNA sequence analysis were performed as described previously [58]. The following primers were used: FUS-forward, CAG AGC TCC CAA TCG TCT TAC GG and DDIT3-reverse, GAG AAA GGC AAT GAC TCA GCT GCC.

Kinome array analysis

Kinase substrate peptide arrays (Pepchip Kinomics, Pepscan Presto, Lelystad, the Netherlands) containing 1024 different kinase substrates spotted in triplicate together with 16 negative, and 16 positive controls were used and successfully used in prior studies [16, 59]. The distribution of the target sequences in terms of kinase recognition is described in detail on the website http://​www.​pepscanpresto.​com/​index.​php?​id=​30. Cells were harvested during their exponential growth phase and lysated as previously described. Concentration of the protein lysates was measured using the DC Protein Assay (Biorad, Hercules, CA, USA). Analysis was performed as described earlier, including the two serum-starved samples[16]. Autoradiographic signals were sensed by phosphoimage screen and scanned by Typhoon 9400 phosphoimager (GE Healthcare, Piscataway, NJ). At least 1 × 106 hits were collected.

Data analysis

The scanned images were analyzed and quantified using ImageQuant software (Molecular Dynamics, Sunnyvale, CA). For further data mining R-packages Affyio and Limma were used http://​www.​bioconductor.​org. Quality of the triplicates and distribution of the data was assessed and quartile normalization (Affyio) was performed as previously described[16]. Median intensities of the triplicates were calculated and the top 100 spots were imported for core analysis in Ingenuity Pathway Analysis (IPA, Ingenuity Systems, http://​www.​ingenuity.​com). IPA is a literature based program that calculates the probability of involvement of identifiers, in this case combinations of kinases, in 74 different pathways. Data of the myxoid liposarcoma cell lines and cultures were averaged to find the common denominators that are active in all cultures[16]. To ensure that artificially induced kinase activity due to cell culturing interfered with tumor specific kinase activity, the same analysis was run excluding cell cycle related kinases as well as after starvation. Specificity of activated kinases and activated pathways in myxoid liposarcoma was verified by comparison the same analysis of four colorectal carcinoma cell lines and thirteen chondrosarcoma cell lines and cultures using Limma[16].

Immunoblotting

Western blotting was performed as previously described[58]. Rabbit polyclonal antibody to phosphorylated Src (Y419) was obtained from R&D Systems (1/2000; Minneapolis, MN USA). Monoclonal antibody to total Src and alpha-tubulin were obtained from Upstate Biotechnology (clone GD11, 1/2000, Lake Placid, NY, USA) and Sigma Aldrich (St. Louise, MO, USA), respectively. Rabbit polyclonal antibodies against casein kinase 2alpha; NF-kappaB p65, phospho- NF-kappaB p65 (S468) and caspase 3 were obtained from Cell Signaling Technology (Beverly, MA). HeLa cell lines, untreated and treated with TNFalpha (20 ng/ml) were used as a positive control for casein kinase 2alpha and NF-kappaB p65/phospho- NF-kappaB p65, respectively, according to the manufacturer's protocol.

In vitro viability assays

Measurement of metabolic activity by a WST-1 colorimetric assay (Roche Diagnostics GmbH, Penzberg, Germany) was used as a read-out system for cell viability in response to kinase inhibitors. Dasatinib was used to inhibit Src-pathway; TBB was used to inhibit casein kinase 2, which is an important kinase in atypical NF-kappaB signalling. After harvesting, 2000 cells/well of every cell line and primary culture were seeded into 96-well flat-bottom plates. After 24 hours, increasing concentrations of the drugs (50, 100, 200, 500, 1000 and 5000 nM for dasatinib and 10, 20, 50, 100, 200 and 500 μM for TBB respectively) were added or 0,1% DMSO as vehicle control, each condition in quadruplicate. Ten percent serum supplementation was used for all experiments. After 3 days of treatment, absorbance was measured on a Victor Multilabel Counter 1420-042 (Perkin Elmer, Groningen, The Netherlands) at 450 nm, and was corrected for background and averaged. GIST882 and Jurkat cell lines were used as positive controls for dasatinib and TBB experiments, respectively[16]y. In combination experiments, 2000 cells were plated overnight followed by treatment with dasatinib which was added 30 minutes after TBB administration. In these experiments, increasing concentrations of dasatinib at IC50 concentrations of TBB were used.

Acknowledgements

The authors are grateful to Prof. Dr. Pierre Aman (Lundberg Laboratory for Cancer Research (LLCR), Department of Pathology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden) for providing myxoid liposarcoma cell lines 402-91 and 1765-92, Prof. Dr. J. Fletcher (Brigham and Women's Hospital, Boston, USA) for providing the GIST882 cell line, Prof. Dr. Bob van de Water and Ine Tijdens (both from the Division of Toxicology, Leiden Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands) for expert technical support with the read out of the Pepchips. We are grateful to Jolieke van Oosterwijk for help with the WST experiments and Dr. Christianne Reijnders for culturing the mesenchymal stem cells. Brandt Meylis is acknowledged for expert technical assistance. This work was supported by a grant from the Netherlands Organisation for Scientific Research [920-03-403].
