Skip to main content
Erschienen in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01.12.2018 | Research

Latitudinal differences on the global epidemiology of infantile spasms: systematic review and meta-analysis

verfasst von: Jason L. Jia, Shiyi Chen, Vishalini Sivarajah, Derek Stephens, Miguel A. Cortez

Erschienen in: Orphanet Journal of Rare Diseases | Ausgabe 1/2018

Abstract

Background

Infantile spasms represent the catastrophic, age-specific seizure type associated with acute and long-term neurological morbidity. However, due to rarity and heterogenous determination, there is persistent uncertainty of its pathophysiological and epidemiological characteristics. The purpose of the current study was to address a historically suspected latitudinal basis of infantile spasms incidence, and to interrogate a geographical basis of epidemiology, including the roles of latitude and other environmental factors, using meta-analytic and -regression methods.

Methods

A systematic search was performed in Ovid MEDLINE and Embase for primary reports on infantile spasms incidence and prevalence epidemiology.

Results

One thousand fifteen studies were screened to yield 54 eligible publications, from which 39 incidence figures and 18 prevalence figures were extracted. The pooled incidence was 0.249 cases/1000 live births. The pooled prevalence was 0.015 cases/1000 population. Univariate meta-regression determined a continental effect, with Europe demonstrating the highest onset compared from Asia (OR = 0.51, p = 0.004) and from North America (OR = 0.50, p = 0.004). Latitude was also positively correlated with incidence globally (OR = 1.02, p < 0.001). Sub-analyses determined a particularly elevated Scandinavian incidence compared to the rest of world (OR = 1.88, p < 0.001), and lack of latitudinal effect with Scandinavian exclusion (p = 0.10). Metrics of healthcare quality did not predict incidence. Multiple meta-regression determined that latitude was the key predictor of incidence (OR = 1.02, p = 0.001).

Conclusions

This is the first systematic epidemiological study of infantile spasms. Limitations included lack of Southern hemispheric representation, insufficient study selection and size to support some sub-continental analyses, and lack of accessible ethnic and healthcare quality data. Meta-analyses determined a novel, true geographical difference in incidence which is consistent with a latitudinal and/or ethnic contribution to epileptogenesis. These findings justify the establishment of a global registry of infantile spasms epidemiology to promote future systematic studies, clarify risk factors, and expand understanding of the pathophysiology.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13023-018-0952-x) contains supplementary material, which is available to authorized users.
Jason L. Jia and Shiyi Chen contributed equally to this work.
Abkürzungen
GDP
Gross Domestic Product
ILAE
International League Against Epilepsy
IS
infantile spasms
LB
Live births
OR
Odds Ratio
USD
United States Dollars
UVR
Ultraviolet radiation
WS
West Syndrome

Background

Infantile spasms (IS), the seizure type consisting of sudden truncal and/or limb flexion and/or extension occurring during the first year of life, are concerning for cognitive developmental stagnation and chronic neurological morbidity [14]. They therefore represent the eminent, catastrophic epileptic manifestation of infancy. Delay in diagnosis and treatment is a potentially modifiable risk factor [5], however identification of the factors leading to seizure onset has been hindered by the rarity and etiological heterogeneity of this seizure type. The age-specific incidence ranges from 0.2–0.5 cases/1000 live births (LB) and is associated with hundreds of abnormalities including brain malformations, hypoxic-ischemic encephalopathy, and genetic factors [2, 3].
Investigations of the epidemiology of IS have augmented the sparse knowledge of the seizure type. In 1991, Cowan & Hudson published the first, seminal review of global epidemiology, which included the finding of a 2.6-Fold increase of incidence in Finland compared to that of the U.S.A. [6]. This was preliminary evidence of a true geographical difference in IS onset, and consistent with the existence of an environmental risk to seizure development. However, there was insufficient primary data at that time to explore this hypothesis. In the ensuing 25 years, the geographical scope of the epidemiological database has expanded considerably without an updated review of environmental risk factors. The objective of the current study was to fulfil this knowledge gap: to systematically identify relevant reports, and establish the relationship between latitude and other geographical, temporal, and socioeconomic factors, on the incidence and prevalence of IS with meta-statistical methods.

