Skip to main content
Erschienen in: Monatsschrift Kinderheilkunde 5/2020

02.04.2020 | Magnetresonanztomografie | Leitthema

Kombinierte Positronenemissions-Magnetresonanztomographie (PET/MRT) bei Kindern und Jugendlichen

verfasst von: Prof. Dr. J. F. Schäfer, I. Tsiflikas, M. Esser, H. Dittmann, B. Bender, S. Gatidis

Erschienen in: Monatsschrift Kinderheilkunde | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die kombinierte Positronenemissions-Magnetresonanztomographie (PET/MRT) wurde erstmals 2010 klinisch angewendet. Sie ermöglicht die simultane Erfassung hochaufgelöster Anatomie und Morphologie mithilfe der MRT auf der einen Seite sowie spezifischer Informationen über funktionelle Gewebeeigenschaften, wie Vitalität und Differenzierung, mithilfe der PET, aber auch mithilfe spezieller MRT-Methoden auf der anderen Seite. Hierdurch kann die umfassende Beurteilung onkologischer Erkrankungen und auch nichtmaligner Krankheitsbilder erfolgen, die in dieser Weise mit keiner anderen Modalität möglich wäre. Die PET/MRT bildet damit eine Grundlage für eine personalisierte Therapie. Insbesondere aufgrund der im Vergleich zur Positronenemissions-Computertomographie (PET/CT) signifikant verringerten diagnostischen Strahlenexposition wurde die PET/MRT von Anfang an als Methode der Wahl für die pädiatrische Bildgebung angesehen. Eine Reduktion der Dosis über 90 % ist in der klinischen Praxis möglich. In dieser Übersichtsarbeit werden wesentliche Grundlagen der Methode sowie typische Indikationen im Kindes- und Jugendalter beschrieben.
Literatur
1.
Zurück zum Zitat Delso G et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922CrossRefPubMed Delso G et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922CrossRefPubMed
2.
Zurück zum Zitat Schafer JF et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273(1):220–231PubMedCrossRef Schafer JF et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273(1):220–231PubMedCrossRef
3.
Zurück zum Zitat Gatidis S et al (2016) Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-Fluorodeoxyglucose positron emission Tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-Fluorodeoxyglucose positron emission Tomography/computed Tomography. Invest Radiol 51(1):7–14PubMedCrossRef Gatidis S et al (2016) Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-Fluorodeoxyglucose positron emission Tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-Fluorodeoxyglucose positron emission Tomography/computed Tomography. Invest Radiol 51(1):7–14PubMedCrossRef
4.
Zurück zum Zitat Pfluger T et al (2012) Diagnostic value of combined (1)(8)F-FDG PET/MRI for staging and restaging in paediatric oncology. Eur J Nucl Med Mol Imaging 39(11):1745–1755PubMedCrossRef Pfluger T et al (2012) Diagnostic value of combined (1)(8)F-FDG PET/MRI for staging and restaging in paediatric oncology. Eur J Nucl Med Mol Imaging 39(11):1745–1755PubMedCrossRef
6.
Zurück zum Zitat Levin CS et al (2016) Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR system. IEEE Trans Med Imaging 35(8):1907–1914PubMedCrossRef Levin CS et al (2016) Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR system. IEEE Trans Med Imaging 35(8):1907–1914PubMedCrossRef
7.
Zurück zum Zitat Bezrukov I et al (2015) Quantitative evaluation of segmentation- and atlas-based attenuation correction for PET/MR on pediatric patients. J Nucl Med 56(7):1067–1074PubMedCrossRef Bezrukov I et al (2015) Quantitative evaluation of segmentation- and atlas-based attenuation correction for PET/MR on pediatric patients. J Nucl Med 56(7):1067–1074PubMedCrossRef
8.