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

SMW carried out kinome studies, immunoblotting, in vitro studies and DNA sequencing and drafted the manuscript. YMS participated in design of the kinome assay, immunoblotting and statistical analysis. IHB participated in kinome studies and immunoblotting. KS carried out the karyotyping, analysis of DNA sequences and participated in design of cell culturing. PCWH participated in design and coordination and helped to draft the manuscript. JVMGB designed and supervised the study and helped to draft the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Antonescu C, Ladanyi M: Myxoid liposarcoma. World Health Organization classification of tumours. pathology and genetics. Tumours of soft tissue and bone. Edited by: Fletcher CDM, Unni KK, Mertens F. 2004, 40-43. Lyon: IARC press, 2002, Antonescu C, Ladanyi M: Myxoid liposarcoma. World Health Organization classification of tumours. pathology and genetics. Tumours of soft tissue and bone. Edited by: Fletcher CDM, Unni KK, Mertens F. 2004, 40-43. Lyon: IARC press, 2002,
2.
Zurück zum Zitat Willems SM, Wiweger M, Graadt van Roggen JF, Hogendoorn PCW: Running GAGs: myxoid matrix in tumor pathology revisited: What's in it for the pathologist?. Virchows Arch. 2010, 456: 181-192. 10.1007/s00428-009-0822-yPubMedCentralCrossRefPubMed Willems SM, Wiweger M, Graadt van Roggen JF, Hogendoorn PCW: Running GAGs: myxoid matrix in tumor pathology revisited: What's in it for the pathologist?. Virchows Arch. 2010, 456: 181-192. 10.1007/s00428-009-0822-yPubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Turc-Carel C, Limon J, Dal Cin P, Rao U, Karakousis C, Sandberg AA: Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet. 1986, 23: 291-299. 10.1016/0165-4608(86)90011-7CrossRefPubMed Turc-Carel C, Limon J, Dal Cin P, Rao U, Karakousis C, Sandberg AA: Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet. 1986, 23: 291-299. 10.1016/0165-4608(86)90011-7CrossRefPubMed
4.
Zurück zum Zitat Panagopoulos I, Hoglund M, Mertens F, Mandahl N, Mitelman F, Aman P: Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene. 1996, 12: 489-494.PubMed Panagopoulos I, Hoglund M, Mertens F, Mandahl N, Mitelman F, Aman P: Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene. 1996, 12: 489-494.PubMed
5.
Zurück zum Zitat Antonescu CR, Tschernyavsky SJ, Decuseara R, Leung DH, Woodruff JM, Brennan MF, Bridge JA, Neff JR, Goldblum JR, Ladanyi M: Prognostic impact of P53 status, TLS-CHOP fusion transcript structure, and histological grade in myxoid liposarcoma: a molecular and clinicopathologic study of 82 cases. Clin Cancer Res. 2001, 7: 3977-3987.PubMed Antonescu CR, Tschernyavsky SJ, Decuseara R, Leung DH, Woodruff JM, Brennan MF, Bridge JA, Neff JR, Goldblum JR, Ladanyi M: Prognostic impact of P53 status, TLS-CHOP fusion transcript structure, and histological grade in myxoid liposarcoma: a molecular and clinicopathologic study of 82 cases. Clin Cancer Res. 2001, 7: 3977-3987.PubMed
6.
Zurück zum Zitat Grosso F, Jones RL, Demetri GD, Judson IR, Blay JY, Le CA, Sanfilippo R, Casieri P, Collini P, Dileo P, Spreafico C, Stacchiotti S, Tamborini E, Tercero JC, Jimeno J, D'Incalci M, Gronchi A, Fletcher JA, Pilotti S, Casali PG: Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol. 2007, 8: 595-602. 10.1016/S1470-2045(07)70175-4CrossRefPubMed Grosso F, Jones RL, Demetri GD, Judson IR, Blay JY, Le CA, Sanfilippo R, Casieri P, Collini P, Dileo P, Spreafico C, Stacchiotti S, Tamborini E, Tercero JC, Jimeno J, D'Incalci M, Gronchi A, Fletcher JA, Pilotti S, Casali PG: Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol. 2007, 8: 595-602. 10.1016/S1470-2045(07)70175-4CrossRefPubMed
7.