Methods

The aim of the study was to collect all epidemiological reports of IS up to 2016 from which we would determine summary incidence and prevalence and covariate associations using meta-analytic and meta-regression techniques. Electrographic correlation with hypsarrhythmia, the chaotic interictal pattern that, while associated with IS is not a defining feature of this seizure type, was not required [7]. Neurodevelopmental regression was not required because it was described in only few studies. IS was defined as the clinical presentation of sudden truncal or limb flexion, extension, or mixed flexion-extension lasting less than a few seconds. This seizure type is currently referred in the 2017 International League Against Epilepsy (ILAE) Classification of Seizures as epileptic spasms, a definition interchangeable with infantile spasms when present during the infantile period [8]. Distinction exists from other seizure types associated with early childhood, notably myoclonic which consist of shorter, irregular jerks, and tonic which demonstrate extended and sustained stiffening. Only studies explicitly reporting infantile spasms as a feature of West Syndrome (WS) [2], or describing seizures of truncal and/or limb extension and/or flexion of few seconds duration or less, and not consistent with other seizure types, were appropriate for meta-analysis inclusion. Confirmation of a study’s compatibility with this definition was made during study screening by two independent reviewers, as described below. Incidence referred to the number of diagnoses during observation. Prevalence referred to the number of patients with active symptoms during observation.
This systematic review and meta-analysis was conducted in accordance to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines [9]. WS (triad of IS, hypsarrhythmia and abnormal cognition) was incorporated in the search for studies on IS, as this epileptic syndrome definitionally requires presence of IS, in addition to hypsarrhythmia. The search was conducted on MEDLINE (1946–2016) and Embase (1947–2016) using MeSH and free-text entries of “West Syndrome” and “infantile spasms” (Fig. 1). It encompassed all publications plus conference abstracts published until July 11, 2016. There was no language restriction for the inclusion of primary incidence and prevalence figures. Additional searches were conducted on Google Scholar and the University of Toronto libraries database. Studies were catalogued in Excel 2016.
Two independent reviewers (JLJ & VS) determined study eligibility. First-stage screening excluded all publications with titles or abstracts irrelevant to pediatric epilepsy epidemiology. During second-stage screening, publications were admitted into the epidemiological database based on full-text assessment and if the study reported the incidence or prevalence of IS patients, number of cases, sample size, and target population age range. Inability to fill missing data, despite exhaustive literature/public database searches and direct correspondence with study authors, warranted exclusion. Conflicts of study inclusion were reconciled between reviewers. Eligible studies were classified as incidence, prevalence, or both.
The two reviewers manually abstracted target catchment area, ascertainment period, number of cases and corresponding sex ratio, age-of-onset of IS, number of live births, target age-range, total catchment population, catchment or regional sex ratio, and incidence/age-specific prevalence from the eligible studies. Published prevalence figures were determined based on unequal lengths of follow-up which prohibited between-study comparability due to the age-specific nature of IS. To overcome this obstacle, these available prevalence figures were age-standardized by multiplying the age-specific prevalence by the proportion of the age-specific population within the total population, a method described in the Centers for Disease Control statistical manual [10]. Latitude of study centers were identified with the NASA resource “Latitude/Longitude Finder” (https://​www.​latlong.​net/​). The geographical midpoint was selected for expansive catchment areas. Time was calculated as the midpoint of the ascertainment period (midpoint year), or as the prevalence point. Gross Domestic Product (GDP) per capita of the midpoint year was recorded based on government report and inflation-adjusted to 2016 United States Dollars (USD). Measures of national healthcare quality included physicians per capita, health expenditure per capita, and health expenditure as percentage of GDP. These figures were abstracted for each of the incidence countries from the World Health Organization Global Health Repository from 2014, 2015, or 2016 as the data was rarely available for midpoint years [11]. National ethnic distributions for the incidence countries were also drawn from the CIA World Factbook [12] and converted to a binary variable according to a 50% Caucasian proportion threshold. Datasets of the incidence and prevalence databases, and the national healthcare/ethnicity metrics, are available in the Additional files 1, 2 and 3 section. Each publication was independently evaluated for methodological quality using a 7 point system modified from that of Loney et al. [13]. The following 7 factors were assessed: appropriate study design, normal sampling frame, adequate sample size, standard ascertainment criteria, unbiased diagnosticians, high response rate, and sufficient data published. We initially determined a sample size of 65,900 live births (LB) required to detect IS incidence from 0.16 and 0.42 cases/1000 LB with 95% confidence. 7,516,000 population was necessary to detect prevalence in the range of 0.018 to 0.025 cases/1000 with 95% confidence. Scores of 1–2, 3–4, and 5–7 represented low, medium, and high quality respectively.
Comprehensive Meta-Analysis version 3.0 software was used for statistical analyses and figure creation [14]. Effect sizes represented cumulative incidence or prevalence and were indexed as event rate. Incidence was expressed as the number of new cases/1000 LB and prevalence was expressed as the number of active cases/1000 population. Two meta-analyses were conducted for incidence and prevalence. Forest plots presented the range of outcome data and the summary effect sizes as calculated with the random-effects model and inverse-variance weighting. Heterogeneity of between-study variance was assessed using Q test of homogeneity and I2 statistics. I2 statistics of 25, 50 and 75% represented low, medium and high heterogeneity respectively. Funnel plots with Duval and Tweedie’s Trim and Fill method assessed publication bias. For incidence studies, univariate and multiple meta-regression models were constructed to determine associations between incidence and covariates including continent, latitude, time, and GDP per capita. Effect sizes were expressed as odds ratios (OR) with accompanying R2 analogs. Random-effects modeling was appropriate due to its conservative approach to within-study sampling error and between-study variance. The same procedure was repeated with prevalence studies. Additional meta-regression models determined associations between latitude and age-of-onset of IS, and between-study sex ratio and regional population sex ratio.

