Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2020

20.09.2019

Late-life Cardiac Injury in Rats following Early Life Exposure to Lead: Reversal Effect of Nutrient Metal Mixture

verfasst von: Chand Basha Davuljigari, Rajarami Reddy Gottipolu

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Early-life exposure to lead (Pb) can lead to health effects in later life. The neurotoxic effects of Pb have been well documented but its effects on the heart are poorly elucidated. We examined the late life cardiac impairments resulting from developmental exposure to Pb. Further, we investigated the protective effect of the nutrient metal mixture containing calcium (Ca), zinc (Zn) and iron (Fe) against Pb-induced long-term effects on cardiac functions.Male albino rats were lactationally exposed to 0.2% Pb-acetate or 0.2% Pb-acetate together nutrient metal mixture as 0.02% in drinking water of the mother from PND 1 to PND 21. The results showed increased levels of serum total cholesterol (TC), triglycerides (TG), low-density lipoproteins (LDLs) and lactate dehydrogenase (LDH) activity at postnatal day (PND) 28 [young], 4 months [adult] and 18 months [old] age group rats. Most notably, exposure to Pb decreased the activities of mitochondrial superoxide dismutase (SOD), thioredoxin reductase (TrxR), aconitase (Acon), isocitrate dehydrogenase (ICDH), xanthine oxidase (XO) and total antioxidant status while the MDA levels increased in all selected age groups of rats. The histological findings showed an age-dependent response to Pb exposure evidenced by extensive degeneration and necrosis in cardiac muscle, disruption in muscle connectivity, hemorrhage, and mononuclear cell infiltration. Co-administration of nutrient metal mixture reversed the Pb-induced cardiac impairments as reflected in the recovery of the chosen sensitive markers of oxidative stress, reduced Pb levels and cardiac tissue changes. In conclusion, the data demonstrate that early-life exposure to Pb continuously influence the cardiac mitochondrial functions from early life to older age and further suggesting that adequate intake of nutrient metals may be potential therapeutic treatment for Pb intoxication.
Literatur
1.
Zurück zum Zitat Ettinger, A. S., Leonard, M. L., & Mason, J. (2019). CDC’s lead poisoning prevention program: A long-standing responsibility and commitment to protect children from lead exposure. Journal of Public Health Management and Practics,25, S5–S12. Ettinger, A. S., Leonard, M. L., & Mason, J. (2019). CDC’s lead poisoning prevention program: A long-standing responsibility and commitment to protect children from lead exposure. Journal of Public Health Management and Practics,25, S5–S12.
2.
Zurück zum Zitat Praveen, Sharma, Chambial, Shailja, & Shukla, Kamla Kant. (2015). Lead and neurotoxicity. Indian Journal of Clinical Biochemistry,30(1), 1–2. Praveen, Sharma, Chambial, Shailja, & Shukla, Kamla Kant. (2015). Lead and neurotoxicity. Indian Journal of Clinical Biochemistry,30(1), 1–2.
3.
Zurück zum Zitat Reddy, G. R., Devi, C. B., & Chetty, C. S. (2007). Developmental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology,28, 402–407.PubMed Reddy, G. R., Devi, C. B., & Chetty, C. S. (2007). Developmental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology,28, 402–407.PubMed
4.
Zurück zum Zitat Shvachiy, L., Geraldes, V., Amaro-Leal, Â., & Rocha, I. (2018). Intermittent low-level lead exposure provokes anxiety, hypertension, autonomic dysfunction and neuroinflammation. Neurotoxicology,69, 307–319.PubMed Shvachiy, L., Geraldes, V., Amaro-Leal, Â., & Rocha, I. (2018). Intermittent low-level lead exposure provokes anxiety, hypertension, autonomic dysfunction and neuroinflammation. Neurotoxicology,69, 307–319.PubMed
5.
Zurück zum Zitat Xu, X., Byles, J. E., Shi, Z., & Hall, J. J. (2018). Dietary patterns, dietary lead exposure and hypertension in the older Chinese population. Asia Pacific Journal of Clinical Nutrition,27(2), 451–459.PubMed Xu, X., Byles, J. E., Shi, Z., & Hall, J. J. (2018). Dietary patterns, dietary lead exposure and hypertension in the older Chinese population. Asia Pacific Journal of Clinical Nutrition,27(2), 451–459.PubMed
6.
Zurück zum Zitat Vaziri, N. D., & Gonick, H. C. (2015). Cardiovascular effects of lead exposure. Indian Journal of Medical Research,128(4), 426–435. Vaziri, N. D., & Gonick, H. C. (2015). Cardiovascular effects of lead exposure. Indian Journal of Medical Research,128(4), 426–435.
7.
Zurück zum Zitat Silva, M. A., de Oliveira, T. F., Almenara, C. C., Broseghini-Filho, G. B., Vassallo, D. V., Padilha, A. S., et al. (2015). Exposure to a low lead concentration impairs contractile machinery in rat cardiac muscle. Biological Trace Element Research,167(2), 280–287.PubMed Silva, M. A., de Oliveira, T. F., Almenara, C. C., Broseghini-Filho, G. B., Vassallo, D. V., Padilha, A. S., et al. (2015). Exposure to a low lead concentration impairs contractile machinery in rat cardiac muscle. Biological Trace Element Research,167(2), 280–287.PubMed
8.
Zurück zum Zitat Ahmed, M. A., Khaled, M. A., & Hassanein, (2013). Cardio protective effects of Nigella sativa oil on lead induced cardio toxicity: Anti inflammatory and antioxidant mechanism. Journal of Physiol and Pathophysiol,4(5), 72–80. Ahmed, M. A., Khaled, M. A., & Hassanein, (2013). Cardio protective effects of Nigella sativa oil on lead induced cardio toxicity: Anti inflammatory and antioxidant mechanism. Journal of Physiol and Pathophysiol,4(5), 72–80.
9.
Zurück zum Zitat Roshan, V. D., Assali, M., Moghaddam, A. H., Hosseinzadeh, M., & Myers, J. (2011). Exercise training and antioxidants: Effects on rat heart tissue exposed to lead acetate. International Journal of Toxicology,30(2), 190–196.PubMed Roshan, V. D., Assali, M., Moghaddam, A. H., Hosseinzadeh, M., & Myers, J. (2011). Exercise training and antioxidants: Effects on rat heart tissue exposed to lead acetate. International Journal of Toxicology,30(2), 190–196.PubMed
10.
Zurück zum Zitat Basha, D. C., Basha, S. S., & Reddy, G. R. (2012). Lead-induced cardiac and hematological alterations in aging Wistar male rats: Alleviating effects of nutrient metal mixture. Biogerontology,13(4), 359–368.PubMed Basha, D. C., Basha, S. S., & Reddy, G. R. (2012). Lead-induced cardiac and hematological alterations in aging Wistar male rats: Alleviating effects of nutrient metal mixture. Biogerontology,13(4), 359–368.PubMed
11.
Zurück zum Zitat Silveira, E. A., Siman, F. D., de Oliveira, F. T., Vescovi, M. V., Furieri, L. B., Lizardo, J. H., et al. (2014). Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radical Biology and Medicine,67, 366–376.PubMed Silveira, E. A., Siman, F. D., de Oliveira, F. T., Vescovi, M. V., Furieri, L. B., Lizardo, J. H., et al. (2014). Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radical Biology and Medicine,67, 366–376.PubMed
12.
Zurück zum Zitat Carmignani, M., Volpe, A. R., Boscolo, P., Qiao, N., Di Gioacchino, M., Grilli, A., et al. (2000). Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sciences,68, 401–415.PubMed Carmignani, M., Volpe, A. R., Boscolo, P., Qiao, N., Di Gioacchino, M., Grilli, A., et al. (2000). Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sciences,68, 401–415.PubMed
13.
Zurück zum Zitat Ferreira de Mattos, G., Costa, C., Savio, F., Alonso, M., & Nicolson, G. L. (2017). Lead poisoning: Acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophysics Reviews,9(5), 807–825. Ferreira de Mattos, G., Costa, C., Savio, F., Alonso, M., & Nicolson, G. L. (2017). Lead poisoning: Acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophysics Reviews,9(5), 807–825.
14.
Zurück zum Zitat Lanphear, B. P., Rauch, S., Auinger, P., Allen, R. W., & Hornung, R. W. (2018). Low-level lead exposure and mortality in US adults: A population-based cohort study. Lancet Public Health.,S2468–2667(18), 30025–30027. Lanphear, B. P., Rauch, S., Auinger, P., Allen, R. W., & Hornung, R. W. (2018). Low-level lead exposure and mortality in US adults: A population-based cohort study. Lancet Public Health.,S2468–2667(18), 30025–30027.
15.
Zurück zum Zitat Park, S. K., Schwartz, J., Weisskopf, M., Sparrow, D., Vokonas, P. S., Wright, R. O., et al. (2006). Low-level lead exposure, metabolic syndrome, and heart rate variability: The VA Normative Aging Study. Environmental Health Perspectives,114(11), 1718–1724.PubMedPubMedCentral Park, S. K., Schwartz, J., Weisskopf, M., Sparrow, D., Vokonas, P. S., Wright, R. O., et al. (2006). Low-level lead exposure, metabolic syndrome, and heart rate variability: The VA Normative Aging Study. Environmental Health Perspectives,114(11), 1718–1724.PubMedPubMedCentral
16.
Zurück zum Zitat Prasanthi, R. P., Devi, C. B., Basha, D. C., Reddy, N. S., & Reddy, G. R. (2010). Calcium and zinc supplementation protects lead (Pb)-induced perturbations in antioxidant enzymes and lipid peroxidation in developing mouse brain. International Journal of Developmental Neuroscience,28(2), 161–167.PubMed Prasanthi, R. P., Devi, C. B., Basha, D. C., Reddy, N. S., & Reddy, G. R. (2010). Calcium and zinc supplementation protects lead (Pb)-induced perturbations in antioxidant enzymes and lipid peroxidation in developing mouse brain. International Journal of Developmental Neuroscience,28(2), 161–167.PubMed
17.
Zurück zum Zitat Park, S. K., Hu, H., Wright, R. O., Schwartz, J., Cheng, Y., Sparrow, D., et al. (2009). Iron metabolism genes, low-level lead exposure, and QT interval. Environmental Health Perspectives,117(1), 80–85.PubMed Park, S. K., Hu, H., Wright, R. O., Schwartz, J., Cheng, Y., Sparrow, D., et al. (2009). Iron metabolism genes, low-level lead exposure, and QT interval. Environmental Health Perspectives,117(1), 80–85.PubMed
18.
Zurück zum Zitat Srikanthan, T. N., & Krishnamurthi, C. R. (1955). Tetrazolium test for dehydrogenases. Journal of Scientific & Industrial Research,14, 206. Srikanthan, T. N., & Krishnamurthi, C. R. (1955). Tetrazolium test for dehydrogenases. Journal of Scientific & Industrial Research,14, 206.
19.
Zurück zum Zitat Gottipolu, R. R., Wallenborn, J. G., Karoly, E. D., Schladweiler, M. C., Ledbetter, A. D., Krantz, T., et al. (2009). One-month diesel exhaust inhalation produces hypertensive gene expression pattern in healthy rats. Environmental Health Perspectives,17, 39–46. Gottipolu, R. R., Wallenborn, J. G., Karoly, E. D., Schladweiler, M. C., Ledbetter, A. D., Krantz, T., et al. (2009). One-month diesel exhaust inhalation produces hypertensive gene expression pattern in healthy rats. Environmental Health Perspectives,17, 39–46.
20.
Zurück zum Zitat Manual, Worthington. (2004). Xanthine Oxidase Assay (pp. 399–401). USA: Worthington Biochemical Corporation. Manual, Worthington. (2004). Xanthine Oxidase Assay (pp. 399–401). USA: Worthington Biochemical Corporation.
21.
Zurück zum Zitat Korenberg, A., & Pricer, W. E., Jr. (1951). Triphosphate pyridine nucleotide isocitric dehydrogenase in yeast. Journal of Biological Chemistry,1951(189), 123–136. Korenberg, A., & Pricer, W. E., Jr. (1951). Triphosphate pyridine nucleotide isocitric dehydrogenase in yeast. Journal of Biological Chemistry,1951(189), 123–136.
22.
Zurück zum Zitat Mastanaiah, S., Chengal Raju, D., & Swami, K. S. (1978). Circadian rhythmic activity of lipase in the scorpion. Heterometrus fulvipes (C Koch). Current Science,47, 130–131. Mastanaiah, S., Chengal Raju, D., & Swami, K. S. (1978). Circadian rhythmic activity of lipase in the scorpion. Heterometrus fulvipes (C Koch). Current Science,47, 130–131.
