Skip to main content
Erschienen in: Die Ophthalmologie 8/2017

15.02.2017 | Keratoplastik | Übersichten

Korneale Zelltherapie – Eine Übersicht

verfasst von: Dr. M. Fuest, G. Hin-Fai Yam, G. Swee-Lim Peh, P. Walter, N. Plange, J. S. Mehta

Erschienen in: Die Ophthalmologie | Ausgabe 8/2017

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Kultivierung und Expansion von primären kornealen Zellen verzeichnet große Fortschritte in den letzten Jahren. Die Transplantation von kultivierten limbalen Epithelzellen ist bereits eine etablierte, erfolgreiche Therapie der okulären Oberfläche. Kultivierte korneale Endothelzellen werden derzeit in einer klinischen Studie in Japan getestet. Stromale Keratozyten können in vitro expandiert werden. Auch andere Stammzellgruppen können zu kornealen Zellen differenzieren und werden in Tiermodellen auf ihre Eignung überprüft. Bis zu ihrem klinischen Einsatz müssen allerdings noch Prozesse optimiert und vereinheitlicht, die Differenzierungseffizienz gesteigert und ethische Probleme adressiert werden. In diesem Übersichtsartikel fassen wir die aktuellen Entwicklungen im Bereich der kornealen Zelltherapie zusammen.
Literatur
1.
Zurück zum Zitat Delmonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–598PubMedCrossRef Delmonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–598PubMedCrossRef
2.
Zurück zum Zitat Nakamura T, Inatomi T, Sotozono C et al (2016) Ocular surface reconstruction using stem cell and tissue engineering. Prog Retin Eye Res 51:187–207PubMedCrossRef Nakamura T, Inatomi T, Sotozono C et al (2016) Ocular surface reconstruction using stem cell and tissue engineering. Prog Retin Eye Res 51:187–207PubMedCrossRef
3.
Zurück zum Zitat O’callaghan AR, Daniels JT (2011) Concise review: limbal epithelial stem cell therapy: controversies and challenges. Stem Cells 29:1923–1932PubMedCrossRef O’callaghan AR, Daniels JT (2011) Concise review: limbal epithelial stem cell therapy: controversies and challenges. Stem Cells 29:1923–1932PubMedCrossRef
5.
Zurück zum Zitat Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618PubMedCrossRef Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618PubMedCrossRef
6.
Zurück zum Zitat Bonanno JA (2012) Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 95:2–7PubMedCrossRef Bonanno JA (2012) Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 95:2–7PubMedCrossRef
7.
Zurück zum Zitat Yu WY, Sheridan C, Grierson I et al (2011) Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol 2011:412743PubMedPubMedCentralCrossRef Yu WY, Sheridan C, Grierson I et al (2011) Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol 2011:412743PubMedPubMedCentralCrossRef
8.
9.
Zurück zum Zitat De By TM (2003) Shortage in the face of plenty: improving the allocation of corneas for transplantation. Dev Ophthalmol 36:56–61PubMed De By TM (2003) Shortage in the face of plenty: improving the allocation of corneas for transplantation. Dev Ophthalmol 36:56–61PubMed
10.
Zurück zum Zitat Van Meter MD, Spears W, Sheth PH (2013) Potential adverse effects on the cornea donor pool in 2031. Int J Eye Bank 1:1–9 Van Meter MD, Spears W, Sheth PH (2013) Potential adverse effects on the cornea donor pool in 2031. Int J Eye Bank 1:1–9
11.
Zurück zum Zitat Reinshagen H, Boehringer D, Seitz B et al (2015) Activities of the tissue transplantation and biotechnology section of the German Ophthalmological Society: 4. Performance report 2013. Ophthalmologe 112:70–72PubMedCrossRef Reinshagen H, Boehringer D, Seitz B et al (2015) Activities of the tissue transplantation and biotechnology section of the German Ophthalmological Society: 4. Performance report 2013. Ophthalmologe 112:70–72PubMedCrossRef
12.
