Skip to main content
Erschienen in:

13.12.2024 | Künstliche Intelligenz | CME Fortbildung

Einsatzmöglichkeiten und regulatorische Fragen

Künstliche Intelligenz in der Lungenfunktionsdiagnostik

verfasst von: Prof. Dr. med. Frederik Trinkmann

Erschienen in: Pneumo News | Ausgabe 6/2024

zum CME-Kurs Einloggen, um Zugang zu erhalten

Auszug

Wenn es heute in der Pneumologie um die Diagnose und Beurteilung der Lungenfunktion geht, ist die künstliche Intelligenz nicht mehr wegzudenken: Sie unterstützt den Arzt und die Ärztin bei der Interpretation und Befundung. Auf welchen Grundlagen basiert sie? Wie sieht die Datenlage aus - und welche Anwendungen sind künftig zu erwarten?
Literatur
1.
Zurück zum Zitat Das N, Topalovic M, Aerts JM, Janssens W. Area under the forced expiratory flow-volume loop in spirometry indicates severe hyperinflation in COPD patients. Int J Chron Obstruct Pulmon Dis 2019:14:409- Das N, Topalovic M, Aerts JM, Janssens W. Area under the forced expiratory flow-volume loop in spirometry indicates severe hyperinflation in COPD patients. Int J Chron Obstruct Pulmon Dis 2019:14:409-
2.
Zurück zum Zitat Topalovic M, Exadaktylos V, Peeters A Computer quantification of airway collapse on forced expiration to predict the presence of emphysema. Respir Res 2013: 14(1): 131. Topalovic M, Exadaktylos V, Peeters A Computer quantification of airway collapse on forced expiration to predict the presence of emphysema. Respir Res 2013: 14(1): 131.
3.
Zurück zum Zitat Trinkmann F, Watz H, Herth FJF. Why do we still cling to spirometry for assessing small airway function? Eur Respir J 2020:56(1):2001071 Trinkmann F, Watz H, Herth FJF. Why do we still cling to spirometry for assessing small airway function? Eur Respir J 2020:56(1):2001071
4.
Zurück zum Zitat Amaral JL, Lopes AJ, Faria AC, Melo PL. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease. Comput Methods Programs Biomed. 2015:118(2):186-97 Amaral JL, Lopes AJ, Faria AC, Melo PL. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease. Comput Methods Programs Biomed. 2015:118(2):186-97
5.
Zurück zum Zitat Amaral JL, Lopes AJ, Jansen JM et al. Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease. Comput Methods Programs Biomed. 2012:105(3):183-93 Amaral JL, Lopes AJ, Jansen JM et al. Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease. Comput Methods Programs Biomed. 2012:105(3):183-93
6.
Zurück zum Zitat Amaral JL, Lopes AJ, Jansen JM et al. An improved method of early diagnosis of smoking-induced respiratory changes using machine learning algorithms. Comput Methods Programs Biomed. 2013:112(3):441-54 Amaral JL, Lopes AJ, Jansen JM et al. An improved method of early diagnosis of smoking-induced respiratory changes using machine learning algorithms. Comput Methods Programs Biomed. 2013:112(3):441-54
7.
Zurück zum Zitat Trinkmann F, Abdo M, Kirsten A et al. Advanced lung function targeting small airway dysfunction (SAD) improves differentiation of mild COPD and smokers at risk from healthy controls - CAPTO-COPD. Eur Respir J. 2022;60(suppl 66):1400 Trinkmann F, Abdo M, Kirsten A et al. Advanced lung function targeting small airway dysfunction (SAD) improves differentiation of mild COPD and smokers at risk from healthy controls - CAPTO-COPD. Eur Respir J. 2022;60(suppl 66):1400
8.
Zurück zum Zitat Trinkmann F, Gawlitza J, Schäfer J et al. Novel lung function tests can improve phenotyping and differential therapy in COPD. Eur Respir J. 2019;54(suppl 63):PA3379 Trinkmann F, Gawlitza J, Schäfer J et al. Novel lung function tests can improve phenotyping and differential therapy in COPD. Eur Respir J. 2019;54(suppl 63):PA3379
9.
Zurück zum Zitat Topalovic M, Das N, Burgel PR et al. Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. Eur Respir J. 2019;53(4):1801660 Topalovic M, Das N, Burgel PR et al. Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. Eur Respir J. 2019;53(4):1801660
10.
