Skip to main content
Erschienen in: Breast Cancer Research 1/2011

Open Access 01.02.2011 | Research article

Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivotumor growth

verfasst von: Li Xu Yan, Qi Nian Wu, Yan Zhang, Yang Yang Li, Ding Zhun Liao, Jing Hui Hou, Jia Fu, Mu Sheng Zeng, Jing Ping Yun, Qiu Liang Wu, Yi Xin Zeng, Jian Yong Shao

Erschienen in: Breast Cancer Research | Ausgabe 1/2011

Abstract

Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs (20 to 24 nucleotides) that post-transcriptionally modulate gene expression. A key oncomir in carcinogenesis is miR-21, which is consistently up-regulated in a wide range of cancers. However, few functional studies are available for miR-21, and few targets have been identified. In this study, we explored the role of miR-21 in human breast cancer cells and tissues, and searched for miR-21 targets.

Methods

We used in vitro and in vivo assays to explore the role of miR-21 in the malignant progression of human breast cancer, using miR-21 knockdown. Using LNA silencing combined to microarray technology and target prediction, we screened for potential targets of miR-21 and validated direct targets by using luciferase reporter assay and Western blot. Two candidate target genes (EIF4A2 and ANKRD46) were selected for analysis of correlation with clinicopathological characteristics and prognosis using immunohistochemistry on cancer tissue microrrays.

Results

Anti-miR-21 inhibited growth and migration of MCF-7 and MDA-MB-231 cells in vitro, and tumor growth in nude mice. Knockdown of miR-21 significantly increased the expression of ANKRD46 at both mRNA and protein levels. Luciferase assays using a reporter carrying a putative target site in the 3' untranslated region of ANKRD46 revealed that miR-21 directly targeted ANKRD46. miR-21 and EIF4A2 protein were inversely expressed in breast cancers (rs = -0.283, P = 0.005, Spearman's correlation analysis).

Conclusions

Knockdown of miR-21 in MCF-7 and MDA-MB-231 cells inhibits in vitro and in vivo growth as well as in vitro migration. ANKRD46 is newly identified as a direct target of miR-21 in BC. These results suggest that inhibitory strategies against miR-21 using peptide nucleic acids (PNAs)-antimiR-21 may provide potential therapeutic applications in breast cancer treatment.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​bcr2803) contains supplementary material, which is available to authorized users.
Li Xu Yan, Qi Nian Wu, Yan Zhang contributed equally to this work.

Competing interests

Miss Li Xu Yan and Mrs Yan Zhang are doctoral degree candidates; Miss Qi Nian Wu and Mrs Yang Yang Li are master's degree candidates at SYSUCC. Mr Ding Zhun Liao, Mr Jing Hui Hou and Mrs Jia Fu are technicians at SYSUCC. Dr Mu-Sheng Zeng, Jing Ping Yun, Qiu Liang Wu and Yi Xin Zeng are Professors at SYSUCC. Dr Shao is a Professor and Vice Director at Department of Pathology of SYSUCC. The authors declare that they have not received any reimbursements, fees, funding, or salary, nor hold any stocks or shares in an organization that may in any way gain or lose financially from the publication of this manuscript, either now or in the future. The authors do not hold or are not currently applying for any patents relating to the content of the manuscript. The authors declare that they do not have any other financial or non-financial competing interests.

Authors' contributions

LXY, QNW and YZ carried out the substantial experiment work and drafted the manuscript. JYS designed and financially supported the study. QNW and DZL were responsible for patient samples and tissue array construction. JHH and JF supported the immunohistochemistry. YYL carried out the luciferase reporter assay. JPY, MSZ, QLW and YXZ helped carry out the research design and critically reviewed the final version of the manuscript for submission. All authors read and approved the final manuscript.
Abkürzungen
3' UTR
3' untranslated region
AJCC
American Joint Committee on Cancer
ANK-S
ankyrin repeat small protein
ASOs
antisense oligonucleotides
BC
breast cancer
CerbB2
v-erb-b2 erythroblastic leukaemia viral oncogene homolog 2 receptors
CISH
chromogenic in situ hybridization
DAPI
4',6-diamidino-2-phenylindole
EIF4A2
eukaryotic initiation factor 4A: isoform 2
ER
estrogen receptor
F
forward primer
FA
fibroadenoma
FISH
fluorescein in situ hybridization
FITC
fluorescein isothiocyanate
GEO
Gene Expression Omnibus
IHC
immunohistochemistry
L
length
LNA
Locked nucleic acid
miRNAs
microRNAs
MTT
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
Mut
mutation
NATs
normal adjacent tissues
NBT/BCIP
nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate
NCBI
National Center for Biotechnology Information
OS
overall survival
PNAs
peptide nucleic acids
PR
progesterone receptor
qRT-PCR
quantitative reverse transcription-polymerase chain reaction
R
reverse primer
RQ
relative quantification
RT
reverse transcription primer
SABC-AP
alkaline phosphatase-conjugated strept-avidin-biotin complex
SD
standard deviation: SYSUCC: Sun Yat-sen University Cancer Center
TMAs
tissue microrrays
TNM
tumor-lymph node-metastasis
W
width
WT
wild-type.

Introduction

Breast cancer (BC) is by far the most frequent cancer of women (23% of all cancers), with an estimated 1.15 million new cases worldwide in 2002 [1]. It is still the leading cause of cancer mortality in women [1]. Despite research and resources dedicated to elucidating the molecular mechanisms of BC, the precise mechanisms of its initiation and progression remain unclear.
MicroRNAs (miRNAs) are small non-coding RNAs (20 to 24 nucleotides) that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs [2]. After the discovery of miRNAs, and findings indicating that they play a role in cancer, the concept of "oncomirs" was proposed [3]. In particular, miR-21 [miRBase: MIMAT0000076] has emerged as a key oncomir, since it is the most consistently up-regulated miRNA in a wide range of cancers [47].
Functional studies showed that knockdown of miR-21 in MCF7 cells led to reduced proliferation and tumor growth [8, 9]. Knockdown of miR-21 in MDA-MB-231 cells significantly reduced invasion and lung metastasis [10]. These data clearly implicate miR-21 as a key molecule in carcinogenesis, but functional studies that demonstrate cause and effect relationships between miR-21 and target genes are lacking. Given that miRNAs usually target multiple genes post-transcriptionally, miR-21 is likely to exert its effects by regulating many genes involved in BC.
The inhibition of miRNAs using antisense oligonucleotides (ASOs) is a unique and effective technique for investigating miRNA functions and targets. Peptide nucleic acids (PNAs) are artificial oligonucleotides constructed on a peptide-like backbone. PNAs have a stronger affinity and greater specificity for DNA or RNA than natural nucleic acids, and are resistant to nucleases [11]. PNA-based ASOs can be used without transfection reagents, and are highly effective and sequence-specific. They provide long-lasting inhibition of miRNAs, and show no cytotoxicity up to 1 μM [11]. Therefore, we used a PNA miR-21 inhibitor for in vivo investigation.
In this study, we explored the role of miR-21 in the malignant progression of human BC by assaying in vitro and in vivo function after miR-21 knockdown. We also searched for miR-21 targets using gene prediction-based and systematic screening approaches. Two potential target genes eukaryotic translation initiation factor 4A2 (EIF4A2) [NCBI: NM001967] and ankyrin repeat domain 46 (ANKRD46) [NCBI: NM198401] were selected for correlation analysis between protein levels and clinicopathological characteristics as well as prognosis using immunohistochemistry (IHC) on cancer tissue microrrays (TMAs).