Results

Study selection

One thousand fifteen articles were identified in the primary searches. 234 duplicate sources were removed. 532 were excluded during first-stage screening. Of the remaining 249 studies which underwent full-text assessment, 195 were removed due to incompatibility with inclusion criteria or redundant data. The remaining 54 studies encompassed 22 countries in the Northern hemisphere [1568], 13 of which were located in the Scandinavian nations of Denmark, Sweden, Finland, and Iceland. There was no identification of studies from the Southern hemisphere. 3 studies reported both the incidence and prevalence of IS [15, 19, 30]. Thus, 57 data points were abstracted: 39 incidence figures. [1553] and 18 prevalence figures. [15, 19, 30, 5468] (Fig. 1). Incidence, midpoint, and unadjusted and age-adjusted prevalence figures were extracted (Table 1). Periods of observation amongst incidence and prevalence studies ranged from 1957 to 2014 and 1975 to 2009 respectively. The incidence database consisted of 22 European, 9 Asian, and 8 North American publications (Fig. 2), and the prevalence database consisted of 10 European, 5 Asian, and 3 North American publications (Fig. 3) [69]. 5 studies reported the age-of-onset of IS [28, 34, 37, 44, 48], 14 incidence [17, 20, 22, 2729, 31, 34, 35, 37, 38, 44, 48, 51], and 4 prevalence [15, 54, 58, 64] studies reported sexual distribution.
Table 1
Summary of studies reporting the incidence and/or prevalence of IS
 
INC or PRV
Date
Country
Latitude (oN)
Cases
Event Rate
Age-Adjusted
Bobo et al. (1994) [15]
INC
1987–1988
U.S.A.
45.55
11
0.100
 