23.
Zurück zum Zitat Ohkawa, H., Ohishim, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry,95(2), 351–358.PubMed Ohkawa, H., Ohishim, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry,95(2), 351–358.PubMed
24.
Zurück zum Zitat Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry,193, 265–275.PubMed Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry,193, 265–275.PubMed
25.
Zurück zum Zitat Chen, C., Li, Q., Nie, X., Han, B., Chen, Y., Xia, F., et al. (2017). Association of lead exposure with cardiovascular risk factors and diseases in Chinese adults. Environmental Science and Pollution Research International,24(28), 22275–22283.PubMed Chen, C., Li, Q., Nie, X., Han, B., Chen, Y., Xia, F., et al. (2017). Association of lead exposure with cardiovascular risk factors and diseases in Chinese adults. Environmental Science and Pollution Research International,24(28), 22275–22283.PubMed
26.
Zurück zum Zitat An, H. C., Sung, J. H., Lee, J., Sim, C. S., Kim, S. H., & Kim, Y. (2017). The association between cadmium and lead exposure and blood pressure among workers of a smelting industry: A cross-sectional study. Annals of Occupational and Environmental Medicine,29, 47.PubMedPubMedCentral An, H. C., Sung, J. H., Lee, J., Sim, C. S., Kim, S. H., & Kim, Y. (2017). The association between cadmium and lead exposure and blood pressure among workers of a smelting industry: A cross-sectional study. Annals of Occupational and Environmental Medicine,29, 47.PubMedPubMedCentral
27.
Zurück zum Zitat Steinberg, D. (2009). The LDL modification of atherogenesis: An update. Journal of Lipid Research,50, S376–S381.PubMedPubMedCentral Steinberg, D. (2009). The LDL modification of atherogenesis: An update. Journal of Lipid Research,50, S376–S381.PubMedPubMedCentral
28.
Zurück zum Zitat Meredith, P. A., Campbell, B. C., Moore, M. R., & Goldberg, A. (1977). The effects of industrial lead poisoning on cytochrome P450 mediated phenazone (antipyrine) hydroxylation. European Journal of Clinical Pharmacology,12(3), 235–239.PubMed Meredith, P. A., Campbell, B. C., Moore, M. R., & Goldberg, A. (1977). The effects of industrial lead poisoning on cytochrome P450 mediated phenazone (antipyrine) hydroxylation. European Journal of Clinical Pharmacology,12(3), 235–239.PubMed
29.
Zurück zum Zitat Kojima, M., Masui, T., Nemoto, K., & Degawa, M. (2004). Lead nitrate-induced development of hypercholesterolemia in rats: Sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis. Toxicology Letters,154(1–2), 35–44.PubMed Kojima, M., Masui, T., Nemoto, K., & Degawa, M. (2004). Lead nitrate-induced development of hypercholesterolemia in rats: Sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis. Toxicology Letters,154(1–2), 35–44.PubMed
30.
Zurück zum Zitat Ademuyiwa, O., Ugbaja, R. N., Idumebor, F., & Adebawo, O. (2005). Plasma lipid profiles and risk of cardiovascular disease in occupational lead exposure in Abeokuta, Nigeria. Lipids in Health and Diseases,4, 19. Ademuyiwa, O., Ugbaja, R. N., Idumebor, F., & Adebawo, O. (2005). Plasma lipid profiles and risk of cardiovascular disease in occupational lead exposure in Abeokuta, Nigeria. Lipids in Health and Diseases,4, 19.
31.
Zurück zum Zitat Ranasinghe, P., Wathurapatha, W. S., Ishara, M. H., Jayawardana, R., Galappatthy, P., Katulanda, P., et al. (2015). Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutrition & Metabolism (London).,12, 26. Ranasinghe, P., Wathurapatha, W. S., Ishara, M. H., Jayawardana, R., Galappatthy, P., Katulanda, P., et al. (2015). Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutrition & Metabolism (London).,12, 26.
32.