Materials and methods

Tissue specimens and TMAs construction

In situ hybridization analysis was performed on fresh samples from BC or fibroadenoma (FA) tissues with paired normal adjacent tissues (NATs, > 2 cm from tumor tissues) obtained from Sun Yat-sen University Cancer Center (SYSUCC) (Guangzhou, China) between January and March 2009. For IHC staining of miR-21 predicted target genes, formalin-fixed paraffin-embedded tissues were obtained from 99 randomly selected BC patients without neoadjuvant therapy at SYSUCC from January 2000 to November 2004, from whom informed consent and agreement, and clinicopathological information was available. A pathologist reviewed slides from all blocks, selecting representative areas of invasive tumor tissue to be cored. Selected cores were analyzed in duplicate using a MiniCore Tissue Arrayer (Alphelys, Passage Paul Langevin, Plaisir, France) with a 1-mm needle. The diagnosis and histological grade of each case were independently confirmed by two pathologists based on World Health Organization classification [12]. The clinical stage was classified according to the American Joint Committee on Cancer (AJCC) tumor-lymph node-metastasis (TNM) classification system [13]. The study was approved by the Research Ethics Committee of SYSUCC (Reference number: YP-2009168). The clinicopathological characteristics and follow-up data of the patients are summarized in Table 1.
Table 1
Clinicopathological characteristics and follow-up data for 99 patients with BC
Characteristics
Number of patients/Number analyzed (%)
Median age (range)
48 (30 to 74) (years)
Histological type*
 
   Ductal
93/99 (94%)
   Lobular
1/99 (1%)
   Other
5/99 (5%)
Histological grade*
 
   I
22/99 (22%)
   II
58/99 (58%)
   III
19/99 (20%)
Lymph node status at time of primary diagnosis
   Metastasis
57/99 (58%)
   No metastasis
42/99 (42%)
AJCC clinical stage**
 
   I
8/99 (8%)
   II
68/99 (69%)
   III
23/99 (23%)
Overall survival (median, range)
74 (6 to 112) (months)
   Alive without evidence of cancer
45/99 (68%)
   Alive with cancer
14/99 (14%)
   Died of cancer
40/99 (40%)
   Died of other disease
0/99 (0%)
* According to the WHO classification of BC. ** According to the AJCC staging system; AJCC, American Joint Committee on Cancer; BC, breast cancer; WHO, World Health Organization.

Locked nucleic acid (LNA)-based in situhybridization for miRNA

To study the spatial and temporal expression of miRNAs with high sensitivity and resolution, the miRNA chromogenic in situ hybridization (CISH) and fluorescein in situ hybridization (FISH) protocol [14] were optimized (Additional file 1).

Transfection of LNA-antimiR-21 into BC cells

MCF-7 and MDA-MB-231 cells were maintained in Dulbecco's modified Eagle's medium, supplemented with 100 U/ml penicillin, 100 μg/ml streptomycin and 10% fetal bovine serum (GIBCO-Invitrogen, Carlsbad, CA, USA). For transfection, the LNA-antimiR-21 or LNA-control (Exiqon A/S, Skelstedet, Vedbaek, Denmark) were delivered at a final concentration of 50 nM using Lipofectamine 2000 reagent (Invitrogen).

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and colony formation assay

Growing cells (2 × 103 cells per well) were seeded into 96-well plates. At 24 h after LNA-transfection, cells were stained with 20 μl sterile MTT dye (5 mg/ml; Sigma-Aldrich Corp, St. Louis, MO, USA), followed by 4 h at 37°C. After supernatant removal, 150 μl of dimethyl sulphoxide (Sigma) was added and thoroughly mixed for 15 minutes. Absorbence was measured with a microplate reader (SpectraMax M5; Molecular Devices Corp., Silicon Valley, CA, USA) at 490 nm. For colony formation assays, cells were seeded in six-well plates (0.5 × 103 cells per well) and cultured for two weeks. Colonies were fixed with methanol for 10 minutes and stained with 1% crystal violet (Sigma) for 1 minute. Each cell group was measured in triplicate.

Wound healing assay

Cells cultured in the presence of 50 nM LNA-antimiR-21 or LNA-control for 24 h were allowed to reach confluence before dragging a 1-mL sterile pipette tip (Axygen Scientific, Inc., Union City, CA, USA) through the monolayer. Cells were washed to remove cellular debris and allowed to migrate for 24 h or 48 h. Images were taken at time 0 h, 24 h and 48 h post-wounding using a digital camera system (Leica DFC 480; Leica Microsystems, Bannockburn, IL, USA). The motility of the cells was determined as repaired area percentage [15]. Each cell group was measured in triplicate.