Braathen & Theorell (1995) [16]
INC
1990–1992
Sweden
59.24
1
0.096
 
Brna et al. (2001) [17]
INC
1978–1998
Canada
46.34
75
0.307
 
Camfield et al. (1996) [18]
INC
1977–1985
Canada
44.68
32
0.323
 
Chen et al. (2004) [19]
INC
1985–1997
Taiwan
25.03
2
0.060
 
Cortez et al. (1997) [20]
INC
1984–1993
Canada
43.65
76
0.056
 
Doerfer & Wasser (1987) [21]
INC
1982–1985
Germany
48.55
3
0.570
 
Doose & Sitepu (1982) [22]
INC
1957–1966
Germany
54.32
18
0.478
 
Dura-Trave et al. (2008) [23]
INC
2002–2005
Spain
42.70
10
0.301
 
Eltze et al. (2013) [24]
INC
2005–2006
U.K.
51.51
16
0.300
 
Freitag et al. (2001) [25]
INC
1999–2000
Germany
49.45
0
0.000
 
Heijbel et al. (1975) [26]
INC
1973–1974
Sweden
65.33
1
0.317
 
Hino-Fukuyo et al. (2009) [27]
INC
2000–2005
Japan
38.27
45
0.420
 
Howitz & Platz (1978) [28]
INC
1976–1977
Denmark
56.26
21
0.322
 
Hwang (2001) [29]
INC
1997–2000
South Korea
35.91
324
0.168
 
Joensen (1986) [30]
INC
1970–1980
Denmark
61.89
4
0.467
 
Lee & Ong (2001) [31]
INC
1998–1999
Singapore
1.35
9
0.310
 
Loiseau et al. (1990) [32]
INC
1984–1985
France
44.85
8
0.535
 
Lommi et al. (2010) [33]
INC
1997–2006
Finland
60.17
48
0.376
 
Ludvigsson et al. (1994) [34]
INC
1981–1990
Iceland
64.96
13
0.302
 
Matsuo et al. (2001) [35]
INC
1989–1998
Japan
32.74
47
0.310
 
Olafsson et al. (2005) [36]
INC
1995–1999
Iceland
64.96
6
0.474
 
Primec et al. (2002) [37]
INC
1985–1995
Slovenia
46.15
47
0.206
 
Rantala & Putkonen (1999) [38]
INC
1976–1993
Finland
65.01
37
0.410
 
Riikonen (1995) [39]
INC
1960–1991
Finland
60.22
209
0.425
 
Saemundsen et al. (2007) [40]
INC
1981–1998
Iceland
64.96
25
0.338
 
Sarsenbayeva et al. (2015) [41]
INC
2013–2014
Kazakhstan
48.02
60
0.154
 
Schmitt et al. (1996) [42]
INC
1991–1991
Germany
51.26
4
0.180
 
Shields et al. (1988) [43]
INC
1967, 1972
Denmark
56.26
80
0.513
 
Sidenvall & Eeg-Olofsson (1995) [44]
INC
1987–1991
Sweden
61.38
57
0.450
 
Trevathan et al. (1999) [45]
INC
1975–1977
U.S.A.
33.75
20
0.290
 
Tsuboi (1988) [46]
INC
1974–1980
Japan
35.67
3
0.175
 
Van Den Berg et al. (1969) [47]
INC
1960–1968
U.S.A.
37.80
3
0.162
 
Vardi et al. (2005) [48]
INC
1981–1997
Israel
32.02
31
0.220
 
Verity et al. (1992) [49]
INC
1970–1980
U.K.
55.38
3
0.187
 
Wendt et al. (1985) [50]
INC
1966–1966
Finland
66.47
7
0.581
 
Wirrell et al. (2011) [51]
INC
1980–2004
U.S.A.
44.00
9
0.198
 
Young (2001) [52]
INC
1998–1999
Taiwan
23.70
41
0.074
 
Zarrelli et al. (1999) [53]
INC
1980–1984
U.S.A.
44.01
0
0.000
 
Beilmann et al. (1999) [54]
PRV
1997
Estonia
58.38
8
0.0138
0.0139
Bobo et al. (1994) [15]
PRV
1988
U.S.A.
45.55
21
0.0028
0.0028
Chen et al. (2004) [19]