Zurück zum Zitat Grosso F, Sanfilippo R, Virdis E, Piovesan C, Collini P, Dileo P, Morosi C, Tercero JC, Jimeno J, D'Incalci M, Gronchi A, Pilotti S, Casali PG: Trabectedin in myxoid liposarcomas (MLS): a long-term analysis of a single-institution series. Ann Oncol. 2009, 20: 1439-1444. 10.1093/annonc/mdp004CrossRefPubMed Grosso F, Sanfilippo R, Virdis E, Piovesan C, Collini P, Dileo P, Morosi C, Tercero JC, Jimeno J, D'Incalci M, Gronchi A, Pilotti S, Casali PG: Trabectedin in myxoid liposarcomas (MLS): a long-term analysis of a single-institution series. Ann Oncol. 2009, 20: 1439-1444. 10.1093/annonc/mdp004CrossRefPubMed
8.
Zurück zum Zitat Dalal KM, Antonescu CR, Singer S: Diagnosis and management of lipomatous tumors. J Surg Oncol. 2008, 97: 298-313. 10.1002/jso.20975CrossRefPubMed Dalal KM, Antonescu CR, Singer S: Diagnosis and management of lipomatous tumors. J Surg Oncol. 2008, 97: 298-313. 10.1002/jso.20975CrossRefPubMed
9.
Zurück zum Zitat Soares DG, Escargueil AE, Poindessous V, Sarasin A, de Gramont A, Bonatto D, Henriques JA, Larsen AK: Replication and homologous recombination repair regulate DNA double-strand break formation by the antitumor alkylator ecteinascidin 743. Proc Natl Acad Sci USA. 2007, 104: 13062-13067. 10.1073/pnas.0609877104PubMedCentralCrossRefPubMed Soares DG, Escargueil AE, Poindessous V, Sarasin A, de Gramont A, Bonatto D, Henriques JA, Larsen AK: Replication and homologous recombination repair regulate DNA double-strand break formation by the antitumor alkylator ecteinascidin 743. Proc Natl Acad Sci USA. 2007, 104: 13062-13067. 10.1073/pnas.0609877104PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Pommier Y, Kohlhagen G, Bailly C, Waring M, Mazumder A, Kohn KW: DNA sequence- and structure-selective alkylation of guanine N2 in the DNA minor groove by ecteinascidin 743, a potent antitumor compound from the Caribbean tunicate Ecteinascidia turbinata. Biochemistry. 1996, 35: 13303-13309. 10.1021/bi960306bCrossRefPubMed Pommier Y, Kohlhagen G, Bailly C, Waring M, Mazumder A, Kohn KW: DNA sequence- and structure-selective alkylation of guanine N2 in the DNA minor groove by ecteinascidin 743, a potent antitumor compound from the Caribbean tunicate Ecteinascidia turbinata. Biochemistry. 1996, 35: 13303-13309. 10.1021/bi960306bCrossRefPubMed
11.
Zurück zum Zitat Zewail-Foote M, Hurley LH: Ecteinascidin 743: a minor groove alkylator that bends DNA toward the major groove. J Med Chem. 1999, 42: 2493-2497. 10.1021/jm990241lCrossRefPubMed Zewail-Foote M, Hurley LH: Ecteinascidin 743: a minor groove alkylator that bends DNA toward the major groove. J Med Chem. 1999, 42: 2493-2497. 10.1021/jm990241lCrossRefPubMed
12.
Zurück zum Zitat Theman TA, Hartzell TL, Sinha I, Polson K, Morgan J, Demetri GD, Orgill DP, George S: Recognition of a new chemotherapeutic vesicant: trabectedin (ecteinascidin-743) extravasation with skin and soft tissue damage. J Clin Oncol. 2009, 27: e198-e200. 10.1200/JCO.2008.21.6473CrossRefPubMed Theman TA, Hartzell TL, Sinha I, Polson K, Morgan J, Demetri GD, Orgill DP, George S: Recognition of a new chemotherapeutic vesicant: trabectedin (ecteinascidin-743) extravasation with skin and soft tissue damage. J Clin Oncol. 2009, 27: e198-e200. 10.1200/JCO.2008.21.6473CrossRefPubMed
13.
Zurück zum Zitat Demetri GD, Chawla SP, von Mehren M, Ritch P, Baker LH, Blay JY, Hande KR, Keohan ML, Samuels BL, Schuetze S, Lebedinsky C, Elsayed YA, Izquierdo MA, Gomez J, Park YC, Le Cesne A: Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J Clin Oncol. 2009, 27: 4188-4196. 10.1200/JCO.2008.21.0088CrossRefPubMed Demetri GD, Chawla SP, von Mehren M, Ritch P, Baker LH, Blay JY, Hande KR, Keohan ML, Samuels BL, Schuetze S, Lebedinsky C, Elsayed YA, Izquierdo MA, Gomez J, Park YC, Le Cesne A: Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J Clin Oncol. 2009, 27: 4188-4196. 10.1200/JCO.2008.21.0088CrossRefPubMed
14.
Zurück zum Zitat Tuveson DA, Fletcher JA: Signal transduction pathways in sarcoma as targets for therapeutic intervention. Curr Opin Oncol. 2001, 13: 249-255. 10.1097/00001622-200107000-00007CrossRefPubMed Tuveson DA, Fletcher JA: Signal transduction pathways in sarcoma as targets for therapeutic intervention. Curr Opin Oncol. 2001, 13: 249-255. 10.1097/00001622-200107000-00007CrossRefPubMed
15.
Zurück zum Zitat Widakowich C, de CG, de Azambuja E, Dinh P, Awada A: Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist. 2007, 12: 1443-1455. 10.1634/theoncologist.12-12-1443CrossRefPubMed Widakowich C, de CG, de Azambuja E, Dinh P, Awada A: Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist. 2007, 12: 1443-1455. 10.1634/theoncologist.12-12-1443CrossRefPubMed
16.
Zurück zum Zitat Schrage YM, Briaire-de Bruijn IH, de Miranda NF, van Oosterwijk J, Taminiau AHM, van Wezel T, Hogendoorn PCW, Bovee JVMG: Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment. Cancer Res. 2009, 69: 6216-6222. 10.1158/0008-5472.CAN-08-4801CrossRefPubMed Schrage YM, Briaire-de Bruijn IH, de Miranda NF, van Oosterwijk J, Taminiau AHM, van Wezel T, Hogendoorn PCW, Bovee JVMG: Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment. Cancer Res. 2009, 69: 6216-6222. 10.1158/0008-5472.CAN-08-4801CrossRefPubMed
17.
Zurück zum Zitat Goransson M, Elias E, Stahlberg A, Olofsson A, Andersson C, Aman P: Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP beta-mediated interleukin 6 expression. Int J Cancer. 2005, 115: 556-560. 10.1002/ijc.20893CrossRefPubMed Goransson M, Elias E, Stahlberg A, Olofsson A, Andersson C, Aman P: Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP beta-mediated interleukin 6 expression. Int J Cancer. 2005, 115: 556-560. 10.1002/ijc.20893CrossRefPubMed
18.
Zurück zum Zitat Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, Mermel CH, Getz G, Antipin Y, Beroukhim R, Major JE, Hatton C, Nicoletti R, Hanna M, Sharpe T, Fennell TJ, Cibulskis K, Onofrio RC, Saito T, Shukla N, Lau C, Nelander S, Silver SJ, Sougnez C, Viale A, Winckler W, Maki RG, Garraway LA, Lash A, Greulich H, Root DE, Sellers WR, Schwartz GK, Antonescu CR, Lander ES, Varmus HE, Ladanyi M, Sander C, Meyerson M, Singer S: Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010, 42: 715-721. 10.1038/ng.619PubMedCentralCrossRefPubMed Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, Mermel CH, Getz G, Antipin Y, Beroukhim R, Major JE, Hatton C, Nicoletti R, Hanna M, Sharpe T, Fennell TJ, Cibulskis K, Onofrio RC, Saito T, Shukla N, Lau C, Nelander S, Silver SJ, Sougnez C, Viale A, Winckler W, Maki RG, Garraway LA, Lash A, Greulich H, Root DE, Sellers WR, Schwartz GK, Antonescu CR, Lander ES, Varmus HE, Ladanyi M, Sander C, Meyerson M, Singer S: Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010, 42: 715-721. 10.1038/ng.619PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Goransson M, Andersson MK, Forni C, Stahlberg A, Andersson C, Olofsson A, Mantovani R, Aman P: The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-kappaB target genes by interaction with NFKBIZ. Oncogene. 2009, 28: 270-278. 10.1038/onc.2008.378CrossRefPubMed Goransson M, Andersson MK, Forni C, Stahlberg A, Andersson C, Olofsson A, Mantovani R, Aman P: The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-kappaB target genes by interaction with NFKBIZ. Oncogene. 2009, 28: 270-278. 10.1038/onc.2008.378CrossRefPubMed
20.
Zurück zum Zitat Karin M: Nuclear factor-kappaB in cancer development and progression. Nature. 2006, 441: 431-436. 10.1038/nature04870CrossRefPubMed Karin M: Nuclear factor-kappaB in cancer development and progression. Nature. 2006, 441: 431-436. 10.1038/nature04870CrossRefPubMed
22.
Zurück zum Zitat Panagopoulos I, Mertens F, Isaksson M, Mandahl N: A novel FUS/CHOP chimera in myxoid liposarcoma. Biochem Biophys Res Commun. 2000, 279: 838-845. 10.1006/bbrc.2000.4026CrossRefPubMed Panagopoulos I, Mertens F, Isaksson M, Mandahl N: A novel FUS/CHOP chimera in myxoid liposarcoma. Biochem Biophys Res Commun. 2000, 279: 838-845. 10.1006/bbrc.2000.4026CrossRefPubMed
23.