13.
Zurück zum Zitat Fuest M, Yam GH, Peh GS et al (2016) Advances in corneal cell therapy. Regen Med 11:601–615PubMedCrossRef Fuest M, Yam GH, Peh GS et al (2016) Advances in corneal cell therapy. Regen Med 11:601–615PubMedCrossRef
14.
Zurück zum Zitat Niederkorn JY (2005) Corneal immune privilege. Ocul Surf 3:S158PubMed Niederkorn JY (2005) Corneal immune privilege. Ocul Surf 3:S158PubMed
15.
Zurück zum Zitat Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359PubMedPubMedCentralCrossRef Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Goldring CE, Duffy PA, Benvenisty N et al (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell 8:618–628PubMedCrossRef Goldring CE, Duffy PA, Benvenisty N et al (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell 8:618–628PubMedCrossRef
17.
Zurück zum Zitat Hayashi R, Ishikawa Y, Ito M et al (2012) Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLOS ONE 7:e45435PubMedPubMedCentralCrossRef Hayashi R, Ishikawa Y, Ito M et al (2012) Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLOS ONE 7:e45435PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRef Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRef
19.
Zurück zum Zitat Rohaina CM, Then KY, Ng AM et al (2014) Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res 163:200–210PubMedCrossRef Rohaina CM, Then KY, Ng AM et al (2014) Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res 163:200–210PubMedCrossRef
20.
Zurück zum Zitat Tan X‑W, Setiawan M, Goh G et al (2014) Induction of human adipose derived stem cells into limbal epithelial cells for the reconstruction of corneal epithelium. Invest Ophthalmol Vis Sci 55:6041–6041CrossRef Tan X‑W, Setiawan M, Goh G et al (2014) Induction of human adipose derived stem cells into limbal epithelial cells for the reconstruction of corneal epithelium. Invest Ophthalmol Vis Sci 55:6041–6041CrossRef
21.
Zurück zum Zitat Liu H, Zhang J, Liu CY et al (2010) Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLOS ONE 5:e10707PubMedPubMedCentralCrossRef Liu H, Zhang J, Liu CY et al (2010) Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLOS ONE 5:e10707PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Liu H, Zhang J, Liu CY et al (2012) Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. J Cell Mol Med 16:1114–1124PubMedPubMedCentralCrossRef Liu H, Zhang J, Liu CY et al (2012) Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. J Cell Mol Med 16:1114–1124PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Dziasko MA, Daniels JT (2016) Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. Ocul Surf 14:322–330PubMedCrossRef Dziasko MA, Daniels JT (2016) Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. Ocul Surf 14:322–330PubMedCrossRef
24.
Zurück zum Zitat Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722 (discussion 722–703)PubMedCrossRef Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722 (discussion 722–703)PubMedCrossRef
25.
Zurück zum Zitat Miri A, Al-Deiri B, Dua HS (2010) Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology 117:1207–1213PubMedCrossRef Miri A, Al-Deiri B, Dua HS (2010) Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology 117:1207–1213PubMedCrossRef
26.
Zurück zum Zitat Santos MS, Gomes JA, Hofling-Lima AL et al (2005) Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol 140:223–230PubMedCrossRef Santos MS, Gomes JA, Hofling-Lima AL et al (2005) Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol 140:223–230PubMedCrossRef
27.
Zurück zum Zitat Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993PubMedCrossRef Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993PubMedCrossRef
28.
Zurück zum Zitat Basu S, Ali H, Sangwan VS (2012) Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol 153:643–650e2PubMedCrossRef Basu S, Ali H, Sangwan VS (2012) Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol 153:643–650e2PubMedCrossRef
29.
Zurück zum Zitat Rama P, Matuska S, Paganoni G et al (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155PubMedCrossRef Rama P, Matuska S, Paganoni G et al (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155PubMedCrossRef
30.
Zurück zum Zitat Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93PubMedCrossRef Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93PubMedCrossRef
31.
Zurück zum Zitat Sangwan VS, Basu S, Macneil S et al (2012) Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol 96:931–934PubMedCrossRef Sangwan VS, Basu S, Macneil S et al (2012) Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol 96:931–934PubMedCrossRef
32.
Zurück zum Zitat Amescua G, Atallah M, Nikpoor N et al (2014) Modified simple limbal epithelial transplantation using cryopreserved amniotic membrane for unilateral limbal stem cell deficiency. Am J Ophthalmol 158:469–475e2PubMedCrossRef Amescua G, Atallah M, Nikpoor N et al (2014) Modified simple limbal epithelial transplantation using cryopreserved amniotic membrane for unilateral limbal stem cell deficiency. Am J Ophthalmol 158:469–475e2PubMedCrossRef
33.
Zurück zum Zitat Fatima A, Iftekhar G, Sangwan VS et al (2008) Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium. Eye (Lond) 22:1161–1167CrossRef Fatima A, Iftekhar G, Sangwan VS et al (2008) Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium. Eye (Lond) 22:1161–1167CrossRef
34.
Zurück zum Zitat Ricardo JR, Cristovam PC, Filho PA et al (2013) Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency. Cornea 32:221–228PubMedCrossRef Ricardo JR, Cristovam PC, Filho PA et al (2013) Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency. Cornea 32:221–228PubMedCrossRef
35.
Zurück zum Zitat Sotozono C, Inatomi T, Nakamura T et al (2013) Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology 120:193–200PubMedCrossRef Sotozono C, Inatomi T, Nakamura T et al (2013) Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology 120:193–200PubMedCrossRef
36.
Zurück zum Zitat Chen HC, Yeh LK, Tsai YJ et al (2012) Expression of angiogenesis-related factors in human corneas after cultivated oral mucosal epithelial transplantation. Invest Ophthalmol Vis Sci 53:5615–5623PubMedCrossRef Chen HC, Yeh LK, Tsai YJ et al (2012) Expression of angiogenesis-related factors in human corneas after cultivated oral mucosal epithelial transplantation. Invest Ophthalmol Vis Sci 53:5615–5623PubMedCrossRef
37.
Zurück zum Zitat Kuckelkorn R, Schrage N, Redbrake C et al (1996) Autologous transplantation of nasal mucosa after severe chemical and thermal eye burns. Acta Ophthalmol Scand 74:442–448PubMedCrossRef Kuckelkorn R, Schrage N, Redbrake C et al (1996) Autologous transplantation of nasal mucosa after severe chemical and thermal eye burns. Acta Ophthalmol Scand 74:442–448PubMedCrossRef
38.
Zurück zum Zitat Pang K, Zhang K, Zhu J et al (2015) Differentiation of human embryonic stem cells to corneal epithelium and endothelium like cells for cornea replacement construction. Invest Ophthalmol Vis Sci 56:5831–5831CrossRef Pang K, Zhang K, Zhu J et al (2015) Differentiation of human embryonic stem cells to corneal epithelium and endothelium like cells for cornea replacement construction. Invest Ophthalmol Vis Sci 56:5831–5831CrossRef
39.
Zurück zum Zitat Monteiro BG, Serafim RC, Melo GB et al (2009) Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif 42:587–594PubMedCrossRef Monteiro BG, Serafim RC, Melo GB et al (2009) Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif 42:587–594PubMedCrossRef
40.
Zurück zum Zitat Gomes JA, Geraldes Monteiro B, Melo GB et al (2010) Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 51:1408–1414PubMedCrossRef Gomes JA, Geraldes Monteiro B, Melo GB et al (2010) Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 51:1408–1414PubMedCrossRef
42.
Zurück zum Zitat Meyer-Blazejewska EA, Call MK, Yamanaka O et al (2011) From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells 29:57–66PubMedPubMedCentralCrossRef Meyer-Blazejewska EA, Call MK, Yamanaka O et al (2011) From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells 29:57–66PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Cieslar-Pobuda A, Rafat M, Knoflach V et al (2016) Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget. doi:10.18632/oncotarget.9791 Cieslar-Pobuda A, Rafat M, Knoflach V et al (2016) Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget. doi:10.​18632/​oncotarget.​9791
44.