Validation of tumor growth-promoting activity of miR-21in an animal model

Five- to six-week-old female BALB/c-nude mice (Slaccas Shanghai Laboratory Animal Co., Ltd., Shanghai, China) were used for experimental tumorigenicity assays. To facilitate estrogen-dependent xenograft establishment, each mouse received 17-estradiol (20 mg/kg; Sigma) intraperitoneally once a week. One week after treatment, equivalent amounts of MCF-7 cells, treated with PNA-antimiR-21 or PNA-control (100 nM for 48 h; Panagene, Inc., Yuseong-gu, Daejeon, Korea) without transfection reagents according to the manufacturer's protocol, were injected subcutaneously (107 cells/tumor) into the left axilla of nude mice [16]. Mice were weighed, and tumor width (W) and length (L) were measured every day. Tumor volume was estimated according to the standard formula: V = ∏/6 × L × W2, as described previously [17]. Animals were killed nine days after initial growth of the MCF-7 xenografts was detectable, and tumors were extracted. In all experiments, the ethics guidelines for investigations in conscious animals were followed, with approval from the local Ethics Committee for Animal Research.

mRNA array and data mining

MCF-7 and MDA-MB-231 cells were transfected either with LNA-antimiR-21 or with LNA-control at a final concentration of 50 nM. Total RNAs were isolated from MCF-7 cells 48 h post transfection and from MDA-MB-231 cells 36 h post transfection, respectively, using Trizol Reagent (Invitrogen). The mRNA expression profile was performed using human genome oligo array service V1.0 (Catalog Number 400010; CapitalBio, Beijing, China) as described [18]. Each sample was analyzed once, and the CapitalBio data preprocess, normalization and filtering were as previously described [18]. Ratios were defined as marginal signal intensity when there was a substantial amount of variation in the signal intensity within the pixels from 800 to 1,500. All the microarray data have been deposited to the Gene Expression Omnibus (GEO) [19] and are accessible through GEO Series accession number [GEO: GSE20627].

Relative quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

For validation of mRNA array and quantitative analysis of miR-21 as well as potential target genes, qRT-PCR was used as previously described [20]. The primers for qRT-PCR are in Additional file 2. The relative expression was calculated using the equation relative quantification (RQ) = 2-ΔΔCT [21].

Computational prediction of miR-21target genes

Predicted miR-21 targets were identified using the algorithms of TargetScan 5.1 [22], miRBase Targets V5 [23], miRNAMap 2.0 [24], PicTar [25] and miRanda 3.0 [26].

Luciferase reporter assay

The 3' untranslated region (3' UTR) of mRNA sequence of ANKRD46 containing predicted miR-21 binding site was amplified by PCR. PCR primers were listed in Additional file 2. After amplification, PCR products were cloned into the pMIR-REPORT (Applied Biosystems, Foster City, CA, USA), resulting in the pMIR-REPORT-3'ANKRD46. Mutation of ANKRD46 was introduced in the predicted miR-21 binding site by a QuikChange site-directed mutagenesis kit (Stratagene, Foster City, CA, USA). Wild-type EIF4A2 and mutant EIF4A2 were cloned into pMD19-T Simple Vector by TaKaRa Biotechnology CO., LTD. (Dalian, Liaoning, China) and then were individually subcloned downstream of the luciferase coding sequence in the pMIR-REPORT (Applied Biosystems). All constructs were verified by DNA sequencing.
For reporter assays, wide-type or mutant reporter constructs (15 ng) were cotransfected into 293T cells in twelve-well plates with miR-21 or miR-control (50 nM; GenePharma, Shanghai, China) and Renilla plasmid (5 ng) using lipofectamine 2000 (Invitrogen). Firefly and Renilla luciferase activities were measured by using a Dual Luciferase Assay (Promega, Madison, WI, USA) 24 h after transfection. Firefly luciferase values were normalized to Renilla, and the ratio of firefly/renilla was presented.

Immunoblot analysis

Cells were harvested and lysed in radioimmune precipitation buffer (Upstate, Lake Placid, NY, USA) at the indicted time post-transfection. Antibodies used for immunoblot analysis were against ANKRD46 (1:500 dilution; sc-87548, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), EIF4A2 (1:1000 dilution; ab31218, Abcam, Cambridge, UK) and GAPDH (1:3,000 dilution; sc-32233, Santa Cruz Biotechnology), as a loading control. All bands were detected using a SuperSignal West Pico Chemiluminescent Substrate (Pierce, Rockford, IL, USA).

Immunohistochemical staining

IHC and scoring of the estrogen receptor (ER), progesterone receptor (PR) and CerbB2 were performed as previously described [20]. Slides were incubated with primary antibodies against ANKRD46 (1:150 dilution; sc-87548, Santa Cruz Biotechnology); or EIF4A2 (1:700 dilution; ab31218, Abcam). All slides were processed simultaneously in identical conditions per the manufacturer's instructions. Three observers independently determined consensus scoring of EIF4A2 and ANKRD46 immunostaining using a semi-quantitative estimation according to the percentage of positive cells and the intensity of staining as described previously [27]. With these data, the composite score was obtained by adding the values of the staining intensity and relative abundance [28]. Samples with scores lower than the median score were grouped as low protein expression [29].

Statistical analysis

Spearman's rank correlation test was used for correlation analysis between predicted target gene protein levels and endogenous miR-21 levels measured previously by qRT-PCR [20]. Pearson's Chi-Square tests were used to compare target gene expression levels to clinicopathological characteristics. Survival curves were estimated by the Kaplan-Meier method and log-rank test. All analysis used SPSS 16.0 for Windows (SPSS Inc, Chicago, IL, USA). All tests were two-tailed, and the significance level was set at P < 0.05.

Results

miR-21is overexpressed in BC tissues and cell lines

Expression of miR-21 was detected in the cytoplasm in cancerous and luminal epithelial cells, and occasionally in fibroblasts. In BC patients, an increase in miR-21 staining intensity was observed in BC and FA tissues compared with corresponding NATs (Figure 1a). Parallel detection by FISH is shown in Additional file 3. Consistent with the CISH results, quantitative analysis indicated that miR-21 expression was significantly increased by 4.44- to 2.02-fold in BC tissues compared with NATs (P = 0.019, n = 4), and increased in FA tissues by 3.03- to 1.89-fold (P = 0.008, n = 4, Figure 1b). FISH and qRT-PCR were used to measure miR-21 levels in five BC cell lines (MCF-7, MDA-MB-231, MDA-MB-453, MDA-MB-435, and SK-BR-3) and one non-tumorigenic epithelial cell line (MCF-10A). Consistent with previous findings [8, 10, 30], miR-21 overexpressed in MCF-7, MDA-MB-231 and MDA-MB-453 cell lines from 6.48- to 4.04-fold compared with MCF-10A cell line (P < 0.01, Figure 1d).