Zurück zum Zitat Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A, Shugar D, Pinna LA: Selectivity of 4, 5, 6, 7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 ('casein kinase-2'). FEBS Lett. 2001, 496: 44-48. 10.1016/S0014-5793(01)02404-8CrossRefPubMed Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A, Shugar D, Pinna LA: Selectivity of 4, 5, 6, 7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 ('casein kinase-2'). FEBS Lett. 2001, 496: 44-48. 10.1016/S0014-5793(01)02404-8CrossRefPubMed
24.
Zurück zum Zitat Trembley JH, Wang G, Unger G, Slaton J, Ahmed K: Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci. 2009, 66: 1858-1867. 10.1007/s00018-009-9154-yPubMedCentralCrossRefPubMed Trembley JH, Wang G, Unger G, Slaton J, Ahmed K: Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci. 2009, 66: 1858-1867. 10.1007/s00018-009-9154-yPubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Grant SK: Therapeutic protein kinase inhibitors. Cell Mol Life Sci. 2009, 66: 1163-1177. 10.1007/s00018-008-8539-7CrossRefPubMed Grant SK: Therapeutic protein kinase inhibitors. Cell Mol Life Sci. 2009, 66: 1163-1177. 10.1007/s00018-008-8539-7CrossRefPubMed
26.
Zurück zum Zitat Perez-Mancera PA, Bermejo-Rodriguez C, Sanchez-Martin M, Abollo-Jimenez F, Pintado B, Sanchez-Garcia I: FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E. PLoS One. 2008, 3: e2569- 10.1371/journal.pone.0002569PubMedCentralCrossRefPubMed Perez-Mancera PA, Bermejo-Rodriguez C, Sanchez-Martin M, Abollo-Jimenez F, Pintado B, Sanchez-Garcia I: FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E. PLoS One. 2008, 3: e2569- 10.1371/journal.pone.0002569PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Tontonoz P, Spiegelman BM: Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008, 77: 289-312. 10.1146/annurev.biochem.77.061307.091829CrossRefPubMed Tontonoz P, Spiegelman BM: Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008, 77: 289-312. 10.1146/annurev.biochem.77.061307.091829CrossRefPubMed
28.
Zurück zum Zitat Willems SM, van RA, van ZR, Deelder AM, McDonnell LA, Hogendoorn PC: Imaging mass spectrometry of myxoid sarcomas identifies proteins and lipids specific to tumour type and grade, and reveals biochemical intratumour heterogeneity. J Pathol. 2010, , Willems SM, van RA, van ZR, Deelder AM, McDonnell LA, Hogendoorn PC: Imaging mass spectrometry of myxoid sarcomas identifies proteins and lipids specific to tumour type and grade, and reveals biochemical intratumour heterogeneity. J Pathol. 2010, ,
29.
Zurück zum Zitat Crozat A, Aman P, Mandahl P, Ron D: Fusion of CHOP a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993, 363: 640-644. 10.1038/363640a0CrossRefPubMed Crozat A, Aman P, Mandahl P, Ron D: Fusion of CHOP a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993, 363: 640-644. 10.1038/363640a0CrossRefPubMed
30.
Zurück zum Zitat Kuroda M, Ishida T, Takanashi M, Satoh M, Machinami R, Watanabe T: Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol. 1997, 151: 735-744.PubMedCentralPubMed Kuroda M, Ishida T, Takanashi M, Satoh M, Machinami R, Watanabe T: Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol. 1997, 151: 735-744.PubMedCentralPubMed
31.
Zurück zum Zitat Riggi N, Cironi L, Provero P, Suva ML, Stehle JC, Baumer K, Guillou L, Stamenkovic I: Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res. 2006, 66: 7016-7023. 10.1158/0008-5472.CAN-05-3979CrossRefPubMed Riggi N, Cironi L, Provero P, Suva ML, Stehle JC, Baumer K, Guillou L, Stamenkovic I: Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res. 2006, 66: 7016-7023. 10.1158/0008-5472.CAN-05-3979CrossRefPubMed
32.