Zurück zum Zitat Mikhailova A, Ilmarinen T, Uusitalo H et al (2014) Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports 2:219–231PubMedPubMedCentralCrossRef Mikhailova A, Ilmarinen T, Uusitalo H et al (2014) Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports 2:219–231PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Hayashi R, Ishikawa Y, Sasamoto Y et al (2016) Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531:376–380PubMedCrossRef Hayashi R, Ishikawa Y, Sasamoto Y et al (2016) Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531:376–380PubMedCrossRef
46.
Zurück zum Zitat Feng Y, Borrelli M, Reichl S et al (2014) Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res 39:541–552PubMedCrossRef Feng Y, Borrelli M, Reichl S et al (2014) Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res 39:541–552PubMedCrossRef
47.
Zurück zum Zitat Johnston MC, Noden DM, Hazelton RD et al (1979) Origins of avian ocular and periocular tissues. Exp Eye Res 29:27–43PubMedCrossRef Johnston MC, Noden DM, Hazelton RD et al (1979) Origins of avian ocular and periocular tissues. Exp Eye Res 29:27–43PubMedCrossRef
48.
Zurück zum Zitat Petroll WM, Miron-Mendoza M (2015) Mechanical interactions and crosstalk between corneal keratocytes and the extracelular matrix. Exp Eye Res 133:49–57PubMedPubMedCentralCrossRef Petroll WM, Miron-Mendoza M (2015) Mechanical interactions and crosstalk between corneal keratocytes and the extracelular matrix. Exp Eye Res 133:49–57PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Funderburgh JL, Mann MM, Funderburgh ML (2003) Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J Biol Chem 278:45629–45637PubMedPubMedCentralCrossRef Funderburgh JL, Mann MM, Funderburgh ML (2003) Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J Biol Chem 278:45629–45637PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Yam GH, Yusoff NZ, Kadaba A et al (2015) Ex vivo propagation of human corneal stromal “activated keratocytes” for tissue engineering. Cell Transplant 24:1845–1861PubMedCrossRef Yam GH, Yusoff NZ, Kadaba A et al (2015) Ex vivo propagation of human corneal stromal “activated keratocytes” for tissue engineering. Cell Transplant 24:1845–1861PubMedCrossRef
51.
Zurück zum Zitat Du Y, Sundarraj N, Funderburgh ML et al (2007) Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci 48:5038–5045PubMedPubMedCentralCrossRef Du Y, Sundarraj N, Funderburgh ML et al (2007) Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci 48:5038–5045PubMedPubMedCentralCrossRef
52.
53.
Zurück zum Zitat Chan AA, Hertsenberg AJ, Funderburgh ML et al (2013) Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype. PLOS ONE 8:e56831PubMedPubMedCentralCrossRef Chan AA, Hertsenberg AJ, Funderburgh ML et al (2013) Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype. PLOS ONE 8:e56831PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Ornelas LA, Bykhovskaya Y, Sareen D et al (2014) Derivation and characterization of human induced pluripotent stem cells from stromal keratocytes of patients with keratoconus. Invest Ophthalmol Vis Sci 55:4201–4201 Ornelas LA, Bykhovskaya Y, Sareen D et al (2014) Derivation and characterization of human induced pluripotent stem cells from stromal keratocytes of patients with keratoconus. Invest Ophthalmol Vis Sci 55:4201–4201
55.
Zurück zum Zitat Naylor RW, Mcghee CN, Cowan CA et al (2016) Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLOS ONE 11:e0165464PubMedPubMedCentralCrossRef Naylor RW, Mcghee CN, Cowan CA et al (2016) Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLOS ONE 11:e0165464PubMedPubMedCentralCrossRef
56.
57.
