Skip to main content
main-content

20.08.2018 | Ausgabe 1/2019

Journal of Digital Imaging 1/2019

Large Scale Semi-Automated Labeling of Routine Free-Text Clinical Records for Deep Learning

Zeitschrift:
Journal of Digital Imaging > Ausgabe 1/2019
Autoren:
Hari M. Trivedi, Maryam Panahiazar, April Liang, Dmytro Lituiev, Peter Chang, Jae Ho Sohn, Yunn-Yi Chen, Benjamin L. Franc, Bonnie Joe, Dexter Hadley

Abstract

Breast cancer is a leading cause of cancer death among women in the USA. Screening mammography is effective in reducing mortality, but has a high rate of unnecessary recalls and biopsies. While deep learning can be applied to mammography, large-scale labeled datasets, which are difficult to obtain, are required. We aim to remove many barriers of dataset development by automatically harvesting data from existing clinical records using a hybrid framework combining traditional NLP and IBM Watson. An expert reviewer manually annotated 3521 breast pathology reports with one of four outcomes: left positive, right positive, bilateral positive, negative. Traditional NLP techniques using seven different machine learning classifiers were compared to IBM Watson’s automated natural language classifier. Techniques were evaluated using precision, recall, and F-measure. Logistic regression outperformed all other traditional machine learning classifiers and was used for subsequent comparisons. Both traditional NLP and Watson’s NLC performed well for cases under 1024 characters with weighted average F-measures above 0.96 across all classes. Performance of traditional NLP was lower for cases over 1024 characters with an F-measure of 0.83. We demonstrate a hybrid framework using traditional NLP techniques combined with IBM Watson to annotate over 10,000 breast pathology reports for development of a large-scale database to be used for deep learning in mammography. Our work shows that traditional NLP and IBM Watson perform extremely well for cases under 1024 characters and can accelerate the rate of data annotation.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

Journal of Digital Imaging 1/2019 Zur Ausgabe
  1. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise