Skip to main content
Erschienen in: Angiogenesis 4/2012

01.12.2012 | Original Paper

Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice

verfasst von: Paolo E. Porporato, Valéry L. Payen, Christophe J. De Saedeleer, Véronique Préat, Jean-Paul Thissen, Olivier Feron, Pierre Sonveaux

Erschienen in: Angiogenesis | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Wounds notoriously accumulate lactate as a consequence of both anaerobic and aerobic glycolysis following microcirculation disruption, immune activation, and increased cell proliferation. Several pieces of evidence suggest that lactate actively participates in the healing process through the activation of several molecular pathways that collectively promote angiogenesis. Lactate indeed stimulates endothelial cell migration and tube formation in vitro, as well as the recruitment of circulating vascular progenitor cells and vascular morphogenesis in vivo. In this study, we examined whether the pro-angiogenic potential of lactate may be exploited therapeutically to accelerate wound healing. We show that lactate delivered from a Matrigel matrix improves reperfusion and opposes muscular atrophy in ischemic hindlimb wounds in mice. Both responses involve lactate-induced reparative angiogenesis. Using microdialysis and enzymatic measurements, we found that, contrary to poly-L-lactide (PLA), a subcutaneous implant of poly-D,L-lactide-co-glycolide (PLGA) allows sustained local and systemic lactate release. PLGA promoted angiogenesis and accelerated the closure of excisional skin wounds in different mouse strains. This polymer is FDA-approved for other applications, emphasizing the possibility of exploiting PLGA therapeutically to improve wound healing.
Literatur
1.
Zurück zum Zitat Trabold O, Wagner S et al (2003) Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 11:504–509PubMedCrossRef Trabold O, Wagner S et al (2003) Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 11:504–509PubMedCrossRef
2.
Zurück zum Zitat Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299PubMedCrossRef Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299PubMedCrossRef
3.
Zurück zum Zitat Halestrap AP, Meredith D (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447:619–628PubMedCrossRef Halestrap AP, Meredith D (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447:619–628PubMedCrossRef
4.
Zurück zum Zitat Schreml S, Szeimies RM et al (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163:257–268PubMedCrossRef Schreml S, Szeimies RM et al (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163:257–268PubMedCrossRef
5.
Zurück zum Zitat Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRef Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRef
6.
Zurück zum Zitat Hunt TK, Conolly WB, Aronson SB, Goldstein P (1978) Anaerobic metabolism and wound healing: an hypothesis for the initiation and cessation of collagen synthesis in wounds. Am J Surg 135:328–332PubMedCrossRef Hunt TK, Conolly WB, Aronson SB, Goldstein P (1978) Anaerobic metabolism and wound healing: an hypothesis for the initiation and cessation of collagen synthesis in wounds. Am J Surg 135:328–332PubMedCrossRef
7.
Zurück zum Zitat Ghani QP, Wagner S, Hussain MZ (2003) Role of ADP-ribosylation in wound repair. The contributions of Thomas K. Hunt, MD. Wound Repair Regen 11:439–444PubMedCrossRef Ghani QP, Wagner S, Hussain MZ (2003) Role of ADP-ribosylation in wound repair. The contributions of Thomas K. Hunt, MD. Wound Repair Regen 11:439–444PubMedCrossRef
8.
Zurück zum Zitat Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30PubMedCrossRef Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30PubMedCrossRef
9.
Zurück zum Zitat Green H, Goldberg B (1964) Collagen and cell protein synthesis by an established mammalian fibroblast line. Nature 204:347–349PubMedCrossRef Green H, Goldberg B (1964) Collagen and cell protein synthesis by an established mammalian fibroblast line. Nature 204:347–349PubMedCrossRef
10.
Zurück zum Zitat Hussain MZ, Ghani QP, Hunt TK (1989) Inhibition of prolyl hydroxylase by poly(ADP-ribose) and phosphoribosyl-AMP. Possible role of ADP-ribosylation in intracellular prolyl hydroxylase regulation. J Biol Chem 264:7850–7855PubMed Hussain MZ, Ghani QP, Hunt TK (1989) Inhibition of prolyl hydroxylase by poly(ADP-ribose) and phosphoribosyl-AMP. Possible role of ADP-ribosylation in intracellular prolyl hydroxylase regulation. J Biol Chem 264:7850–7855PubMed
11.