Zurück zum Zitat Syed-Picard FN, Du Y, Lathrop KL et al (2015) Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med 4:276–285PubMedPubMedCentralCrossRef Syed-Picard FN, Du Y, Lathrop KL et al (2015) Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med 4:276–285PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Ma XY, Zhang Y, Zhu D et al (2015) Corneal stroma regeneration with acellular corneal stroma sheets and keratocytes in a rabbit model. PLOS ONE 10:e0132705PubMedPubMedCentralCrossRef Ma XY, Zhang Y, Zhu D et al (2015) Corneal stroma regeneration with acellular corneal stroma sheets and keratocytes in a rabbit model. PLOS ONE 10:e0132705PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Fagerholm P, Lagali NS, Merrett K et al (2010) A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med 2:46ra61PubMedCrossRef Fagerholm P, Lagali NS, Merrett K et al (2010) A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med 2:46ra61PubMedCrossRef
62.
Zurück zum Zitat Mcintosh AW, Salahuddin A, So S et al (2009) Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J Biomed Mater Res Part B Appl Biomater 90:818–831CrossRef Mcintosh AW, Salahuddin A, So S et al (2009) Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J Biomed Mater Res Part B Appl Biomater 90:818–831CrossRef
63.
Zurück zum Zitat Lai JY, Li YT, Cho CH et al (2012) Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomedicine 7:1101–1114PubMedPubMedCentralCrossRef Lai JY, Li YT, Cho CH et al (2012) Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomedicine 7:1101–1114PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Van Essen TH, Van Zijl L, Possemiers T et al (2016) Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity. Biomaterials 81:36–45PubMedCrossRef Van Essen TH, Van Zijl L, Possemiers T et al (2016) Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity. Biomaterials 81:36–45PubMedCrossRef
65.
Zurück zum Zitat Ma X, Bao H, Cui L et al (2013) The graft of autologous adipose-derived stem cells in the corneal stroma after mechanic damage. PLOS ONE 8:e76103PubMedPubMedCentralCrossRef Ma X, Bao H, Cui L et al (2013) The graft of autologous adipose-derived stem cells in the corneal stroma after mechanic damage. PLOS ONE 8:e76103PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Yam GH, Yusoff NZ, Goh TW et al (2016) Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep 6:26339PubMedPubMedCentralCrossRef Yam GH, Yusoff NZ, Goh TW et al (2016) Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep 6:26339PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Li J, Yu L, Deng Z et al (2011) Deep anterior lamellar keratoplasty using acellular corneal tissue for prevention of allograft rejection in high-risk corneas. Am J Ophthalmol 152:762–770e3PubMedCrossRef Li J, Yu L, Deng Z et al (2011) Deep anterior lamellar keratoplasty using acellular corneal tissue for prevention of allograft rejection in high-risk corneas. Am J Ophthalmol 152:762–770e3PubMedCrossRef
68.
Zurück zum Zitat Joyce NC, Harris DL, Mello DM (2002) Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci 43:2152–2159PubMed Joyce NC, Harris DL, Mello DM (2002) Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci 43:2152–2159PubMed
69.
Zurück zum Zitat Bourne WM, Nelson LR, Hodge DO (1997) Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci 38:779–782PubMed Bourne WM, Nelson LR, Hodge DO (1997) Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci 38:779–782PubMed
70.
Zurück zum Zitat Baum JL, Niedra R, Davis C et al (1979) Mass culture of human corneal endothelial cells. Arch Ophthalmol 97:1136–1140PubMedCrossRef Baum JL, Niedra R, Davis C et al (1979) Mass culture of human corneal endothelial cells. Arch Ophthalmol 97:1136–1140PubMedCrossRef
71.
Zurück zum Zitat Peh GS, Chng Z, Ang HP et al (2015) Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant 24:287–304PubMedCrossRef Peh GS, Chng Z, Ang HP et al (2015) Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant 24:287–304PubMedCrossRef
72.