Zurück zum Zitat Hofmann M et al (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(1):S93–S104PubMedCrossRef Hofmann M et al (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(1):S93–S104PubMedCrossRef
9.
Zurück zum Zitat Brendle CB et al (2013) Simultaneously acquired MR/PET images compared with sequential MR/PET and PET/CT: alignment quality. Radiology 268(1):190–199PubMedCrossRef Brendle CB et al (2013) Simultaneously acquired MR/PET images compared with sequential MR/PET and PET/CT: alignment quality. Radiology 268(1):190–199PubMedCrossRef
10.
Zurück zum Zitat Wurslin C et al (2013) Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med 54(3):464–471PubMedCrossRef Wurslin C et al (2013) Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med 54(3):464–471PubMedCrossRef
12.
Zurück zum Zitat Chawla SC et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40(5):681–686PubMedCrossRef Chawla SC et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40(5):681–686PubMedCrossRef
13.
Zurück zum Zitat Johnsen B et al (2017) Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005–2012. Pediatr Radiol 47(1):82–88PubMedCrossRef Johnsen B et al (2017) Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005–2012. Pediatr Radiol 47(1):82–88PubMedCrossRef
14.
Zurück zum Zitat Nievelstein RA et al (2012) Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol 22(9):1946–1954PubMedPubMedCentralCrossRef Nievelstein RA et al (2012) Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol 22(9):1946–1954PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Umutlu L et al (2019) Whole-body [18F]-FDG-PET/MRI for oncology: a consensus recommendation. Rofo 191(4):289–297PubMedCrossRef Umutlu L et al (2019) Whole-body [18F]-FDG-PET/MRI for oncology: a consensus recommendation. Rofo 191(4):289–297PubMedCrossRef
16.
Zurück zum Zitat Parysow O et al (2007) Low-dose oral propranolol could reduce brown adipose tissue F‑18 FDG uptake in patients undergoing PET scans. Clin Nucl Med 32(5):351–357PubMedCrossRef Parysow O et al (2007) Low-dose oral propranolol could reduce brown adipose tissue F‑18 FDG uptake in patients undergoing PET scans. Clin Nucl Med 32(5):351–357PubMedCrossRef
17.
Zurück zum Zitat Stauss J et al (2008) Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 35(8):1581–1588PubMedCrossRef Stauss J et al (2008) Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 35(8):1581–1588PubMedCrossRef
19.
Zurück zum Zitat Klenk C et al (2016) Progressing toward a cohesive pediatric 18F-FDG PET/MR protocol: is administration of gadolinium chelates necessary? J Nucl Med 57(1):70–77PubMedCrossRef Klenk C et al (2016) Progressing toward a cohesive pediatric 18F-FDG PET/MR protocol: is administration of gadolinium chelates necessary? J Nucl Med 57(1):70–77PubMedCrossRef
20.
Zurück zum Zitat Franzius C et al (2010) Procedure guidelines for whole-body 18F-FDG PET and PET/CT in children with malignant diseases. Nuklearmedizin 49(6):225–233 (quiz N60–1)PubMedCrossRef Franzius C et al (2010) Procedure guidelines for whole-body 18F-FDG PET and PET/CT in children with malignant diseases. Nuklearmedizin 49(6):225–233 (quiz N60–1)PubMedCrossRef
21.
Zurück zum Zitat Gatidis S et al (2016) Simultaneous whole-body PET-MRI in pediatric oncology : more than just reducing radiation? Radiologe 56(7):622–630PubMedCrossRef Gatidis S et al (2016) Simultaneous whole-body PET-MRI in pediatric oncology : more than just reducing radiation? Radiologe 56(7):622–630PubMedCrossRef
23.
Zurück zum Zitat Lee JW et al (2015) Prognostic value of pretreatment FDG PET in pediatric neuroblastoma. Eur J Radiol 84(12):2633–2639PubMedCrossRef Lee JW et al (2015) Prognostic value of pretreatment FDG PET in pediatric neuroblastoma. Eur J Radiol 84(12):2633–2639PubMedCrossRef
25.
Zurück zum Zitat Bar-Sever Z et al (2018) Guidelines on nuclear medicine imaging in neuroblastoma. Eur J Nucl Med Mol Imaging 45(11):2009–2024PubMedCrossRef Bar-Sever Z et al (2018) Guidelines on nuclear medicine imaging in neuroblastoma. Eur J Nucl Med Mol Imaging 45(11):2009–2024PubMedCrossRef
26.
Zurück zum Zitat Serin HI et al (2016) Diffusion weighted imaging in differentiating malignant and benign neuroblastic tumors. Jpn J Radiol 34(9):620–624PubMedCrossRef Serin HI et al (2016) Diffusion weighted imaging in differentiating malignant and benign neuroblastic tumors. Jpn J Radiol 34(9):620–624PubMedCrossRef
27.
Zurück zum Zitat Storz C et al (2019) Diagnostic value of whole-body MRI in Opsoclonus-myoclonus syndrome: a clinical case series (3 case reports). BMC Med Imaging 19(1):70PubMedPubMedCentralCrossRef Storz C et al (2019) Diagnostic value of whole-body MRI in Opsoclonus-myoclonus syndrome: a clinical case series (3 case reports). BMC Med Imaging 19(1):70PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Schaefer JF et al (2019) Whole-body MRI in children and adolescents - S1 guideline. Rofo 191(7):618–625PubMedCrossRef Schaefer JF et al (2019) Whole-body MRI in children and adolescents - S1 guideline. Rofo 191(7):618–625PubMedCrossRef
30.
Zurück zum Zitat Li C et al (2018) Prognostic value of metabolic indices and bone marrow uptake pattern on preoperative 18F-FDG PET/CT in pediatric patients with neuroblastoma. Eur J Nucl Med Mol Imaging 45(2):306–315PubMedCrossRef Li C et al (2018) Prognostic value of metabolic indices and bone marrow uptake pattern on preoperative 18F-FDG PET/CT in pediatric patients with neuroblastoma. Eur J Nucl Med Mol Imaging 45(2):306–315PubMedCrossRef
31.
Zurück zum Zitat Zhang H et al (2014) Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res 20(8):2182–2191PubMedPubMedCentralCrossRef Zhang H et al (2014) Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res 20(8):2182–2191PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Pandit-Taskar N et al (2018) Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med 59(1):147–153PubMedPubMedCentralCrossRef Pandit-Taskar N et al (2018) Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med 59(1):147–153PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Voss SD et al (2007) Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci U S A 104(44):17489–17493PubMedPubMedCentralCrossRef Voss SD et al (2007) Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci U S A 104(44):17489–17493PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Butch ER et al (2019) Positron emission tomography detects in vivo expression of disialoganglioside GD2 in mouse models of primary and metastatic osteosarcoma. Cancer Res 79(12):3112–3124PubMedCrossRef Butch ER et al (2019) Positron emission tomography detects in vivo expression of disialoganglioside GD2 in mouse models of primary and metastatic osteosarcoma. Cancer Res 79(12):3112–3124PubMedCrossRef
35.
Zurück zum Zitat Poeppel TD et al (2011) 68 Ga-DOTATOC versus 68 Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52(12):1864–1870PubMedCrossRef Poeppel TD et al (2011) 68 Ga-DOTATOC versus 68 Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52(12):1864–1870PubMedCrossRef
36.
Zurück zum Zitat Sawicki LM et al (2017) Evaluation of (68)Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with (68)Ga-DOTATOC PET/CT. Eur Radiol 27(10):4091–4099PubMedCrossRef Sawicki LM et al (2017) Evaluation of (68)Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with (68)Ga-DOTATOC PET/CT. Eur Radiol 27(10):4091–4099PubMedCrossRef