LNA-antimiR-21 inhibits BC cell growth, proliferation and migration in vitro

MCF-7 and MDA-MB-231 cell lines were selected to investigate miR-21 functions and targets by using sequence-specific functional inhibition of miR-21, because both cell lines express higher levels of miR-21 compared with MCF-10A cells. Optimal doses and time points for transfection of LNA reagents were determined by evaluating miR-21 levels using qRT-PCR (Additional file 4). Knockdown of miR-21 reduced miR-21 levels by 98% in MCF-7 cells, and 77% in MDA-MB-231 cells (P < 0.01) (Figure 2a). LNA-antimiR-21 led to a decrease in MCF-7 cell growth (Figure 2b) and proliferation (29%, P = 0.003, Figure 2c). Similar inhibition of cell growth and proliferation effects (51%, P = 0.011, Figure 2c) was also observed in MDA/LNA-antimiR-21 cells (data not shown). In vitro wound healing assays showed that wound repair in MCF/LNA-antimiR-21 and MDA/LNA-antimiR-21 was delayed compared with MCF/LNA-control and MDA/LNA-control cells (data not shown). Knockdown of miR-21 suppressed MCF-7 cell migration by up to 69% (P = 0.013), and MDA-MB-231 migration by 51% (P = 0.001), compared with the LNA-control at 24 h after wound scratch (Figure 2d). These data demonstrate the tumorigenic properties of miR-21 in regulating cell growth, proliferation and migration.

PNA-antimiR-21 inhibits tumor growth in vivo

To address the potential effects of PNA-antimiR-21 in vivo on the growth of BC cells, equal numbers (3 × 107) of MCF-7 cells treated with PNA-antimiR-21 or the PNA-control were subcutaneously injected into female nude mice (eight animals per treatment). As seen in Figure 3b and 3c, detectable tumor masses (0.011 ± 0.013 g, mean ± standard deviation, SD) were seen in only 5/8 (62.5%) of mice in the MCF/PNA-antimiR-21 group, while much larger tumors (0.036 ± 0.038 g, mean ± SD) were detected in all mice in the MCF/PNA-control group (P = 0.065, Mann-Whitney test). Both tumor weight and number showed that MCF/PNA-control cells formed larger tumors more rapidly (Figure 3a, c) than MCF/PNA-antimiR-21 cells in nude mice. PNA-antimiR-21 reduced miR-21 expression by 5.72 log2-scale in MCF-7 cells 48 h post-treatment compared with that in the control (P < 0.01). miR-21 expression in xenograft tumors of PNA-antimiR-21 group was 0.96 log2-scale higher than that of the control group (P < 0.05; Figure 3e). Notably, MCF/PNA-antimiR-21 tumor cells were decreased in mitotic and pathological mitotic stages compared with MCF/PNA-control cells, indicating a decreased in cell proliferative activity and apoptosis (Figure 3d).

Identification of potential miR-21targets

It is known that animal miRNAs regulate gene expression by inhibiting translation and/or by inducing degradation of target. In our study, most modulated genes in the mRNA differential expression profiles changed by less than two-fold. Since mRNA levels regulated by less than two-fold may still be miRNA targets, we defined differentially expressed genes as no less than 1.3-fold change [31]. Comparative analysis of LNA-antimiR-21 and LNA-control mRNA profiles showed differential regulation of 394 genes in MCF/LNA-antimiR-21, of which 228 (58%) were up-regulated and 166 (42%) were down-regulated. 321 genes were differentially expressed in MDA/LNA-antimiR-21 cells, of which 190 (59%) were up-regulated, and 131 (41%) down-regulated (Figure 4a). The intersection of MCF/LNA-antimiR-21 and MDA/LNA-antimiR-21 consisted of 27 genes (18 up- and 9 down-regulated; Figure 4b and Table 2).
Table 2
Regulated mRNAs in BC cells after miR-2 1 knockdown determined by oligo array
    
Fold change
 
Gene Name
NCBI accession number
Genbank accession number
Description
MCF-7
MDA-MB-231
Prediction program
ANKRD46
NM_198401
U79297, BC035087
ankyrin repeat domain 46
1.78
2.57 #
miRBase Targets V5
ACTN4
NM_004924
BC005033
Alpha-actin 4 (F-actin cross linking protein)
1.75
1.55
 
NR0B1
NM_000475
S74720
Nuclear receptor 0B1 (Nuclear receptor DAX-1)
1.60
1.32
 
HIRA
NM_003325
BC039835, X89887
HIRA protein
1.48
1.32
 
COL18A1
NM_030582, NM_130444, NM_130445
AF018081
Collagen alpha 1(XVIII) chain precursor
1.43
1.35
 
SAMD11
NM_152486
BC024295, AK054643
sterile alpha motif domain containing 11
1.42
1.34
 
EIF4A2
NM_001967
AL117412
Eukaryotic initiation factor 4A-II
1.42
1.41
miRNAMap
SFRS16
NM_007056
AF042800, AK094681
Splicing factor, arginine/serine-rich 16
1.40
1.34
 
NP_079316
-
BC004930
zinc finger protein 614
1.37
1.36
 
IL18BP
NM_173043, NM_005699, NM_173042
AF110801
Interleukin-18 binding protein precursor
1.36
1.34
 
GBF1
NM_004193
AK025330, AF068755
Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1
1.35
1.51
 
GNPDA1
NM_005471
AJ002231
Glucosamine-6-phosphate isomerase
1.34
1.32
 
SPUF_HUMAN
NM_013349
-
SPUF protein precursor
1.34
1.31
 
PLXNA1
NM_032242
AK127254
plexin A1; plexin 1
1.32
1.57
 
STMN3
NM_015894
AK094112
Stathmin 3 (SCG10-like protein)
1.32
1.47
 
NP_056236
NM_015421
AK093383, AL080088
DKFZP564K2062 protein
1.31
1.33
 
-
-
AK056473
-
1.31
1.30
 
AP2B1
NM_001282
M34175
adaptor-related protein complex 2, beta 1 subunit
1.31
1.45
 
HIST1H2AC
-
CR608156
Histone H2A.l (H2A/l)
-1.47
-1.67
 
PRKCI
NM_002740
L33881, BC042405, BC022016
Protein kinase C, iota type
-1.43
-1.32
 
SLC25A3
NM_002635, NM_213611, NM_213612, NM_005888
BX647062, AK057575
Phosphate carrier protein, mitochondrial precursor (PTP)
-1.39
-1.39
 
CCNE1
NM_057182, NM_001238
M74093, BC035498
G1/S-specific cyclin E1
-1.37
-1.39
 
DCAMKL1
NM_004734
AB002367
Serine/threonine-protein kinase DCAMKL1
-1.34
-1.46
 
GNG12
NM_018841
AL832431
Guanine nucleotide-binding protein G(I)/G(S)/G(O) gamma-12 subunit
-1.32
-1.40
Miranda
Q8TAY7
NM_024869
BC025658
hypothetical protein FLJ14050
-1.32
-1.31
 