PRV
1997
Taiwan
25.03
142
0.0065
0.0065
Cowan et al. (1989) [55]
PRV
1983
U.S.A.
35.01
23
0.0327
0.0328
Dura-Trave et al. (2012) [56]
PRV
2009
Spain
42.70
24
0.0396
0.0397
Endziniene et al. (1997) [57]
PRV
1995
Lithuania
54.90
3
0.0072
0.0066
Eriksson & Koivikko (1997) [58]
PRV
1992
Finland
61.50
25
0.0578
0.0580
Granieri et al. (1983) [59]
PRV
1978
Italy
44.89
1
0.0221
0.0222
Ishida (1985) [60]
PRV
1975
Japan
34.66
41
0.0225
0.0226
Joensen (1986) [30]
PRV
1980
Denmark
61.89
4
0.0917
0.0917
Koul et al. (1988) [61]
PRV
1986
India
33.70
4
0.0628
0.0628
Kurth et al. (2010) [62]
PRV
2006
U.S.A.
37.09
59
0.0042
0.0009
Kwong et al. (2001) [63]
PRV
1997
China
22.41
16
0.0142
0.0143
Larsson & Olofsson (2006) [64]
PRV
2000
Sweden
59.86
4
0.0135
0.0136
Maremmani et al. (1991) [65]
PRV
1985
Italy
43.78
0
0.0000
0.0000
Oka et al. (2001) [66]
PRV
1994
Japan
34.66
6
0.0031
0.0031
Olafsson & Hauser (1999) [67]
PRV
1993
Iceland
64.96
2
0.0223
0.0223
Sidenvall et al. (1996) [68]
PRV
1985
Sweden
65.33
3
0.0180
0.0181
39 incidence (INC) and 18 prevalence (PRV) data points were abstracted from 54 studies [1568]. For incidence studies, date refers to the period of observation and event rate is the number of new cases per 1000 live births. For prevalence studies, date refers to the prevalence point, event rate is the age-specific prevalence, and age-adjustment lists the age-standardized figure per 1000 population

Methodological assessments

Risk of bias assessment determined an average total score of 5.05 (SD = 1.47) out of 7 for the incidence database. 92% of studies in this database had appropriate study design, 46% had adequate sample size, 90% had a representative sampling frame, 74% had standard diagnostic criteria, 62% had objective case assessors, 87% had high response rate, and 54% reported sufficient data. The Scandinavian selection specifically had a total score of 4.71 compared to the non-Scandinavian (Equatorial) selection score of 5.04. Of these regions respectively, 86 and 92% had appropriate study design, 43 and 46% had adequate sample size, 93 and 85% had a representative sampling frame, 64 and 77% had standard diagnostic criteria, 57 and 62% had objective case assessors, 79 and 89% had high response rate, and 50 and 54% reported sufficient data.
The prevalence dataset had an average total score of 5.17 (SD = 0.62), of which 100% of studies had appropriate study design, 16% had adequate sample size, 90% had a representative sampling frame, 95% had standard diagnostic criteria, 32% had objective case assessors, 74% had high response rate, and 100% reported sufficient data.