37.
Zurück zum Zitat Warbey VS et al (2009) [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type‑1. Eur J Nucl Med Mol Imaging 36(5):751–757PubMedCrossRef Warbey VS et al (2009) [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type‑1. Eur J Nucl Med Mol Imaging 36(5):751–757PubMedCrossRef
38.
39.
Zurück zum Zitat Reinert CP et al (2019) Comprehensive anatomical and functional imaging in patients with type I neurofibromatosis using simultaneous FDG-PET/MRI. Eur J Nucl Med Mol Imaging 46(3):776–787PubMedCrossRef Reinert CP et al (2019) Comprehensive anatomical and functional imaging in patients with type I neurofibromatosis using simultaneous FDG-PET/MRI. Eur J Nucl Med Mol Imaging 46(3):776–787PubMedCrossRef
40.
Zurück zum Zitat Wasa J et al (2010) MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol 194(6):1568–1574PubMedCrossRef Wasa J et al (2010) MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol 194(6):1568–1574PubMedCrossRef
41.
Zurück zum Zitat Kratz CP et al (2017) Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res 23(11):E38–E45PubMedCrossRef Kratz CP et al (2017) Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res 23(11):E38–E45PubMedCrossRef
42.
Zurück zum Zitat Bisdas S et al (2013) Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol 48(5):295–301PubMedCrossRef Bisdas S et al (2013) Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol 48(5):295–301PubMedCrossRef
43.
Zurück zum Zitat Vaidyanathan S et al (2015) FDG PET/CT in infection and inflammation—current and emerging clinical applications. Clin Radiol 70(7):787–800PubMedCrossRef Vaidyanathan S et al (2015) FDG PET/CT in infection and inflammation—current and emerging clinical applications. Clin Radiol 70(7):787–800PubMedCrossRef
44.
Zurück zum Zitat Chalian M et al (2011) MR enterography findings of inflammatory bowel disease in pediatric patients. AJR Am J Roentgenol 196(6):W810–W816PubMedCrossRef Chalian M et al (2011) MR enterography findings of inflammatory bowel disease in pediatric patients. AJR Am J Roentgenol 196(6):W810–W816PubMedCrossRef
45.
Zurück zum Zitat Narvaez JA et al (2010) MR imaging of early rheumatoid arthritis. Radiographics 30(1):143–163 (discussion 163–5)PubMedCrossRef Narvaez JA et al (2010) MR imaging of early rheumatoid arthritis. Radiographics 30(1):143–163 (discussion 163–5)PubMedCrossRef
46.
Zurück zum Zitat Gok B et al (2013) The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 55(5):541–550PubMedCrossRef Gok B et al (2013) The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 55(5):541–550PubMedCrossRef
47.
Zurück zum Zitat Rastogi S, Lee C, Salamon N (2008) Neuroimaging in pediatric epilepsy: a multimodality approach. Radiographics 28(4):1079–1095PubMedCrossRef Rastogi S, Lee C, Salamon N (2008) Neuroimaging in pediatric epilepsy: a multimodality approach. Radiographics 28(4):1079–1095PubMedCrossRef
Metadaten
Titel
Kombinierte Positronenemissions-Magnetresonanztomographie (PET/MRT) bei Kindern und Jugendlichen
verfasst von
Prof. Dr. J. F. Schäfer
I. Tsiflikas
M. Esser
H. Dittmann
B. Bender
S. Gatidis
Publikationsdatum
02.04.2020
Verlag
Springer Medizin
Erschienen in
Monatsschrift Kinderheilkunde / Ausgabe 5/2020
Print ISSN: 0026-9298
Elektronische ISSN: 1433-0474
DOI
https://doi.org/10.1007/s00112-020-00889-w

Weitere Artikel der Ausgabe 5/2020

Monatsschrift Kinderheilkunde 5/2020 Zur Ausgabe

Mitteilungen der ÖGKJ

Mitteilungen der ÖGKJ

Mitteilungen der DGKJ

Mitteilungen der DGKJ

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.