NP_653284
NM_144683
BC015582
hypothetical protein MGC23280
-1.31
-1.35
 
NP_055182
NM_014367
-
growth and transformation-dependent protein
-1.30
-1.34
 
Fold-regulation of mRNAs affected by miR-21 knockdown compared with control-transfected cells (MCF-7 and MDA-MB-231) at indicated time points. Fold-changes for all mRNAs are derived from a single microarray experiment, with two relevant genes confirmed by qRT-PCR (Figure 4B). Shown are mRNAs changing by at least 1.3-fold in both cell lines. Genes in bold were selected for candidate gene analyses by qRT-PCR.; # marginal signal intensity; NCBI, National Center for Biotechnology Information; GB, GenBank.
To further screen potential direct targets, we compared the 27 candidate mRNAs with miR-21 targets predicted by TargetScan 5.1, miRBase Targets V.5, miRNAMap 2.0, PicTar and miRanda 3.0. Of the 27 mRNAs, 3 were recognized by the algorithms (Table 2). Because miR-21 targets are expected to up-regulated for the LNA-antimiR-21 samples, ANKRD46 and EIF4A2, the two up-regulated genes upon miR-21 knockdown in the two cell lines and predicted by target prediction programs, were selected for further investigation.

miR-21 directly targets ANKRD46in BC cells

The microarrays were validated by qRT-PCR assay. Consistent with the microarray results, qRT-PCR showed increased ANKRD46 and EIF4A2 mRNA levels in MCF-7 and MDA-MB-231 cell lines upon miR-21 inhibition, although the increase of EIF4A2 in MDA/LNA-antimiR-21 cells was relatively modest (Figure 4c). To determine whether miR-21 affects the expression of the potential endogenous target genes, we transfected MCF-7 and MDA-MB-231 cells with LNA-antimiR-21 or LNA-control. Western bolt showed that LNA-antimiR-21 led to up-regulation of endogenous ANKRD46 in both MCF-7 (P = 0.005) and MDA-MB-231 cells (P = 0.004), but no significant up-regulation of EIF4A2 protein (Figure 5c).
We further tested whether miR-21 could directly repress the identified mRNA targets through 3' UTR interactions (Figure 5a). Thus, the full-length 3' UTRs of the human genes ANKRD46 and EIF4A2 were cloned into the downstream of the luciferase gene (pMIR-REPORT), respectively. These vectors were then used to assess whether miR-21 could repress luciferase activity in 293T cells. ANKRD46 3' UTR showed a reduction to 54.8% of total luciferase reporter activity, in presence of miR-21, but EIF4A2 3' UTR did not display significant reduction of luciferase levels, compared with the miR-control (Figure 5b). These results suggest that miR-21 directly targets ANKRD46 in BC cells.

miR-21 and EIF4A2 proteins are inversely expressed in resected patient tumors in vivo

We examined ANKRD46 [NCBI: NP940683] and EIF4A2 [NCBI: NP001958] protein levels by IHC on TMAs constructed by the BC cases described in Materials and Methods. EIF4A2 was found in the cytoplasm, and ANKRD46 was seen in both the cytoplasm and nucleus (Figure 6a). ANKRD46 low expression was found in 47.5% (staining score < 4; median = 4); EIF4A2 low expression was found in 21.2% (staining score < 7; median = 7) of the 99 BC cases. Next, we investigated the negative regulation of endogenous EIF4A2 and ANKRD46 protein by endogenous miR-21 in vivo. In 99 successfully tested cases out of 113, endogenous miR-21 and EIF4A2 protein levels were inversely expressed in resected patient tumors (rs = -0.283, n = 99, P = 0.005, Spearman's correlation analysis). However, no significant association between miR-21 and ANKRD46 (P = 0.181, Spearman's correlation analysis) was observed.

Correlation of ANKRD46 and EIF4A2 expression with BC clinicopathological features and prognosis

Using Pearson's Chi-Square test, we found that, in BC tissues, IF4A2 protein correlated with CerbB2 status (P = 0.019), and ANKRD46 protein correlated with ER (P = 0.021) and PR (P = 0.001, Table 3). No significant correlation was observed between EIF4A2, ANKRD46, or other parameters. The five-year overall survival rate of the 99 BC patients was 59.60% (Figure 6b). The five-year survival rate in patients with high EIF4A2 protein level was 64.10% (n = 78), significantly higher than those with a low EIF4A2 protein level (42.86%, n = 21; P = 0.044, log-rank test; Figure 6b). The five-year survival rate in patients with high ANKRD46 protein was 53.85% (n = 52), which was not statistically different from those with low ANKRD46 protein (65.96%, n = 47; P = 0.146, log-rank test; Figure 6b).
Table 3
Correlation between target gene protein levels and clinicopathological parameters of 99 BC cases
Variable
EIF4A2
ANKRD46
 
Low (n = 21)
High (n = 78)
P*
Low (n = 47)
High (n = 52)
P*
Age (years)
      
   < 48
8
39
0.332
23
24
0.782
   ≥ 48
13
39
 
24
28
 
Pathologic grade
      
   I
2
20
0.115
14
10
0.221
   II, III
19
58
 
33
42
 
Clinical stage**
      
   I, II
15
61
0.514
41
37
0.051
   III
6
17
 
6
15
 
Lymph node status
      
   Metastasis
14
43
0.342
23
34
0.098
   No Metastasis
7
35
 
24
18
 
ER status
      
Negative
12
36
0.371
18
32
0.021
Positive
9
42
 
29
20
 
PR status
      
Negative
11
28
0.170
11
29
0.001
Positive
10
50
 
36
23
 
CerbB2 status
      
0,1+
17
41
0.019
29
18
0.832
2+,3+
4
37
 
31
21
 
*Two-sided Pearson Chi-Square Test; ** there were no stage IV patients because all the cases selected were surgical patients without neoadjuvant therapy to avoid the effect of the preoperative radiotherapy and/or chemotherapy on miRNAs; EIF4A2, eukaryotic translation initiation factor 4A2 protein; ANKRD46, ankyrin repeat domain 46 protein; ER, estrogen receptor; PR, progesterone receptor; CerbB2, v-erb-b2 erythroblastic leukaemia viral oncogene homolog 2 receptors.