Zurück zum Zitat Ece, A., Yiğitoğlu, M. R., Vurgun, N., Güven, H., & Işcan, A. (1999). Serum lipid and lipoprotein profile in children with iron deficiency anemia. Pediatrics International,41(2), 168–173.PubMed Ece, A., Yiğitoğlu, M. R., Vurgun, N., Güven, H., & Işcan, A. (1999). Serum lipid and lipoprotein profile in children with iron deficiency anemia. Pediatrics International,41(2), 168–173.PubMed
33.
Zurück zum Zitat McIntyre, T. M., & Hazen, S. L. (2010). Lipid oxidation and cardiovascular disease: Introduction to a review series. Circulation Research,107(10), 1167–1169.PubMed McIntyre, T. M., & Hazen, S. L. (2010). Lipid oxidation and cardiovascular disease: Introduction to a review series. Circulation Research,107(10), 1167–1169.PubMed
34.
Zurück zum Zitat Dewanjee, S., Sahu, R., Karmakar, S., & Gangopadhyay, M. (2013). Toxic effects of lead exposure in Wistar rats: Involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves. Food and Chemical Toxicology,55, 78–91.PubMed Dewanjee, S., Sahu, R., Karmakar, S., & Gangopadhyay, M. (2013). Toxic effects of lead exposure in Wistar rats: Involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves. Food and Chemical Toxicology,55, 78–91.PubMed
35.
Zurück zum Zitat Madamanchi, N. R., & Runge, M. S. (2013). Redox signaling in cardiovascular health and disease. Free Radical Biology Medicine,61, 473–501.PubMed Madamanchi, N. R., & Runge, M. S. (2013). Redox signaling in cardiovascular health and disease. Free Radical Biology Medicine,61, 473–501.PubMed
36.
Zurück zum Zitat Raghuvanshi, R., Aikim, K., Pushpa, B., Aparna, M., & Misra, K. (2007). Xanthine oxidase as a marker of myocardial infarction. Indian Journal of Clinical Biochemistry,22(2), 90–92.PubMedPubMedCentral Raghuvanshi, R., Aikim, K., Pushpa, B., Aparna, M., & Misra, K. (2007). Xanthine oxidase as a marker of myocardial infarction. Indian Journal of Clinical Biochemistry,22(2), 90–92.PubMedPubMedCentral
37.
Zurück zum Zitat Kilikdar, D., Mukherjee, D., Mitra, E., Ghosh, A. K., Basu, A., Chandra, A. M., et al. (2011). Protective effect of aqueous garlic extract against lead-induced hepatic injury in rats. Indian Journal of Experimental Biology,49(7), 498–510.PubMed Kilikdar, D., Mukherjee, D., Mitra, E., Ghosh, A. K., Basu, A., Chandra, A. M., et al. (2011). Protective effect of aqueous garlic extract against lead-induced hepatic injury in rats. Indian Journal of Experimental Biology,49(7), 498–510.PubMed
38.
Zurück zum Zitat Arif Tasleem, J., Mudsser, A., Kehkashan, S., Arif, A., Inho, C., Qazi, M., et al. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences,16(12), 29592–29630. Arif Tasleem, J., Mudsser, A., Kehkashan, S., Arif, A., Inho, C., Qazi, M., et al. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences,16(12), 29592–29630.
39.
Zurück zum Zitat Holmgren, A., & Lu, J. (2010). Thioredoxin and thioredoxin reductase: Current research with special reference to human disease. Biochemical and Biophysical Research Communications,396(1), 120–124.PubMed Holmgren, A., & Lu, J. (2010). Thioredoxin and thioredoxin reductase: Current research with special reference to human disease. Biochemical and Biophysical Research Communications,396(1), 120–124.PubMed
40.
Zurück zum Zitat Horstkotte, J., Perisic, T., Schneider, M., Lange, P., Schroeder, M., Kiermayer, C., et al. (2011). Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protection. Circulation,124(25), 2892–2902.PubMed Horstkotte, J., Perisic, T., Schneider, M., Lange, P., Schroeder, M., Kiermayer, C., et al. (2011). Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protection. Circulation,124(25), 2892–2902.PubMed
41.
