Skip to main content
Erschienen in: Endocrine 1/2018

27.04.2018 | Research Letter

Lactate induces expression and secretion of fibroblast growth factor-21 by muscle cells

verfasst von: Joan Villarroya, Laura Campderros, Francesc Ribas-Aulinas, Audrey Carrière, Louis Casteilla, Marta Giralt, Francesc Villarroya

Erschienen in: Endocrine | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Excerpt

Fibroblast growth factor-21 (FGF21) is a hormonal factor involved in controlling glucose homeostasis and energy metabolism. Analogs of FGF21 are currently under investigation for potential use in metabolic diseases such as diabetes, dyslipidemia, and obesity [1]. The liver is the main site of FGF21 expression and release into circulation. However, high levels of FGF21 have been found in patients with mitochondrial diseases, particularly neuromuscular diseases caused by primary mitochondrial DNA mutations; thus, FGF21 has been proposed as a potential biomarker of these diseases and is suggested to be responsible for some of the systemic alterations in patients [2, 3]. Although the source of elevated FGF21 in patients with mitochondrial diseases that manifest in muscle is not fully known, mitochondrial DNA mutations or experimental mitochondrial perturbations in muscle lead to enhanced expression and release of FGF21 by skeletal muscle [4, 5], a tissue not considered to be a substantial source of FGF21 in non-pathological conditions. In vitro studies have demonstrated that FGF21 expression and release by muscle cells are enhanced by mitochondrial stress, through a “mitochondrial retrograde signaling” induced by reactive oxygen species arising due to mitochondrial dysfunction [6]. Serum FGF21 levels appear to have similar specificity, but higher sensitivity, as a biomarker of mitochondrial diseases, than lactate, a classical biomarker of mitochondrial disorders that manifest in muscle [3]. Lactate originates through anaerobic metabolism of glucose in muscle; therefore, its production is enhanced when mitochondrial oxidative function is impaired. Lactate was recently reported to induce FGF21 expression and release in adipose tissue in experimental rodent models [7]. Here, we investigated whether FGF21 is regulated by lactate in skeletal muscle cells and is, therefore, sensitive to the increased lactate levels that occur in mitochondrial diseases. …
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat M. Giralt, A. Gavaldà-Navarro, F. Villarroya, Fibroblast growth factor-21, energy balance and obesity. Mol. Cell. Endocrinol. 418(Pt 1), 66–73 (2015)CrossRefPubMed M. Giralt, A. Gavaldà-Navarro, F. Villarroya, Fibroblast growth factor-21, energy balance and obesity. Mol. Cell. Endocrinol. 418(Pt 1), 66–73 (2015)CrossRefPubMed
2.
Zurück zum Zitat A. Suomalainen, J.M. Elo, K.H. Pietiläinen, A.H. Hakonen, K. Sevastianova, M. Korpela, P. Isohanni, S.K. Marjavaara, T. Tyni, S. Kiuru-Enari, H. Pihko, N. Darin, K. Õunap, L.A. Kluijtmans, A. Paetau, J. Buzkova, L.A. Bindoff, J. Annunen-Rasila, J. Uusimaa, A. Rissanen, H. Yki-Järvinen, M. Hirano, M. Tulinius, J. Smeitink, H. Tyynismaa, FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10(9), 806–818 (2011)CrossRefPubMed A. Suomalainen, J.M. Elo, K.H. Pietiläinen, A.H. Hakonen, K. Sevastianova, M. Korpela, P. Isohanni, S.K. Marjavaara, T. Tyni, S. Kiuru-Enari, H. Pihko, N. Darin, K. Õunap, L.A. Kluijtmans, A. Paetau, J. Buzkova, L.A. Bindoff, J. Annunen-Rasila, J. Uusimaa, A. Rissanen, H. Yki-Järvinen, M. Hirano, M. Tulinius, J. Smeitink, H. Tyynismaa, FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10(9), 806–818 (2011)CrossRefPubMed