Discussion

miR-21 is a key molecule in a wide range of cancers, and identifying its functional role in BC has direct clinical implications. We show here that knockdown of miR-21 suppresses cell growth and proliferation of MCF-7 cells in vitro, and suppresses MCF-7 xenograft growth. This result is consistent with the findings of Si et al. [9]. Interestingly, our study suggests that LNA-antimiR-21 also suppresses the growth and proliferation of MDA-MB-231 in vitro, in contrast to a recent report that found no effect of LNA-antimiR-21 on the growth of MDA-MB-231 in vitro or in vivo, although anti-miR-21-treated tumors were slightly smaller than control tumors [10]. One possibility could be differences in transfection efficiency, or miRNA ASO potency. Our results suggest that, as an oncomir, miR-21 also affects cell migration.
MCF-7 cells are hormone-sensitive and difficult to culture in vivo. Therefore, we used 17-estradiol to facilitate MCF-7 cells growth in nude mice, which is a common technique. Recently, estradiol was shown to down-regulate miR-21 expression in MCF-7 cells [32], although another study found estradiol-mediated up-regulation of miR-21 in MCF-7 cells [33]. In our study, the miR-21 knockdown effect was reduced from 5.72 log2-scale reduction before cell injection to 0.96 log2-scale reduction after mice sacrifice. Based on our results, we propose that estradiol reduced differences in miR-21 level between MCF/PNA-antimiR-21 and MCF/PNA-control cells, which would explain, in part, why differences in tumor weight between the two groups were not significance (P = 0.065). Nonetheless, treatment with anti-miR-21 reduced MCF-7 xenograft growth by approximately 68% for up to nine days. In vivo results suggested that the PNA-based miR-21 inhibitor had a subtle yet reproducible inhibitory effect on tumor growth. MCF-7 xenograft tumor sections demonstrated that miR-21 inhibition induced apoptosis of MCF-7 cells, confirming a previous study [9]. We also showed that miRNA inhibition can be achieved without transfection or electroporation of human BC cell lines, highlighting the potential of PNA for future therapeutic applications.
ANKRD46, also known as ankyrin repeat small protein (ANK-S), is a 228-amino acid single-pass membrane protein, of unclear function. For the first time, we identify miR-21 as an important regulator of ANKRD46 mRNA and protein levels in BC cells. Our data showed that miR-21 directly interacted with the ANKRD46 3' UTR and inhibited ANKRD46 expression, though there was no significant association between miR-21 and ANKRD46 in resected patient tumors. This discrepancy may be due to three reasons. First, the artificial luciferase reporter assays do not fully recapitulate miRNA regulation in vivo [34]; second, the expression of ANKRD46 protein in patient tumors reflected specific time-point feature, which maybe different to the in vitro subsequent increase of ANKRD46 protein at the time point of observation (the indicated hours after transfection); third, immunohistochemistry (IHC) is conventional a semi-quantitative method with relatively limited sensitivity. IHC may not be sensitive enough to observe the down-regulation of ANKRD46 by miR-21. Functional study of ANKRD46 is required in the future to determine weather ANKRD46 is a functional target of miR-21 in BC progression as demonstrated in this study.
EIF4A2, an ATP-dependent RNA helicase, is expressed widely in human tissues [35]. In this study, we found that miR-21 and EIF4A2 protein were inversely expressed in resected BC patient tumors. But we did not find miR-21 binding sites in the EIF4A2 3' UTR and found no significant increase of EIF4A2 protein upon miR-21 knockdown in MCF-7 and MDA-MB-231 cells, although EIF4A2 mRNA increased after anti-miR-21 transfection. Taken together, the data reported here suggest that there maybe unknown indirect interactions between miR-21 and EIF4A2 in BC progression. In adult mice, the expression of the two EIF4A isoforms is dependent on cell growth status, with EIF4A1 expressed in all tissues, while EIF4A2 is expressed only in tissues with a low rate of cell proliferation [36], indicating an anti-proliferative effect for EIF4A2. We for the first time revealed that low EIF4A2 expression correlated with low ERBB2 expression and poor survival of BC patients, suggesting its possible functional role in BC and urging further investigation.

Conclusions

We demonstrate that MCF-7 and MDA-MB-231 cells transfected with anti-miR-21 show growth inhibition in vitro and in vivo, as well as cell migration in vitro. In addition, ANKRD46 is newly identified as a direct target of miR-21 in BC. These results suggest that miR-21 inhibitory strategies using PNA-antimiR-21 may have potential for therapeutic applications in BC treatment.

Acknowledgements

This work was supported in part by the National High Technology Research and Development Program of China (863 Program) (No. 20060102A4002), a research grant from State Key Laboratory of Oncology in Southern China, 985-II Project.

Competing interests

Miss Li Xu Yan and Mrs Yan Zhang are doctoral degree candidates; Miss Qi Nian Wu and Mrs Yang Yang Li are master's degree candidates at SYSUCC. Mr Ding Zhun Liao, Mr Jing Hui Hou and Mrs Jia Fu are technicians at SYSUCC. Dr Mu-Sheng Zeng, Jing Ping Yun, Qiu Liang Wu and Yi Xin Zeng are Professors at SYSUCC. Dr Shao is a Professor and Vice Director at Department of Pathology of SYSUCC. The authors declare that they have not received any reimbursements, fees, funding, or salary, nor hold any stocks or shares in an organization that may in any way gain or lose financially from the publication of this manuscript, either now or in the future. The authors do not hold or are not currently applying for any patents relating to the content of the manuscript. The authors declare that they do not have any other financial or non-financial competing interests.