Zurück zum Zitat Conterato, G. M., Quatrin, A., Somacal, S., Ruviaro, A. R., Vicentini, J., Augusti, P. R., et al. (2014). Acute exposure to low lead levels and its implications on the activity and expression of cytosolic thioredoxin reductase in the kidney. Basic & Clinical Pharmacology & Toxicology,114(6), 476–484. Conterato, G. M., Quatrin, A., Somacal, S., Ruviaro, A. R., Vicentini, J., Augusti, P. R., et al. (2014). Acute exposure to low lead levels and its implications on the activity and expression of cytosolic thioredoxin reductase in the kidney. Basic & Clinical Pharmacology & Toxicology,114(6), 476–484.
42.
Zurück zum Zitat Parildar, H., Dogru-Abbasoglu, S., Mehmetçik, G., Ozdemirler, G., Koçak-Toker, N., & Uysal, M. (2008). Lipid peroxidation potential and antioxidants in the heart tissue of beta-alanine- or taurine-treated old rats. Journal of Nutritional Science and Vitaminology (Tokyo).,54(1), 61–65.PubMed Parildar, H., Dogru-Abbasoglu, S., Mehmetçik, G., Ozdemirler, G., Koçak-Toker, N., & Uysal, M. (2008). Lipid peroxidation potential and antioxidants in the heart tissue of beta-alanine- or taurine-treated old rats. Journal of Nutritional Science and Vitaminology (Tokyo).,54(1), 61–65.PubMed
43.
Zurück zum Zitat Possamai, F. P., Júnior, S. Á., Parisotto, E. B., Moratelli, A. M., Inácio, D. B., Garlet, T. R., et al. (2010). Antioxidant intervention compensates oxidative stress in blood of subjects exposed to emissions from a coal electric-power plant in South Brazil. Environmental Toxicology and Pharmacology,30, 175–180.PubMed Possamai, F. P., Júnior, S. Á., Parisotto, E. B., Moratelli, A. M., Inácio, D. B., Garlet, T. R., et al. (2010). Antioxidant intervention compensates oxidative stress in blood of subjects exposed to emissions from a coal electric-power plant in South Brazil. Environmental Toxicology and Pharmacology,30, 175–180.PubMed
44.
Zurück zum Zitat Rendón-Ramírez, A. L., Maldonado-Vega, M., Quintanar-Escorza, M. A., Hernández, G., Arévalo-Rivas, B. I., Zentella-Dehesa, A., et al. (2014). Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers. Environmental Toxicology and Pharmacology,37(1), 45–54.PubMed Rendón-Ramírez, A. L., Maldonado-Vega, M., Quintanar-Escorza, M. A., Hernández, G., Arévalo-Rivas, B. I., Zentella-Dehesa, A., et al. (2014). Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers. Environmental Toxicology and Pharmacology,37(1), 45–54.PubMed
45.
Zurück zum Zitat Tocchi, A., Quarles, E. K., Basisty, N., Gitari, L., & Rabinovitch, P. S. (2015). Mitochondrial dysfunction in cardiac aging. Biochimica et Biophysica Acta,1847(11), 1424–1433.PubMedPubMedCentral Tocchi, A., Quarles, E. K., Basisty, N., Gitari, L., & Rabinovitch, P. S. (2015). Mitochondrial dysfunction in cardiac aging. Biochimica et Biophysica Acta,1847(11), 1424–1433.PubMedPubMedCentral
46.
Zurück zum Zitat Cantu, D., Fulton, R. E., Drechsel, D. A., & Patel, M. (2011). Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H2O2. Journal of Neurochemistry,118(1), 79–92.PubMedPubMedCentral Cantu, D., Fulton, R. E., Drechsel, D. A., & Patel, M. (2011). Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H2O2. Journal of Neurochemistry,118(1), 79–92.PubMedPubMedCentral
47.
Zurück zum Zitat Vasquez-Vivar, J., Kalyanaraman, B., & Kennedy, M. C. (2000). Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. Journal of Biological Chemistry,275(19), 14064–14069.PubMed Vasquez-Vivar, J., Kalyanaraman, B., & Kennedy, M. C. (2000). Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. Journal of Biological Chemistry,275(19), 14064–14069.PubMed
48.
Zurück zum Zitat Yarian, S. C., Dikran, T., & Rajindar, S. S. (2006). Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mechanisms of Ageing and Development,127(1), 79–84.PubMed Yarian, S. C., Dikran, T., & Rajindar, S. S. (2006). Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mechanisms of Ageing and Development,127(1), 79–84.PubMed
49.