Zurück zum Zitat Peh GS, Adnan K, George BL et al (2015) The effects of Rho-associated kinase inhibitor Y‑27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep 5:9167PubMedPubMedCentralCrossRef Peh GS, Adnan K, George BL et al (2015) The effects of Rho-associated kinase inhibitor Y‑27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep 5:9167PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Guo Y, Liu Q, Yang Y et al (2015) The effects of ROCK inhibitor Y‑27632 on injectable spheroids of bovine corneal endothelial cells. Cell Reprogram 17:77–87PubMedPubMedCentralCrossRef Guo Y, Liu Q, Yang Y et al (2015) The effects of ROCK inhibitor Y‑27632 on injectable spheroids of bovine corneal endothelial cells. Cell Reprogram 17:77–87PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Okumura N, Koizumi N, Ueno M et al (2011) The new therapeutic concept of using a rho kinase inhibitor for the treatment of corneal endothelial dysfunction. Cornea 30(Suppl 1):S54–S59PubMedCrossRef Okumura N, Koizumi N, Ueno M et al (2011) The new therapeutic concept of using a rho kinase inhibitor for the treatment of corneal endothelial dysfunction. Cornea 30(Suppl 1):S54–S59PubMedCrossRef
75.
Zurück zum Zitat Okumura N, Nakano S, Kay EP et al (2014) Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y‑27632 and Y‑39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci 55:318–329PubMedCrossRef Okumura N, Nakano S, Kay EP et al (2014) Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y‑27632 and Y‑39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci 55:318–329PubMedCrossRef
76.
77.
Zurück zum Zitat Zhu C, Joyce NC (2004) Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 45:1743–1751PubMedCrossRef Zhu C, Joyce NC (2004) Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 45:1743–1751PubMedCrossRef
78.
Zurück zum Zitat Matthaei M, Meng H, Meeker AK et al (2012) Endothelial Cdkn1a (p21) overexpression and accelerated senescence in a mouse model of Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 53:6718–6727PubMedPubMedCentralCrossRef Matthaei M, Meng H, Meeker AK et al (2012) Endothelial Cdkn1a (p21) overexpression and accelerated senescence in a mouse model of Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 53:6718–6727PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Okumura N, Kay EP, Nakahara M et al (2013) Inhibition of TGF-beta signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLOS ONE 8:e58000PubMedPubMedCentralCrossRef Okumura N, Kay EP, Nakahara M et al (2013) Inhibition of TGF-beta signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLOS ONE 8:e58000PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Teichmann J, Valtink M, Gramm S et al (2013) Human corneal endothelial cell sheets for transplantation: thermo-responsive cell culture carriers to meet cell-specific requirements. Acta Biomater 9:5031–5039PubMedCrossRef Teichmann J, Valtink M, Gramm S et al (2013) Human corneal endothelial cell sheets for transplantation: thermo-responsive cell culture carriers to meet cell-specific requirements. Acta Biomater 9:5031–5039PubMedCrossRef
81.
Zurück zum Zitat Mimura T, Shimomura N, Usui T et al (2003) Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp Eye Res 76:745–751PubMedCrossRef Mimura T, Shimomura N, Usui T et al (2003) Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp Eye Res 76:745–751PubMedCrossRef
82.
Zurück zum Zitat Koizumi N, Sakamoto Y, Okumura N et al (2008) Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea 27(Suppl 1):S48–S55PubMedCrossRef Koizumi N, Sakamoto Y, Okumura N et al (2008) Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea 27(Suppl 1):S48–S55PubMedCrossRef
83.
Zurück zum Zitat Bostan C, Theriault M, Forget KJ et al (2016) In vivo functionality of a corneal endothelium transplanted by cell-injection therapy in a feline model. Invest Ophthalmol Vis Sci 57:1620–1634PubMedPubMedCentralCrossRef Bostan C, Theriault M, Forget KJ et al (2016) In vivo functionality of a corneal endothelium transplanted by cell-injection therapy in a feline model. Invest Ophthalmol Vis Sci 57:1620–1634PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Bayyoud T, Thaler S, Hofmann J et al (2012) Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res 37:179–186PubMedCrossRef Bayyoud T, Thaler S, Hofmann J et al (2012) Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res 37:179–186PubMedCrossRef
85.