Zurück zum Zitat Engstrom K, Willen H, Kabjorn-Gustafsson C, Andersson C, Olsson M, Goransson M, Jarnum S, Olofsson A, Warnhammar E, Aman P: The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol. 2006, 168: 1642-1653. 10.2353/ajpath.2006.050872PubMedCentralCrossRefPubMed Engstrom K, Willen H, Kabjorn-Gustafsson C, Andersson C, Olsson M, Goransson M, Jarnum S, Olofsson A, Warnhammar E, Aman P: The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol. 2006, 168: 1642-1653. 10.2353/ajpath.2006.050872PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Demetri GD, Fletcher CDM, Mueller E, Sarraf P, Naujoks R, Campbell N, Spiegelman BM, Singer S: Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA. 1999, 96: 3951-3956. 10.1073/pnas.96.7.3951PubMedCentralCrossRefPubMed Demetri GD, Fletcher CDM, Mueller E, Sarraf P, Naujoks R, Campbell N, Spiegelman BM, Singer S: Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA. 1999, 96: 3951-3956. 10.1073/pnas.96.7.3951PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Debrock G, Vanhentenrijk V, Sciot R, Debiec-Rychter M, Oyen R, Van Oosterom A: A phase II trial with rosiglitazone in liposarcoma patients. Br J Cancer. 2003, 89: 1409-1412. 10.1038/sj.bjc.6601306PubMedCentralCrossRefPubMed Debrock G, Vanhentenrijk V, Sciot R, Debiec-Rychter M, Oyen R, Van Oosterom A: A phase II trial with rosiglitazone in liposarcoma patients. Br J Cancer. 2003, 89: 1409-1412. 10.1038/sj.bjc.6601306PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Huang HY, Antonescu CR: Molecular variability of TLS-CHOP structure shows no significant impact on the level of adipogenesis: a comparative ultrastructural and RT-PCR analysis of 14 cases of myxoid/round cell liposarcomas. Ultrastruct Pathol. 2003, 27: 217-226. 10.1080/01913120309917CrossRefPubMed Huang HY, Antonescu CR: Molecular variability of TLS-CHOP structure shows no significant impact on the level of adipogenesis: a comparative ultrastructural and RT-PCR analysis of 14 cases of myxoid/round cell liposarcomas. Ultrastruct Pathol. 2003, 27: 217-226. 10.1080/01913120309917CrossRefPubMed
36.
Zurück zum Zitat Perkins ND: Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007, 8: 49-62. 10.1038/nrm2083CrossRefPubMed Perkins ND: Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007, 8: 49-62. 10.1038/nrm2083CrossRefPubMed
37.
Zurück zum Zitat Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE: Protein kinase CK2 promotes aberrant activation of nuclear factor-kappaB, transformed phenotype, and survival of breast cancer cells. Cancer Res. 2002, 62: 6770-6778.PubMed Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE: Protein kinase CK2 promotes aberrant activation of nuclear factor-kappaB, transformed phenotype, and survival of breast cancer cells. Cancer Res. 2002, 62: 6770-6778.PubMed
38.
Zurück zum Zitat Schwarzbach MH, Koesters R, Germann A, Mechtersheimer G, Geisbill J, Winkler S, Niedergethmann M, Ridder R, Buechler MW, von Knebel DM, Willeke F: Comparable transforming capacities and differential gene expression patterns of variant FUS/CHOP fusion transcripts derived from soft tissue liposarcomas. Oncogene. 2004, 23: 6798-6805. 10.1038/sj.onc.1207840CrossRefPubMed Schwarzbach MH, Koesters R, Germann A, Mechtersheimer G, Geisbill J, Winkler S, Niedergethmann M, Ridder R, Buechler MW, von Knebel DM, Willeke F: Comparable transforming capacities and differential gene expression patterns of variant FUS/CHOP fusion transcripts derived from soft tissue liposarcomas. Oncogene. 2004, 23: 6798-6805. 10.1038/sj.onc.1207840CrossRefPubMed
39.
Zurück zum Zitat Uranishi H, Tetsuka T, Yamashita M, Asamitsu K, Shimizu M, Itoh M, Okamoto T: Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. J Biol Chem. 2001, 276: 13395-13401. 10.1074/jbc.M011176200CrossRefPubMed Uranishi H, Tetsuka T, Yamashita M, Asamitsu K, Shimizu M, Itoh M, Okamoto T: Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. J Biol Chem. 2001, 276: 13395-13401. 10.1074/jbc.M011176200CrossRefPubMed
40.
Zurück zum Zitat Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T: CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA. 1997, 94: 2927-2932. 10.1073/pnas.94.7.2927PubMedCentralCrossRefPubMed Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T: CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA. 1997, 94: 2927-2932. 10.1073/pnas.94.7.2927PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ: Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science. 1997, 275: 523-527. 10.1126/science.275.5299.523CrossRefPubMed Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ: Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science. 1997, 275: 523-527. 10.1126/science.275.5299.523CrossRefPubMed
42.
Zurück zum Zitat Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS: A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev. 1998, 12: 968-981. 10.1101/gad.12.7.968PubMedCentralCrossRefPubMed Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS: A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev. 1998, 12: 968-981. 10.1101/gad.12.7.968PubMedCentralCrossRefPubMed
43.
Zurück zum Zitat Duncan JS, Litchfield DW: Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta. 2008, 1784: 33-47.CrossRefPubMed Duncan JS, Litchfield DW: Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta. 2008, 1784: 33-47.CrossRefPubMed
44.
Zurück zum Zitat Riedl SJ, Shi Y: Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004, 5: 897-907. 10.1038/nrm1496CrossRefPubMed Riedl SJ, Shi Y: Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004, 5: 897-907. 10.1038/nrm1496CrossRefPubMed
45.
46.