Zurück zum Zitat Ahamed, M., & Siddiqui, M. K. (2007). Environmental lead toxicity and nutritional factors. Clinical Nutrition,26(4), 400–408.PubMed Ahamed, M., & Siddiqui, M. K. (2007). Environmental lead toxicity and nutritional factors. Clinical Nutrition,26(4), 400–408.PubMed
50.
Zurück zum Zitat De Caterina, R., Zampolli, A., Del Turco, S., Madonna, R., & Massaro, M. (2006). Nutritional mechanisms that influence cardiovascular disease. American Journal of Clinical Nutrition,83(2), 421S–426S.PubMed De Caterina, R., Zampolli, A., Del Turco, S., Madonna, R., & Massaro, M. (2006). Nutritional mechanisms that influence cardiovascular disease. American Journal of Clinical Nutrition,83(2), 421S–426S.PubMed
51.
Zurück zum Zitat Mythili, Sabesan, & Malathi, Narasimhan. (2015). Diagnostic markers of acute myocardial infarction. Biomedical Reports,3(6), 743–748.PubMedPubMedCentral Mythili, Sabesan, & Malathi, Narasimhan. (2015). Diagnostic markers of acute myocardial infarction. Biomedical Reports,3(6), 743–748.PubMedPubMedCentral
52.
Zurück zum Zitat Ghosh, D., Mitra, E., Firdaus, S. B., Ghosh, K. B., Chattopadhyay, A., Pattari, K. S., et al. (2013). Melatonin protects against lead-induced cardio toxicity: Involvement of antioxidant mechanism. International Journal of Pharmacy and Pharmaceutical Sciences,5(3), 806–813. Ghosh, D., Mitra, E., Firdaus, S. B., Ghosh, K. B., Chattopadhyay, A., Pattari, K. S., et al. (2013). Melatonin protects against lead-induced cardio toxicity: Involvement of antioxidant mechanism. International Journal of Pharmacy and Pharmaceutical Sciences,5(3), 806–813.
53.
Zurück zum Zitat Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2007). Lead exposure and cardiovascular disease—A systematic review. Environmental Health Perspectives,115(3), 472–482.PubMed Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2007). Lead exposure and cardiovascular disease—A systematic review. Environmental Health Perspectives,115(3), 472–482.PubMed
54.
Zurück zum Zitat D’Souza, H. S., Menezes, G., & Venkatesh, T. (2003). Role of essential trace minerals on the absorption of heavy metals with special reference to lead. Indian Journal of Clinical Biochemistry,18(2), 154–160.PubMedPubMedCentral D’Souza, H. S., Menezes, G., & Venkatesh, T. (2003). Role of essential trace minerals on the absorption of heavy metals with special reference to lead. Indian Journal of Clinical Biochemistry,18(2), 154–160.PubMedPubMedCentral
55.
Zurück zum Zitat Dorea, J. G., & Donangelo, C. M. (2006). Early (in uterus and infant) exposure to mercury and lead. Clinical Nutrition,25(3), 369–376.PubMed Dorea, J. G., & Donangelo, C. M. (2006). Early (in uterus and infant) exposure to mercury and lead. Clinical Nutrition,25(3), 369–376.PubMed
56.
Zurück zum Zitat Nie, H., Sánchez, B. N., Wilker, E., Weisskopf, M. G., Schwartz, J., Sparrow, D., et al. (2009). Bone lead and endogenous exposure in an environmentally exposed elderly population: thenormative aging study. Journal of Occupational and Environmental Medicine,51(7), 848–857.PubMedPubMedCentral Nie, H., Sánchez, B. N., Wilker, E., Weisskopf, M. G., Schwartz, J., Sparrow, D., et al. (2009). Bone lead and endogenous exposure in an environmentally exposed elderly population: thenormative aging study. Journal of Occupational and Environmental Medicine,51(7), 848–857.PubMedPubMedCentral
Metadaten
Titel
Late-life Cardiac Injury in Rats following Early Life Exposure to Lead: Reversal Effect of Nutrient Metal Mixture
verfasst von
Chand Basha Davuljigari
Rajarami Reddy Gottipolu
Publikationsdatum
20.09.2019
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2020
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09549-2

Weitere Artikel der Ausgabe 3/2020

Cardiovascular Toxicology 3/2020 Zur Ausgabe