Zurück zum Zitat Constant JS, Feng JJ et al (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8:353–360PubMedCrossRef Constant JS, Feng JJ et al (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8:353–360PubMedCrossRef
12.
Zurück zum Zitat Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153:587–598PubMedCrossRef Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153:587–598PubMedCrossRef
13.
Zurück zum Zitat Kumar VB, Viji RI, Kiran MS, Sudhakaran PR (2007) Endothelial cell response to lactate: implication of PAR modification of VEGF. J Cell Physiol 211:477–485PubMedCrossRef Kumar VB, Viji RI, Kiran MS, Sudhakaran PR (2007) Endothelial cell response to lactate: implication of PAR modification of VEGF. J Cell Physiol 211:477–485PubMedCrossRef
14.
Zurück zum Zitat Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560PubMedCrossRef Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560PubMedCrossRef
15.
Zurück zum Zitat Sonveaux P, Copetti T et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE 7:e33418PubMedCrossRef Sonveaux P, Copetti T et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE 7:e33418PubMedCrossRef
16.
Zurück zum Zitat Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115PubMedCrossRef Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115PubMedCrossRef
17.
Zurück zum Zitat Lu H, Dalgard CL et al (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280:41928–41939PubMedCrossRef Lu H, Dalgard CL et al (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280:41928–41939PubMedCrossRef
18.
Zurück zum Zitat Li F, Sonveaux P et al (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74PubMedCrossRef Li F, Sonveaux P et al (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74PubMedCrossRef
19.
Zurück zum Zitat Milovanova TN, Bhopale VM et al (2008) Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol 28:6248–6261PubMedCrossRef Milovanova TN, Bhopale VM et al (2008) Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol 28:6248–6261PubMedCrossRef
20.
Zurück zum Zitat Murray B, Wilson DJ (2001) A study of metabolites as intermediate effectors in angiogenesis. Angiogenesis 4:71–77PubMedCrossRef Murray B, Wilson DJ (2001) A study of metabolites as intermediate effectors in angiogenesis. Angiogenesis 4:71–77PubMedCrossRef
21.
Zurück zum Zitat Beckert S, Farrahi F et al (2006) Lactate stimulates endothelial cell migration. Wound Repair Regen 14:321–324PubMedCrossRef Beckert S, Farrahi F et al (2006) Lactate stimulates endothelial cell migration. Wound Repair Regen 14:321–324PubMedCrossRef
22.
Zurück zum Zitat Burns PA, Wilson DJ (2003) Angiogenesis mediated by metabolites is dependent on vascular endothelial growth factor (VEGF). Angiogenesis 6:73–77PubMedCrossRef Burns PA, Wilson DJ (2003) Angiogenesis mediated by metabolites is dependent on vascular endothelial growth factor (VEGF). Angiogenesis 6:73–77PubMedCrossRef
23.
Zurück zum Zitat Hunt TK, Aslam RS et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9:1115–1124PubMedCrossRef Hunt TK, Aslam RS et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9:1115–1124PubMedCrossRef
24.
Zurück zum Zitat Couffinhal T, Silver M et al (1998) Mouse model of angiogenesis. Am J Pathol 152:1667–1679PubMed Couffinhal T, Silver M et al (1998) Mouse model of angiogenesis. Am J Pathol 152:1667–1679PubMed
25.
Zurück zum Zitat Sonveaux P, Martinive P et al (2004) Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 95:154–161PubMedCrossRef Sonveaux P, Martinive P et al (2004) Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 95:154–161PubMedCrossRef
26.
Zurück zum Zitat Del Prete E, Lutz TA, Scharrer E (2004) Inhibition of glucose oxidation by alpha-cyano-4-hydroxycinnamic acid stimulates feeding in rats. Physiol Behav 80:489–498PubMedCrossRef Del Prete E, Lutz TA, Scharrer E (2004) Inhibition of glucose oxidation by alpha-cyano-4-hydroxycinnamic acid stimulates feeding in rats. Physiol Behav 80:489–498PubMedCrossRef
27.
Zurück zum Zitat Sonveaux P, Vegran F et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942PubMed Sonveaux P, Vegran F et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942PubMed
28.