Zurück zum Zitat Solares AM, Santana A, Baladron I, Valenzuela C, Gonzalez CA, Diaz A, Castillo D, Ramos T, Gomez R, Alonso DF, Herrera L, Sigman H, Perea SE, Acevedo BE, Lopez-Saura P: Safety and preliminary efficacy data of a novel casein kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies. BMC Cancer. 2009, 9: 146- 10.1186/1471-2407-9-146PubMedCentralCrossRefPubMed Solares AM, Santana A, Baladron I, Valenzuela C, Gonzalez CA, Diaz A, Castillo D, Ramos T, Gomez R, Alonso DF, Herrera L, Sigman H, Perea SE, Acevedo BE, Lopez-Saura P: Safety and preliminary efficacy data of a novel casein kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies. BMC Cancer. 2009, 9: 146- 10.1186/1471-2407-9-146PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Rudd CE, Trevillyan JM, Dasgupta JD, Wong LL, Schlossman SF: The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc Natl Acad Sci USA. 1988, 85: 5190-5194. 10.1073/pnas.85.14.5190PubMedCentralCrossRefPubMed Rudd CE, Trevillyan JM, Dasgupta JD, Wong LL, Schlossman SF: The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc Natl Acad Sci USA. 1988, 85: 5190-5194. 10.1073/pnas.85.14.5190PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ: Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet. 1999, 21: 187-190. 10.1038/5971CrossRefPubMed Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ: Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet. 1999, 21: 187-190. 10.1038/5971CrossRefPubMed
49.
Zurück zum Zitat Cheng H, Dodge J, Mehl E, Liu S, Poulin N, van de RM, Nielsen TO: Validation of immature adipogenic status and identification of prognostic biomarkers in myxoid liposarcoma using tissue microarrays. Hum Pathol. 2009, 40: 1244-1251. 10.1016/j.humpath.2009.01.011CrossRefPubMed Cheng H, Dodge J, Mehl E, Liu S, Poulin N, van de RM, Nielsen TO: Validation of immature adipogenic status and identification of prognostic biomarkers in myxoid liposarcoma using tissue microarrays. Hum Pathol. 2009, 40: 1244-1251. 10.1016/j.humpath.2009.01.011CrossRefPubMed
50.
Zurück zum Zitat Kopetz S, Lesslie DP, Dallas NA, Park SI, Johnson M, Parikh NU, Kim MP, Abbruzzese JL, Ellis LM, Chandra J, Gallick GE: Synergistic activity of the SRC family kinase inhibitor dasatinib and oxaliplatin in colon carcinoma cells is mediated by oxidative stress. Cancer Res. 2009, 69: 3842-3849. 10.1158/0008-5472.CAN-08-2246PubMedCentralCrossRefPubMed Kopetz S, Lesslie DP, Dallas NA, Park SI, Johnson M, Parikh NU, Kim MP, Abbruzzese JL, Ellis LM, Chandra J, Gallick GE: Synergistic activity of the SRC family kinase inhibitor dasatinib and oxaliplatin in colon carcinoma cells is mediated by oxidative stress. Cancer Res. 2009, 69: 3842-3849. 10.1158/0008-5472.CAN-08-2246PubMedCentralCrossRefPubMed
51.
Zurück zum Zitat Du J, Bernasconi P, Clauser KR, Mani DR, Finn SP, Beroukhim R, Burns M, Julian B, Peng XP, Hieronymus H, Maglathlin RL, Lewis TA, Liau LM, Nghiemphu P, Mellinghoff IK, Louis DN, Loda M, Carr SA, Kung AL, Golub TR: Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat Biotechnol. 2009, 27: 77-83. 10.1038/nbt.1513PubMedCentralCrossRefPubMed Du J, Bernasconi P, Clauser KR, Mani DR, Finn SP, Beroukhim R, Burns M, Julian B, Peng XP, Hieronymus H, Maglathlin RL, Lewis TA, Liau LM, Nghiemphu P, Mellinghoff IK, Louis DN, Loda M, Carr SA, Kung AL, Golub TR: Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat Biotechnol. 2009, 27: 77-83. 10.1038/nbt.1513PubMedCentralCrossRefPubMed
52.
Zurück zum Zitat Chou TC: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006, 58: 621-681. 10.1124/pr.58.3.10CrossRefPubMed Chou TC: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006, 58: 621-681. 10.1124/pr.58.3.10CrossRefPubMed
53.
Zurück zum Zitat Thelin-Jarnum S, Lassen C, Panagopoulos I, Mandahl N, Aman P: Identification of genes differentially expressed in TLS-CHOP carrying myxoid liposarcomas. Int J Cancer. 1999, 83: 30-33. 10.1002/(SICI)1097-0215(19990924)83:1<30::AID-IJC6>3.0.CO;2-4CrossRefPubMed Thelin-Jarnum S, Lassen C, Panagopoulos I, Mandahl N, Aman P: Identification of genes differentially expressed in TLS-CHOP carrying myxoid liposarcomas. Int J Cancer. 1999, 83: 30-33. 10.1002/(SICI)1097-0215(19990924)83:1<30::AID-IJC6>3.0.CO;2-4CrossRefPubMed
54.
