Skip to main content

11.12.2015 | Original Article

Landmark constellation models for medical image content identification and localization

International Journal of Computer Assisted Radiology and Surgery
Eberhard Hansis, Cristian Lorenz



Many medical imaging tasks require the detection and localization of anatomical landmarks, for example for the initialization of model-based segmentation or to detect anatomical regions present in an image. A large number of landmark and object localization methods have been described in the literature. The detection of single landmarks may be insufficient to achieve robust localization across a variety of imaging settings and subjects. Furthermore, methods like the generalized Hough transform yield the most likely location of an object, but not an indication whether or not the landmark was actually present in the image.


For these reasons, we developed a simple and computationally efficient method combining localization results from multiple landmarks to achieve robust localization and to compute a localization confidence measure. For each anatomical region, we train a constellation model indicating the mean relative locations and location variability of a set of landmarks. This model is registered to the landmarks detected in a test image via point-based registration, using closed-form solutions. Three different outlier suppression schemes are compared, two using iterative re-weighting based on the residual landmark registration errors and the third being a variant of RANSAC. The mean weighted residual registration error serves as a confidence measure to distinguish true from false localization results. The method is optimized and evaluated on synthetic data, evaluating both the localization accuracy and the ability to classify good from bad registration results based on the residual registration error.


Two application examples are presented: the identification of the imaged anatomical region in trauma CT scans and the initialization of model-based segmentation for C-arm CT scans with different target regions. The identification of the target region with the presented method was in 96 % of the cases correct.


The presented method is a simple solution for combining multiple landmark localization results. With appropriate parameters, outlier suppression clearly improves the localization performance over model registration without outlier suppression. The optimum choice of method and parameters depends on the expected level of noise and outliers in the application at hand, as well as on the focus on localization, classification, or both. The method allows detecting and localizing anatomical fields of view in medical images and is well suited to support a wide range of applications comprising image content identification, anatomical navigation and visualization, or initializing the pose of organ shape models.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Über diesen Artikel
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.