Authors' contributions

LXY, QNW and YZ carried out the substantial experiment work and drafted the manuscript. JYS designed and financially supported the study. QNW and DZL were responsible for patient samples and tissue array construction. JHH and JF supported the immunohistochemistry. YYL carried out the luciferase reporter assay. JPY, MSZ, QLW and YXZ helped carry out the research design and critically reviewed the final version of the manuscript for submission. All authors read and approved the final manuscript.
Anhänge
Literatur
1.
Zurück zum Zitat Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin. 2005, 55: 74-108. 10.3322/canjclin.55.2.74.CrossRefPubMed Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin. 2005, 55: 74-108. 10.3322/canjclin.55.2.74.CrossRefPubMed
2.
Zurück zum Zitat Ambros V: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003, 113: 673-676. 10.1016/S0092-8674(03)00428-8.CrossRefPubMed Ambros V: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003, 113: 673-676. 10.1016/S0092-8674(03)00428-8.CrossRefPubMed
3.
Zurück zum Zitat Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006, 6: 259-269. 10.1038/nrc1840.CrossRefPubMed Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006, 6: 259-269. 10.1038/nrc1840.CrossRefPubMed
4.
Zurück zum Zitat Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65: 6029-6033. 10.1158/0008-5472.CAN-05-0137.CrossRefPubMed Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65: 6029-6033. 10.1158/0008-5472.CAN-05-0137.CrossRefPubMed
5.
Zurück zum Zitat Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S, Castellano L, Magrelli A, Citarella F, Messina M, Maggio R, Peragine N, Santangelo S, Mauro FR, Landgraf P, Tuschl T, Weir DB, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Guarini A, Foa R, Macino G: Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood. 2007, 109: 4944-4951. 10.1182/blood-2006-12-062398.CrossRefPubMed Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S, Castellano L, Magrelli A, Citarella F, Messina M, Maggio R, Peragine N, Santangelo S, Mauro FR, Landgraf P, Tuschl T, Weir DB, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Guarini A, Foa R, Macino G: Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood. 2007, 109: 4944-4951. 10.1182/blood-2006-12-062398.CrossRefPubMed
6.
Zurück zum Zitat Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006, 9: 189-198. 10.1016/j.ccr.2006.01.025.CrossRefPubMed Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006, 9: 189-198. 10.1016/j.ccr.2006.01.025.CrossRefPubMed
7.
Zurück zum Zitat Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65: 7065-7070. 10.1158/0008-5472.CAN-05-1783.CrossRefPubMed Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65: 7065-7070. 10.1158/0008-5472.CAN-05-1783.CrossRefPubMed
8.
Zurück zum Zitat Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH: Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008, 283: 1026-1033. 10.1074/jbc.M707224200.CrossRefPubMed Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH: Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008, 283: 1026-1033. 10.1074/jbc.M707224200.CrossRefPubMed
9.
Zurück zum Zitat Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor growth. Oncogene. 2007, 26: 2799-2803. 10.1038/sj.onc.1210083.CrossRefPubMed Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor growth. Oncogene. 2007, 26: 2799-2803. 10.1038/sj.onc.1210083.CrossRefPubMed
10.
Zurück zum Zitat Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY: MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008, 18: 350-359. 10.1038/cr.2008.24.CrossRefPubMed Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY: MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008, 18: 350-359. 10.1038/cr.2008.24.CrossRefPubMed
11.
Zurück zum Zitat Oh SY, Ju Y, Park H: A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides. Mol Cells. 2009, 28: 341-345. 10.1007/s10059-009-0134-8.CrossRefPubMed Oh SY, Ju Y, Park H: A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides. Mol Cells. 2009, 28: 341-345. 10.1007/s10059-009-0134-8.CrossRefPubMed
12.
Zurück zum Zitat Pathology and Genetics of Tumours of the Breast and Female Genital Organs. Edited by: Tavassoli F, Devilee P. 2003, Lyon: IARC Press Pathology and Genetics of Tumours of the Breast and Female Genital Organs. Edited by: Tavassoli F, Devilee P. 2003, Lyon: IARC Press
13.
Zurück zum Zitat Singletary SE, Allred C, Ashley P, Bassett LW, Berry D, Bland KI, Borgen PI, Clark GM, Edge SB, Hayes DF, Hughes LL, Hutter RV, Morrow M, Page DL, Recht A, Theriault RL, Thor A, Weaver DL, Wieand HS, Greene FL: Staging system for breast cancer: revisions for the 6th edition of the AJCC Cancer Staging Manual. The Surgical Clinics of North America. 2003, 83: 803-819. 10.1016/S0039-6109(03)00034-3.CrossRefPubMed Singletary SE, Allred C, Ashley P, Bassett LW, Berry D, Bland KI, Borgen PI, Clark GM, Edge SB, Hayes DF, Hughes LL, Hutter RV, Morrow M, Page DL, Recht A, Theriault RL, Thor A, Weaver DL, Wieand HS, Greene FL: Staging system for breast cancer: revisions for the 6th edition of the AJCC Cancer Staging Manual. The Surgical Clinics of North America. 2003, 83: 803-819. 10.1016/S0039-6109(03)00034-3.CrossRefPubMed
14.
Zurück zum Zitat Obernosterer G, Martinez J, Alenius M: Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nature Protocols. 2007, 2: 1508-1514. 10.1038/nprot.2007.153.CrossRefPubMed Obernosterer G, Martinez J, Alenius M: Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nature Protocols. 2007, 2: 1508-1514. 10.1038/nprot.2007.153.CrossRefPubMed
15.
Zurück zum Zitat Lee SH, Kunz J, Lin SH, Yu-Lee LY: 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res. 2007, 67: 11045-11053. 10.1158/0008-5472.CAN-07-0986.CrossRefPubMed Lee SH, Kunz J, Lin SH, Yu-Lee LY: 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res. 2007, 67: 11045-11053. 10.1158/0008-5472.CAN-07-0986.CrossRefPubMed
16.
Zurück zum Zitat Wu L, Li Z, Zhang Y, Zhang P, Zhu X, Huang J, Ma T, Lu T, Song Q, Li Q, Guo Y, Tang J, Ma D, Chen KH, Qiu X: Adenovirus-expressed human hyperplasia suppressor gene induces apoptosis in cancer cells. Mol Cancer Ther. 2008, 7: 222-232. 10.1158/1535-7163.MCT-07-0382.CrossRefPubMed Wu L, Li Z, Zhang Y, Zhang P, Zhu X, Huang J, Ma T, Lu T, Song Q, Li Q, Guo Y, Tang J, Ma D, Chen KH, Qiu X: Adenovirus-expressed human hyperplasia suppressor gene induces apoptosis in cancer cells. Mol Cancer Ther. 2008, 7: 222-232. 10.1158/1535-7163.MCT-07-0382.CrossRefPubMed
17.
Zurück zum Zitat Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S, Fernandez AF, Carneiro F, Oliveira C, Ferreira B, Liu CG, Villanueva A, Capella G, Schwartz SJr, Shiekhattar R, Esteller M: A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009, 41: 365-370. 10.1038/ng.317.CrossRefPubMedPubMedCentral Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S, Fernandez AF, Carneiro F, Oliveira C, Ferreira B, Liu CG, Villanueva A, Capella G, Schwartz SJr, Shiekhattar R, Esteller M: A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009, 41: 365-370. 10.1038/ng.317.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR, Walker SJ, Zhang L, Hurban P, de Longueville F, Fuscoe JC, Tong W, Shi L, Wolfinger RD: Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol. 2006, 24: 1140-1150. 10.1038/nbt1242.CrossRefPubMed Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR, Walker SJ, Zhang L, Hurban P, de Longueville F, Fuscoe JC, Tong W, Shi L, Wolfinger RD: Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol. 2006, 24: 1140-1150. 10.1038/nbt1242.CrossRefPubMed