3.
Zurück zum Zitat A. Suomalainen, Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders. Expert. Opin. Med. Diagn. 7(4), 313–317 (2011)CrossRef A. Suomalainen, Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders. Expert. Opin. Med. Diagn. 7(4), 313–317 (2011)CrossRef
4.
Zurück zum Zitat D.R. Crooks, T.G. Natarajan, S.Y. Jeong, C. Chen, S.Y. Park, H. Huang, Elevated FGF21 secretion, PGC-1alpha and ketogenic enzyme expression are hallmarks of iron-sulfur cluster depletion in human skeletal muscle. Hum. Mol. Genet. 23(1), 24–39 (2014)CrossRefPubMed D.R. Crooks, T.G. Natarajan, S.Y. Jeong, C. Chen, S.Y. Park, H. Huang, Elevated FGF21 secretion, PGC-1alpha and ketogenic enzyme expression are hallmarks of iron-sulfur cluster depletion in human skeletal muscle. Hum. Mol. Genet. 23(1), 24–39 (2014)CrossRefPubMed
5.
Zurück zum Zitat S. Keipert, M. Ost, K. Johann, F. Imber, M. Jastroch, E.M. van Schothorst, J. Keijer, S. Klaus, Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am. J. Physiol. Endocrinol. Metab. 306(5), E469–E482 (2014)CrossRefPubMed S. Keipert, M. Ost, K. Johann, F. Imber, M. Jastroch, E.M. van Schothorst, J. Keijer, S. Klaus, Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am. J. Physiol. Endocrinol. Metab. 306(5), E469–E482 (2014)CrossRefPubMed
6.
Zurück zum Zitat F. Ribas, J. Villarroya, E. Hondares, M. Giralt, F. Villarroya, FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signaling. Biochem. J. 463(2), 191–199 (2014)CrossRefPubMed F. Ribas, J. Villarroya, E. Hondares, M. Giralt, F. Villarroya, FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signaling. Biochem. J. 463(2), 191–199 (2014)CrossRefPubMed
7.
Zurück zum Zitat Y. Jeanson, F. Ribas, A. Galinier, E. Arnaud, M. Ducos, M. André, V. Chenouard, F. Villarroya, L. Casteilla, A. Carrière, Lactate induces FGF21 expression in adipocytes through a p38-MAPK pathway. Biochem. J. 473(6), 685–692 (2016)CrossRefPubMed Y. Jeanson, F. Ribas, A. Galinier, E. Arnaud, M. Ducos, M. André, V. Chenouard, F. Villarroya, L. Casteilla, A. Carrière, Lactate induces FGF21 expression in adipocytes through a p38-MAPK pathway. Biochem. J. 473(6), 685–692 (2016)CrossRefPubMed
8.
Zurück zum Zitat C.H. Zhu, V. Mouly, R.N. Cooper, K. Mamchaoui, A. Bigot, J.W. Shay, J.P. Di Santo, G.S. Butler-Browne, W.E. Wright, Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6(4), 515–523 (2007)CrossRefPubMed C.H. Zhu, V. Mouly, R.N. Cooper, K. Mamchaoui, A. Bigot, J.W. Shay, J.P. Di Santo, G.S. Butler-Browne, W.E. Wright, Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6(4), 515–523 (2007)CrossRefPubMed
9.
Zurück zum Zitat J.E. Manning Fox, D. Meredith, A.P. Halestrap, Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J. Physiol. 529(Pt 2), 285–293 (2000)PubMedPubMedCentral J.E. Manning Fox, D. Meredith, A.P. Halestrap, Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J. Physiol. 529(Pt 2), 285–293 (2000)PubMedPubMedCentral
10.
Zurück zum Zitat S. Parikh, A. Goldstein, M.K. Koenig, F. Scaglia, G.M. Enns, R. Saneto, I. Anselm, B.H. Cohen, M.J. Falk, C. Greene, A.L. Gropman, R. Haas, M. Hirano, P. Morgan, K. Sims, M. Tarnopolsky, J.L. Van Hove, L. Wolfe, S. DiMauro, Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet. Med. 17(9), 689–701 (2015)CrossRefPubMed S. Parikh, A. Goldstein, M.K. Koenig, F. Scaglia, G.M. Enns, R. Saneto, I. Anselm, B.H. Cohen, M.J. Falk, C. Greene, A.L. Gropman, R. Haas, M. Hirano, P. Morgan, K. Sims, M. Tarnopolsky, J.L. Van Hove, L. Wolfe, S. DiMauro, Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet. Med. 17(9), 689–701 (2015)CrossRefPubMed