Zurück zum Zitat Hishiya A, Iemura S et al (2006) A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. EMBO J 25:554–564PubMedCrossRef Hishiya A, Iemura S et al (2006) A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. EMBO J 25:554–564PubMedCrossRef
29.
Zurück zum Zitat Dehoux M, Van Beneden R et al (2004) Role of the insulin-like growth factor I decline in the induction of atrogin-1/MAFbx during fasting and diabetes. Endocrinology 145:4806–4812PubMedCrossRef Dehoux M, Van Beneden R et al (2004) Role of the insulin-like growth factor I decline in the induction of atrogin-1/MAFbx during fasting and diabetes. Endocrinology 145:4806–4812PubMedCrossRef
30.
Zurück zum Zitat Cao Y, Sonveaux P et al (2007) Systemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res 67:3835–3844PubMedCrossRef Cao Y, Sonveaux P et al (2007) Systemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res 67:3835–3844PubMedCrossRef
31.
Zurück zum Zitat Peters T, Sindrilaru A et al (2005) Wound-healing defect of CD18(-/-) mice due to a decrease in TGF-beta1 and myofibroblast differentiation. EMBO J 24:3400–3410PubMedCrossRef Peters T, Sindrilaru A et al (2005) Wound-healing defect of CD18(-/-) mice due to a decrease in TGF-beta1 and myofibroblast differentiation. EMBO J 24:3400–3410PubMedCrossRef
32.
Zurück zum Zitat Gutierrez-Fernandez A, Inada M et al (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J 21:2580–2591PubMedCrossRef Gutierrez-Fernandez A, Inada M et al (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J 21:2580–2591PubMedCrossRef
33.
Zurück zum Zitat Sindrilaru A, Peters T et al (2009) Wound healing defect of Vav3-/- mice due to impaired {beta}2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils. Blood 113:5266–5276PubMedCrossRef Sindrilaru A, Peters T et al (2009) Wound healing defect of Vav3-/- mice due to impaired {beta}2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils. Blood 113:5266–5276PubMedCrossRef
34.
Zurück zum Zitat Milch HS, Schubert SY, Hammond S, Spiegel JH (2010) Enhancement of ischemic wound healing by inducement of local angiogenesis. Laryngoscope 120:1744–1748PubMedCrossRef Milch HS, Schubert SY, Hammond S, Spiegel JH (2010) Enhancement of ischemic wound healing by inducement of local angiogenesis. Laryngoscope 120:1744–1748PubMedCrossRef
35.
Zurück zum Zitat Mendel DB, Schreck RE et al (2000) The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res 6:4848–4858PubMed Mendel DB, Schreck RE et al (2000) The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res 6:4848–4858PubMed
36.
Zurück zum Zitat Manning Fox JE, Meredith D, Halestrap AP (2000) Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 529(Pt 2):285–293PubMed Manning Fox JE, Meredith D, Halestrap AP (2000) Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 529(Pt 2):285–293PubMed
37.
Zurück zum Zitat Stabile E, Kinnaird T et al (2006) CD8 + T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4 + mononuclear cells through the expression of interleukin-16. Circulation 113:118–124PubMedCrossRef Stabile E, Kinnaird T et al (2006) CD8 + T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4 + mononuclear cells through the expression of interleukin-16. Circulation 113:118–124PubMedCrossRef
38.
Zurück zum Zitat Koponen JK, Kekarainen T et al (2007) Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol Ther 15:2172–2177PubMedCrossRef Koponen JK, Kekarainen T et al (2007) Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol Ther 15:2172–2177PubMedCrossRef
39.
Zurück zum Zitat Bonen A (2001) The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol 86:6–11PubMedCrossRef Bonen A (2001) The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol 86:6–11PubMedCrossRef
40.
Zurück zum Zitat Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2002) Resistance vessel remodeling and reparative angiogenesis in the microcirculatory bed of long-term denervated skeletal muscles. Microvasc Res 63:96–114PubMedCrossRef Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2002) Resistance vessel remodeling and reparative angiogenesis in the microcirculatory bed of long-term denervated skeletal muscles. Microvasc Res 63:96–114PubMedCrossRef
41.