20.
Zurück zum Zitat Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008, 14: 2348-2360. 10.1261/rna.1034808.CrossRefPubMedPubMedCentral Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008, 14: 2348-2360. 10.1261/rna.1034808.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C, Ferrazzi E, Grazi GL, Croce CM, Bolondi L, Negrini M: Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 2007, 67: 6092-6099. 10.1158/0008-5472.CAN-06-4607.CrossRefPubMed Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C, Ferrazzi E, Grazi GL, Croce CM, Bolondi L, Negrini M: Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 2007, 67: 6092-6099. 10.1158/0008-5472.CAN-06-4607.CrossRefPubMed
22.
Zurück zum Zitat Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27: 91-105. 10.1016/j.molcel.2007.06.017.CrossRefPubMedPubMedCentral Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27: 91-105. 10.1016/j.molcel.2007.06.017.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36: D154-158. 10.1093/nar/gkm952.CrossRefPubMed Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36: D154-158. 10.1093/nar/gkm952.CrossRefPubMed
24.
Zurück zum Zitat Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PW, Wong YH, Chen YH, Chen GH, Huang HD: miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res. 2008, 36: D165-169. 10.1093/nar/gkm1012.CrossRefPubMed Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PW, Wong YH, Chen YH, Chen GH, Huang HD: miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res. 2008, 36: D165-169. 10.1093/nar/gkm1012.CrossRefPubMed
25.
Zurück zum Zitat Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet. 2005, 37: 495-500. 10.1038/ng1536.CrossRefPubMed Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet. 2005, 37: 495-500. 10.1038/ng1536.CrossRefPubMed
26.
27.
Zurück zum Zitat Song CH, Park SY, Eom KY, Kim JH, Kim SW, Kim JS, Kim IA: Potential prognostic value of heat-shock protein 90 in the presence of phosphatidylinositol-3-kinase overexpression or loss of PTEN, in invasive breast cancers. Breast Cancer Res. 2010, 12: R20-10.1186/bcr2557.CrossRefPubMedPubMedCentral Song CH, Park SY, Eom KY, Kim JH, Kim SW, Kim JS, Kim IA: Potential prognostic value of heat-shock protein 90 in the presence of phosphatidylinositol-3-kinase overexpression or loss of PTEN, in invasive breast cancers. Breast Cancer Res. 2010, 12: R20-10.1186/bcr2557.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Gamallo C, Palacios J, Suarez A, Pizarro A, Navarro P, Quintanilla M, Cano A: Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma. The American Journal of Pathology. 1993, 142: 987-993.PubMedPubMedCentral Gamallo C, Palacios J, Suarez A, Pizarro A, Navarro P, Quintanilla M, Cano A: Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma. The American Journal of Pathology. 1993, 142: 987-993.PubMedPubMedCentral
29.
Zurück zum Zitat Tuominen VJ, Ruotoistenmaki S, Viitanen A, Jumppanen M, Isola J: ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 2010, 12: R56-10.1186/bcr2615.CrossRefPubMedPubMedCentral Tuominen VJ, Ruotoistenmaki S, Viitanen A, Jumppanen M, Isola J: ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 2010, 12: R56-10.1186/bcr2615.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN: Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007, 67: 11612-11620. 10.1158/0008-5472.CAN-07-5019.CrossRefPubMed Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN: Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007, 67: 11612-11620. 10.1158/0008-5472.CAN-07-5019.CrossRefPubMed
31.
Zurück zum Zitat Matkovich SJ, Van Booven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, Dorn LE, Watson MA, Margulies KB, Dorn GW: Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009, 119: 1263-1271. 10.1161/CIRCULATIONAHA.108.813576.CrossRefPubMedPubMedCentral Matkovich SJ, Van Booven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, Dorn LE, Watson MA, Margulies KB, Dorn GW: Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009, 119: 1263-1271. 10.1161/CIRCULATIONAHA.108.813576.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM: Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res. 2009, 37: 2584-2595. 10.1093/nar/gkp117.CrossRefPubMedPubMedCentral Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM: Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res. 2009, 37: 2584-2595. 10.1093/nar/gkp117.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS, Brown M, Hammond S, Srour EF, Liu Y, Nakshatri H: Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res. 2009, 37: 4850-4861. 10.1093/nar/gkp500.CrossRefPubMedPubMedCentral Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS, Brown M, Hammond S, Srour EF, Liu Y, Nakshatri H: Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res. 2009, 37: 4850-4861. 10.1093/nar/gkp500.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Eulalio A, Huntzinger E, Izaurralde E: Getting to the root of miRNA-mediated gene silencing. Cell. 2008, 132: 9-14. 10.1016/j.cell.2007.12.024.CrossRefPubMed Eulalio A, Huntzinger E, Izaurralde E: Getting to the root of miRNA-mediated gene silencing. Cell. 2008, 132: 9-14. 10.1016/j.cell.2007.12.024.CrossRefPubMed
35.
Zurück zum Zitat Sudo K, Takahashi E, Nakamura Y: Isolation and mapping of the human EIF4A2 gene homologous to the murine protein synthesis initiation factor 4A-II gene Eif4a2. Cytogenet Cell Genet. 1995, 71: 385-388. 10.1159/000134145.CrossRefPubMed Sudo K, Takahashi E, Nakamura Y: Isolation and mapping of the human EIF4A2 gene homologous to the murine protein synthesis initiation factor 4A-II gene Eif4a2. Cytogenet Cell Genet. 1995, 71: 385-388. 10.1159/000134145.CrossRefPubMed
36.
Zurück zum Zitat Williams-Hill DM, Duncan RF, Nielsen PJ, Tahara SM: Differential expression of the murine eukaryotic translation initiation factor isogenes eIF4A(I) and eIF4A(II) is dependent upon cellular growth status. Arch Biochem Biophys. 1997, 338: 111-120. 10.1006/abbi.1996.9804.CrossRefPubMed Williams-Hill DM, Duncan RF, Nielsen PJ, Tahara SM: Differential expression of the murine eukaryotic translation initiation factor isogenes eIF4A(I) and eIF4A(II) is dependent upon cellular growth status. Arch Biochem Biophys. 1997, 338: 111-120. 10.1006/abbi.1996.9804.CrossRefPubMed
Metadaten
Titel
Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivotumor growth
verfasst von
Li Xu Yan
Qi Nian Wu
Yan Zhang
Yang Yang Li
Ding Zhun Liao
Jing Hui Hou
Jia Fu
Mu Sheng Zeng
Jing Ping Yun
Qiu Liang Wu
Yi Xin Zeng
Jian Yong Shao
Publikationsdatum
01.02.2011
Verlag
BioMed Central
Erschienen in
Breast Cancer Research / Ausgabe 1/2011
Elektronische ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr2803

Weitere Artikel der Ausgabe 1/2011

Breast Cancer Research 1/2011 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.