11.
Zurück zum Zitat A. Morovat, G. Weerasinghe, V. Nesbitt, M. Hofer, T. Agnew, G. Quaghebeur, K. Sergeant, C. Fratter, N. Guha, M. Mirzazadeh, J. Poulton, Use of FGF-21 as a biomarker of mitochondrial disease in clinical practice. J. Clin. Med. 6(8), E80 (2017)CrossRefPubMed A. Morovat, G. Weerasinghe, V. Nesbitt, M. Hofer, T. Agnew, G. Quaghebeur, K. Sergeant, C. Fratter, N. Guha, M. Mirzazadeh, J. Poulton, Use of FGF-21 as a biomarker of mitochondrial disease in clinical practice. J. Clin. Med. 6(8), E80 (2017)CrossRefPubMed
12.
Zurück zum Zitat R. Montero, D. Yubero, J. Villarroya, D. Henares, C. Jou, M.A. Rodríguez, F. Ramos, A. Nascimento, Cl Ortez, J. Campistol, B. Perez-Dueñas, M. O’Callaghan, M. Pineda, A. Garcia-Cazorla, J.C. Oferil, J. Montoya, E. Ruiz-Pesini, S. Emperador, M. Meznaric, L. Campderros, S.G. Kalko, F. Villarroya, R. Artuch, C. Jimenez-Mallebrera, GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS ONE 11(2), e0148709 (2016)CrossRefPubMedPubMedCentral R. Montero, D. Yubero, J. Villarroya, D. Henares, C. Jou, M.A. Rodríguez, F. Ramos, A. Nascimento, Cl Ortez, J. Campistol, B. Perez-Dueñas, M. O’Callaghan, M. Pineda, A. Garcia-Cazorla, J.C. Oferil, J. Montoya, E. Ruiz-Pesini, S. Emperador, M. Meznaric, L. Campderros, S.G. Kalko, F. Villarroya, R. Artuch, C. Jimenez-Mallebrera, GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS ONE 11(2), e0148709 (2016)CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat M. Ost, V. Coleman, J. Kasch, S. Klaus, Regulation of myokine expression: Role of exercise and cellular stress. Free Radic. Biol. Med. 98, 78–89 (2016)CrossRefPubMed M. Ost, V. Coleman, J. Kasch, S. Klaus, Regulation of myokine expression: Role of exercise and cellular stress. Free Radic. Biol. Med. 98, 78–89 (2016)CrossRefPubMed
14.
Zurück zum Zitat E. Blohm, J. Lai, M. Neavyn, Drug-induced hyperlactatemia. Clin. Toxicol. (Phila.). 55(8), 869–878 (2017)CrossRefPubMed E. Blohm, J. Lai, M. Neavyn, Drug-induced hyperlactatemia. Clin. Toxicol. (Phila.). 55(8), 869–878 (2017)CrossRefPubMed
15.
Zurück zum Zitat P. Domingo, J.M. Gallego-Escuredo, J.C. Domingo, MdelM. Gutiérrez, M.G. Mateo, I. Fernández, F. Vidal, M. Giralt, F. Villarroya, Serum FGF21 levels are elevated in association with lipodystrophy, insulin resistance and biomarkers of liver injury in HIV-1-infected patients. AIDS 24(17), 2629–2637 (2010)CrossRefPubMed P. Domingo, J.M. Gallego-Escuredo, J.C. Domingo, MdelM. Gutiérrez, M.G. Mateo, I. Fernández, F. Vidal, M. Giralt, F. Villarroya, Serum FGF21 levels are elevated in association with lipodystrophy, insulin resistance and biomarkers of liver injury in HIV-1-infected patients. AIDS 24(17), 2629–2637 (2010)CrossRefPubMed
Metadaten
Titel
Lactate induces expression and secretion of fibroblast growth factor-21 by muscle cells
verfasst von
Joan Villarroya
Laura Campderros
Francesc Ribas-Aulinas
Audrey Carrière
Louis Casteilla
Marta Giralt
Francesc Villarroya
Publikationsdatum
27.04.2018
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 1/2018
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-018-1612-6

Weitere Artikel der Ausgabe 1/2018

Endocrine 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.