Zurück zum Zitat Yoshida J, Oshikata-Miyazaki A, Yokoo S et al (2014) Development and evaluation of porcine atelocollagen vitrigel membrane with a spherical curve and transplantable artificial corneal endothelial grafts. Invest Ophthalmol Vis Sci 55:4975–4981PubMedCrossRef Yoshida J, Oshikata-Miyazaki A, Yokoo S et al (2014) Development and evaluation of porcine atelocollagen vitrigel membrane with a spherical curve and transplantable artificial corneal endothelial grafts. Invest Ophthalmol Vis Sci 55:4975–4981PubMedCrossRef
86.
Zurück zum Zitat Fan T, Ma X, Zhao J et al (2013) Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis 19:400–407PubMedPubMedCentral Fan T, Ma X, Zhao J et al (2013) Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis 19:400–407PubMedPubMedCentral
87.
Zurück zum Zitat Yoeruek E, Bayyoud T, Maurus C et al (2012) Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmol 90:e125–e131PubMedCrossRef Yoeruek E, Bayyoud T, Maurus C et al (2012) Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmol 90:e125–e131PubMedCrossRef
88.
Zurück zum Zitat Ozcelik B, Brown KD, Blencowe A et al (2014) Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Adv Healthc Mater 3:1496–1507PubMedCrossRef Ozcelik B, Brown KD, Blencowe A et al (2014) Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Adv Healthc Mater 3:1496–1507PubMedCrossRef
89.
Zurück zum Zitat Young TH, Wang IJ, Hu FR et al (2014) Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes. Colloids Surf B Biointerfaces 116:403–410PubMedCrossRef Young TH, Wang IJ, Hu FR et al (2014) Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes. Colloids Surf B Biointerfaces 116:403–410PubMedCrossRef
90.
Zurück zum Zitat Kimoto M, Shima N, Yamaguchi M et al (2014) Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Invest Ophthalmol Vis Sci 55:2337–2343PubMedCrossRef Kimoto M, Shima N, Yamaguchi M et al (2014) Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Invest Ophthalmol Vis Sci 55:2337–2343PubMedCrossRef
91.
Zurück zum Zitat Salehi S, Grunert AK, Bahners T et al (2014) New nanofibrous scaffold for corneal tissue engineering. Klin Monbl Augenheilkd 231:626–630PubMedCrossRef Salehi S, Grunert AK, Bahners T et al (2014) New nanofibrous scaffold for corneal tissue engineering. Klin Monbl Augenheilkd 231:626–630PubMedCrossRef
92.
Zurück zum Zitat Palchesko RN, Lathrop KL, Funderburgh JL et al (2015) In vitro expansion of corneal endothelial cells on biomimetic substrates. Sci Rep 5:7955PubMedPubMedCentralCrossRef Palchesko RN, Lathrop KL, Funderburgh JL et al (2015) In vitro expansion of corneal endothelial cells on biomimetic substrates. Sci Rep 5:7955PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Muhammad R, Peh GS, Adnan K et al (2015) Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells. Acta Biomater 19:138–148PubMedCrossRef Muhammad R, Peh GS, Adnan K et al (2015) Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells. Acta Biomater 19:138–148PubMedCrossRef
94.
Zurück zum Zitat Gao X, Liu W, Han B et al (2008) Preparation and properties of a chitosan-based carrier of corneal endothelial cells. J Mater Sci Mater Med 19:3611–3619PubMedCrossRef Gao X, Liu W, Han B et al (2008) Preparation and properties of a chitosan-based carrier of corneal endothelial cells. J Mater Sci Mater Med 19:3611–3619PubMedCrossRef
95.
Zurück zum Zitat Raviola G (1982) Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci 22:45–56PubMed Raviola G (1982) Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci 22:45–56PubMed
96.