Zurück zum Zitat Kawai K, Larson BJ et al (2011) Calcium-based nanoparticles accelerate skin wound healing. PLoS ONE 6:e27106PubMedCrossRef Kawai K, Larson BJ et al (2011) Calcium-based nanoparticles accelerate skin wound healing. PLoS ONE 6:e27106PubMedCrossRef
42.
Zurück zum Zitat Mendel DB, Laird AD et al (2000) Development of SU5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des 15:29–41PubMed Mendel DB, Laird AD et al (2000) Development of SU5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des 15:29–41PubMed
43.
Zurück zum Zitat Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25:19–25PubMedCrossRef Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25:19–25PubMedCrossRef
44.
Zurück zum Zitat Creager MA, Loscalzo J (2008) Diseases of the extremities. In: Fauci AS, Braunwald E, Kasper DL (eds) Harrison’s principles of internal medicine, 17th edn. McGraw Hill, New-York, pp 1568–1570 Creager MA, Loscalzo J (2008) Diseases of the extremities. In: Fauci AS, Braunwald E, Kasper DL (eds) Harrison’s principles of internal medicine, 17th edn. McGraw Hill, New-York, pp 1568–1570
45.
Zurück zum Zitat Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330PubMed Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330PubMed
46.
Zurück zum Zitat Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350(Pt 1):219–227PubMedCrossRef Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350(Pt 1):219–227PubMedCrossRef
47.
Zurück zum Zitat Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA (2007) Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J 21:2602–2612PubMedCrossRef Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA (2007) Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J 21:2602–2612PubMedCrossRef
48.
Zurück zum Zitat Porporato PE, Dadhich RK, Dhup S, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49PubMedCrossRef Porporato PE, Dadhich RK, Dhup S, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49PubMedCrossRef
49.
Zurück zum Zitat Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRef Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRef
50.
Zurück zum Zitat Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M (2007) Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci USA 104:967–972PubMedCrossRef Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M (2007) Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci USA 104:967–972PubMedCrossRef
51.
52.
Zurück zum Zitat Barba I, Garcia-Ramirez M et al (2010) Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest Ophthalmol Vis Sci 51:4416–4421PubMedCrossRef Barba I, Garcia-Ramirez M et al (2010) Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest Ophthalmol Vis Sci 51:4416–4421PubMedCrossRef
53.
Zurück zum Zitat Shanmugasundaram M, Ram VK, Luft UC, Szerlip M, Alpert JS (2011) Peripheral arterial disease–what do we need to know? Clin Cardiol 34:478–482PubMedCrossRef Shanmugasundaram M, Ram VK, Luft UC, Szerlip M, Alpert JS (2011) Peripheral arterial disease–what do we need to know? Clin Cardiol 34:478–482PubMedCrossRef
54.
Zurück zum Zitat Enerson BE, Drewes LR (2003) Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci 92:1531–1544PubMedCrossRef Enerson BE, Drewes LR (2003) Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci 92:1531–1544PubMedCrossRef
55.
Zurück zum Zitat Cori CF, Cori GT (1929) Glycogen formation in the liver with d- and l-lactic acid. J Biol Chem 81:389–403 Cori CF, Cori GT (1929) Glycogen formation in the liver with d- and l-lactic acid. J Biol Chem 81:389–403
56.
Zurück zum Zitat Patel MS, Jomain-Baum M, Ballard FJ, Hanson RW (1971) Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue. J Lipid Res 12:179–191PubMed Patel MS, Jomain-Baum M, Ballard FJ, Hanson RW (1971) Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue. J Lipid Res 12:179–191PubMed
57.
Zurück zum Zitat Pagliassotti MJ, Donovan CM (1990) Role of cell type in net lactate removal by skeletal muscle. Am J Physiol 258:E635–E642PubMed Pagliassotti MJ, Donovan CM (1990) Role of cell type in net lactate removal by skeletal muscle. Am J Physiol 258:E635–E642PubMed
58.
Zurück zum Zitat Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm 415:34–52PubMedCrossRef Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm 415:34–52PubMedCrossRef
Metadaten
Titel
Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice
verfasst von
Paolo E. Porporato
Valéry L. Payen
Christophe J. De Saedeleer
Véronique Préat
Jean-Paul Thissen
Olivier Feron
Pierre Sonveaux
Publikationsdatum
01.12.2012
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 4/2012
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-012-9282-0

Weitere Artikel der Ausgabe 4/2012

Angiogenesis 4/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.