Zurück zum Zitat Das N, Happaerts S, Gyselinck I et al. Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation. 2023;61(5):2201720 Das N, Happaerts S, Gyselinck I et al. Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation. 2023;61(5):2201720
11.
Zurück zum Zitat Das N, Verstraete K, Stanojevic S et al. Deep-learning algorithm helps to standardise ATS/ERS spirometric acceptability and usability criteria. Eur Respir J. 2020;56(6):2000603 Das N, Verstraete K, Stanojevic S et al. Deep-learning algorithm helps to standardise ATS/ERS spirometric acceptability and usability criteria. Eur Respir J. 2020;56(6):2000603
12.
Zurück zum Zitat Warnking RP, Scheer J, Becker F et al. Designing interactive visualizations for analyzing chronic lung diseases in a user-centered approach. J Am Med Inform Assoc. 2024:31(11):2486-95 Warnking RP, Scheer J, Becker F et al. Designing interactive visualizations for analyzing chronic lung diseases in a user-centered approach. J Am Med Inform Assoc. 2024:31(11):2486-95
13.
Zurück zum Zitat Gladden LB, Yates JW, Stremel RW, Stamford BA. Gas exchange and lactate anaerobic thresholds: inter- and intraevaluator agreement. J Appl Physiol (1985). 1985;58(6):2082-9 Gladden LB, Yates JW, Stremel RW, Stamford BA. Gas exchange and lactate anaerobic thresholds: inter- and intraevaluator agreement. J Appl Physiol (1985). 1985;58(6):2082-9
14.
Zurück zum Zitat Ekkekakis P, Lind E, Hall EE, Petruzzello SJ. Do regression-based computer algorithms for determining the ventilatory threshold agree? J Sports Sci. 2008:26(9):967-76 Ekkekakis P, Lind E, Hall EE, Petruzzello SJ. Do regression-based computer algorithms for determining the ventilatory threshold agree? J Sports Sci. 2008:26(9):967-76
15.
Zurück zum Zitat Zignoli A. Machine Learning Models for the Automatic Detection of Exercise Thresholds in Cardiopulmonary Exercising Tests: From Regression to Generation to Explanation. Sensors (Basel). 2023;23(2):826 Zignoli A. Machine Learning Models for the Automatic Detection of Exercise Thresholds in Cardiopulmonary Exercising Tests: From Regression to Generation to Explanation. Sensors (Basel). 2023;23(2):826
16.
Zurück zum Zitat Inbar O, Inbar O, Reuveny R et al. A Machine Learning Approach to the Interpretation of Cardiopulmonary Exercise Tests: Development and Validation. Pulm Med. 2021;2021:5516248 Inbar O, Inbar O, Reuveny R et al. A Machine Learning Approach to the Interpretation of Cardiopulmonary Exercise Tests: Development and Validation. Pulm Med. 2021;2021:5516248
17.
Zurück zum Zitat Sharma Y, Coronato N, Brown DE. Encoding Cardiopulmonary Exercise Testing Time Series as Images for Classification using Convolutional Neural Network. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:1611-4 Sharma Y, Coronato N, Brown DE. Encoding Cardiopulmonary Exercise Testing Time Series as Images for Classification using Convolutional Neural Network. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:1611-4
18.
Zurück zum Zitat Gawlitza J, Sturm T, Spohrer K et al. Predicting Pulmonary Function Testing from Quantified Computed Tomography Using Machine Learning Algorithms in Patients with COPD. Diagnostics (Basel). 2019;9(1):33 Gawlitza J, Sturm T, Spohrer K et al. Predicting Pulmonary Function Testing from Quantified Computed Tomography Using Machine Learning Algorithms in Patients with COPD. Diagnostics (Basel). 2019;9(1):33
19.
Zurück zum Zitat Stolz D, Mkorombindo T, Schumann DM et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet. 2022;400(10356):921-72 Stolz D, Mkorombindo T, Schumann DM et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet. 2022;400(10356):921-72
Metadaten
Titel
Einsatzmöglichkeiten und regulatorische Fragen
Künstliche Intelligenz in der Lungenfunktionsdiagnostik
verfasst von
Prof. Dr. med. Frederik Trinkmann
Publikationsdatum
13.12.2024
Verlag
Springer Medizin
Erschienen in
Pneumo News / Ausgabe 6/2024
Print ISSN: 1865-5467
Elektronische ISSN: 2199-3866
DOI
https://doi.org/10.1007/s15033-024-4107-6