Zurück zum Zitat Hirata-Tominaga K, Nakamura T, Okumura N et al (2013) Corneal endothelial cell fate is maintained by LGR5 through the regulation of hedgehog and Wnt pathway. Stem Cells 31:1396–1407PubMedCrossRef Hirata-Tominaga K, Nakamura T, Okumura N et al (2013) Corneal endothelial cell fate is maintained by LGR5 through the regulation of hedgehog and Wnt pathway. Stem Cells 31:1396–1407PubMedCrossRef
97.
Zurück zum Zitat Dirisamer M, Yeh RY, Van Dijk K et al (2012) Recipient endothelium may relate to corneal clearance in descemet membrane endothelial transfer. Am J Ophthalmol 154:290–296e1PubMedCrossRef Dirisamer M, Yeh RY, Van Dijk K et al (2012) Recipient endothelium may relate to corneal clearance in descemet membrane endothelial transfer. Am J Ophthalmol 154:290–296e1PubMedCrossRef
98.
Zurück zum Zitat Bleyen I, Saelens IE, Van Dooren BT et al (2013) Spontaneous corneal clearing after Descemet’s stripping. Ophthalmology 120:215PubMedCrossRef Bleyen I, Saelens IE, Van Dooren BT et al (2013) Spontaneous corneal clearing after Descemet’s stripping. Ophthalmology 120:215PubMedCrossRef
99.
Zurück zum Zitat Koizumi N, Okumura N, Ueno M et al (2014) New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops. Cornea 33(Suppl 11):S25–S31PubMedCrossRef Koizumi N, Okumura N, Ueno M et al (2014) New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops. Cornea 33(Suppl 11):S25–S31PubMedCrossRef
100.
Zurück zum Zitat Zhang K, Pang K, Wu X (2014) Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev 23:1340–1354PubMedPubMedCentralCrossRef Zhang K, Pang K, Wu X (2014) Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev 23:1340–1354PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17:509–525PubMedCrossRef Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17:509–525PubMedCrossRef
103.
Zurück zum Zitat Hatou S, Yoshida S, Higa K et al (2013) Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/beta-catenin signaling. Stem Cells Dev 22:828–839PubMedCrossRef Hatou S, Yoshida S, Higa K et al (2013) Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/beta-catenin signaling. Stem Cells Dev 22:828–839PubMedCrossRef
104.
Zurück zum Zitat Inagaki E, Hatou S, Higa K et al (2015) Functional analysis of tissue engineered corneal endothelium from human skin derived precursors. Invest Ophthalmol Vis Sci 56:3450–3450 Inagaki E, Hatou S, Higa K et al (2015) Functional analysis of tissue engineered corneal endothelium from human skin derived precursors. Invest Ophthalmol Vis Sci 56:3450–3450
105.
Zurück zum Zitat Hatou S, Yoshida S, Higa K et al (2013) Corneal endothelial cells derived from monkey iPS cells: a short term evaluation. Invest Ophthalmol Vis Sci 54:1015–1015 Hatou S, Yoshida S, Higa K et al (2013) Corneal endothelial cells derived from monkey iPS cells: a short term evaluation. Invest Ophthalmol Vis Sci 54:1015–1015
Metadaten
Titel
Korneale Zelltherapie – Eine Übersicht
verfasst von
Dr. M. Fuest
G. Hin-Fai Yam
G. Swee-Lim Peh
P. Walter
N. Plange
J. S. Mehta
Publikationsdatum
15.02.2017
Verlag
Springer Medizin
Erschienen in
Die Ophthalmologie / Ausgabe 8/2017
Print ISSN: 2731-720X
Elektronische ISSN: 2731-7218
DOI
https://doi.org/10.1007/s00347-017-0454-6

Weitere Artikel der Ausgabe 8/2017

Die Ophthalmologie 8/2017 Zur Ausgabe

Update Ophthalmologie

Diabetische Retinopathie

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.