Zurück zum Zitat Aman P, Ron D, Mandahl N, Fioretos T, Heim S, Arheden K, Willen H, Rydholm A, Mitelman F: Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer. 1992, 5: 278-285. 10.1002/gcc.2870050403CrossRefPubMed Aman P, Ron D, Mandahl N, Fioretos T, Heim S, Arheden K, Willen H, Rydholm A, Mitelman F: Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer. 1992, 5: 278-285. 10.1002/gcc.2870050403CrossRefPubMed
55.
Zurück zum Zitat Willems SM, Debiec-Rychter M, Szuhai K, Hogendoorn PCW, Sciot R: Local recurrence of myxofibrosarcoma is associated with increase in tumour grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Mod Pathol. 2006, 19: 407-416. 10.1038/modpathol.3800550CrossRefPubMed Willems SM, Debiec-Rychter M, Szuhai K, Hogendoorn PCW, Sciot R: Local recurrence of myxofibrosarcoma is associated with increase in tumour grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Mod Pathol. 2006, 19: 407-416. 10.1038/modpathol.3800550CrossRefPubMed
56.
Zurück zum Zitat Willems SM, Mohseny AB, Balog C, Sewrajsing R, Briaire-de Bruijn IH, Knijnenburg J, Cleton-Jansen AM, Sciot R, Fletcher CDM, Deelder AM, Szuhai K, Hensbergen PJ, Hogendoorn PCW: Cellular/intramuscular myxoma and grade I myxofibrosarcoma are characterized by distinct genetic alterations and specific composition of their extracellular matrix. J Cell Mol Med. 2009, 13: 1291-1301. 10.1111/j.1582-4934.2009.00747.xPubMedCentralCrossRefPubMed Willems SM, Mohseny AB, Balog C, Sewrajsing R, Briaire-de Bruijn IH, Knijnenburg J, Cleton-Jansen AM, Sciot R, Fletcher CDM, Deelder AM, Szuhai K, Hensbergen PJ, Hogendoorn PCW: Cellular/intramuscular myxoma and grade I myxofibrosarcoma are characterized by distinct genetic alterations and specific composition of their extracellular matrix. J Cell Mol Med. 2009, 13: 1291-1301. 10.1111/j.1582-4934.2009.00747.xPubMedCentralCrossRefPubMed
57.
Zurück zum Zitat Szuhai K, Tanke HJ: COBRA: combined binary ratio labeling of nucleic-acid probes for multi-color fluorescence in situ hybridization karyotyping. Nat Protoc. 2006, 1: 264-275. 10.1038/nprot.2006.41CrossRefPubMed Szuhai K, Tanke HJ: COBRA: combined binary ratio labeling of nucleic-acid probes for multi-color fluorescence in situ hybridization karyotyping. Nat Protoc. 2006, 1: 264-275. 10.1038/nprot.2006.41CrossRefPubMed
58.
Zurück zum Zitat Willems SM, Schrage YM, Baelde JJ, Briaire-de Bruijn I, Mohseny A, Sciot R, Bovee JVMG, Hogendoorn PCW: Myxoid tumours of soft tissue: the so-called myxoid extracellular matrix is heterogeneous in composition. Histopathology. 2008, 52: 465-474. 10.1111/j.1365-2559.2008.02967.xCrossRefPubMed Willems SM, Schrage YM, Baelde JJ, Briaire-de Bruijn I, Mohseny A, Sciot R, Bovee JVMG, Hogendoorn PCW: Myxoid tumours of soft tissue: the so-called myxoid extracellular matrix is heterogeneous in composition. Histopathology. 2008, 52: 465-474. 10.1111/j.1365-2559.2008.02967.xCrossRefPubMed
59.
Zurück zum Zitat Tuynman JB, Vermeulen L, Boon EM, Kemper K, Zwinderman AH, Peppelenbosch MP, Richel DJ: Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res. 2008, 68: 1213-1220. 10.1158/0008-5472.CAN-07-5172CrossRefPubMed Tuynman JB, Vermeulen L, Boon EM, Kemper K, Zwinderman AH, Peppelenbosch MP, Richel DJ: Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res. 2008, 68: 1213-1220. 10.1158/0008-5472.CAN-07-5172CrossRefPubMed
Metadaten
Titel
Kinome profiling of myxoid liposarcoma reveals NF-kappaB-pathway kinase activity and Casein Kinase II inhibition as a potential treatment option
verfasst von
Stefan M Willems
Yvonne M Schrage
Inge H Briaire-de Bruijn
Karoly Szuhai
Pancras CW Hogendoorn
Judith VMG Bovée
Publikationsdatum
01.12.2010
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2010
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-257

Weitere Artikel der Ausgabe 1/2010

Molecular Cancer 1/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.