Meta-analyses: Summary incidence and prevalence

Two meta-analyses of the incidence and prevalence study selections were constructed. From 39 incidence figures, a summary rate of 0.249 cases/1000 LB (95% CI 0.202–0.303) with Q statistics of 502.04 (p < 0.001) and I2 of 92.70 was determined. The summary prevalence from 18 data points was 0.015 cases/1000 population (95% CI 0.009–0.024) with Q statistics of 333.42 (p < 0.001) and I2 of 94.90. Forest-plots of the databases were constructed (Fig. 4a and Fig. 5a). The summary incidence of each country was also calculated by meta-analyses. Of note, the pooled incidence in Finland was 0.446/1000 LB (95% CI 0.408–0.485) and in the U.S.A. was 0.134/1000 LB (95% CI 0.076–0.225) which represented an approximate 3.3-Fold increase. The incidence in Europe was 0.358/1000 LB (95% CI 0.309–0.415), in Asia was 0.18/1000 LB (95% CI 0.121–0.268), and in North America was 0.17/1000 LB (95% CI 0.086–0.337).

Univariate meta-regression: Latitude and continent

Meta-regression between continent and incidence was significant (R2 analog = 0.35; p = 0.0015) (Fig. 6a). Compared to European counterparts, Asian infants were 49% less likely to have IS onset (OR = 0.51; 95% CI 0.33–0.81, p = 0.0042) and North American infants were 50% less likely (OR = 0.50; 95% CI 0.31–0.80, p = 0.0037). The European sources encompassed a latitudinal range of 26.03oN to 66.47oN which is polar-centric compared to that of Asia (1.35oN to 48.02oN) and North America (33.75oN to 46.34oN). Meta-regression with studies only in the 23.70oN to 46.34oN range, excluding 18 outlying sites, showed no effect (p = 0.33). Identical analytical procedure with the prevalence database also showed no effect (p = 0.10).
The univariate meta-regression model of latitude and incidence globally determined a positive effect (OR = 1.02; 95% CI 1.01–1.04; R2 analog = 0.49; p < 0.001) (Fig. 6b). There was no association between latitude and prevalence (p = 0.26). Sub-continental meta-regression analyses showed no latitudinal effect upon incidence within North America (p = 0.42), and Asia (p = 0.58), yet a positive correlation was detected within Europe (OR = 1.02; 95% CI 1.01–1.03; R2 analog = 0.87, p < 0.001) (Fig. 6c).
To clarify the European trend, countries North of the 55.65oN latitudinal threshold (n = 13), which were exclusively Scandinavian (Iceland, Finland, Sweden, Denmark), were analyzed separately. The regional summary incidence was 0.378 cases/1000 LB (SD = 0.342–0.416), without latitudinal effect (p = 0.28), and non-significant goodness-of-fit (Q = 10.26; df = 11; p = 0.51). The remaining 26 studies spanned 55.38oN to 1.35oN with summary incidence of 0.199 cases/1000 LB (SD = 0.156–0.250), no latitudinal effect (p = 0.10), and significant goodness-of-fit (Q = 231.87; df = 24; p < 0.001). Meta-regression confirmed higher incidence of IS in the Scandinavian region compared to that of the world studies (OR = 1.88; 95% CI 1.30–2.73; p < 0.001), and other 10 European studies (OR = 1.49; 95% CI 1.17–1.89; p < 0.001). The forest plots and summary incidence rates of sources above and below the 56oN latitudinal threshold were generated (Fig. 7). Additional sensitivity analyses excluding 2 birth cohort [47, 49] and 4 community-based studies [21, 24, 42, 49] did not alter these findings, or the global latitudinal effect (Fig. 8a and Fig. 8b).
The univariate meta-regression model of latitude and age-of-onset of IS, which was composed of 5 studies, determined that latitude did not predict age-of-onset (p = 0.38).

Univariate meta-regression: Healthcare quality and Caucasian proportion

1 of 3 covariates representing healthcare quality was correlated to incidence. A positive relationship existed with physicians per capita (MD/capita) (OR = 1.57; 95% CI 1.09–2.27; p = 0.016). There was no effect of health expenditure per capita (p = 0.64), and health expenditure as percentage of GDP (p = 0.57).
No relationship existed between incidence and binary variable of national Caucasian proportion above 50% (p = 0.07).

Univariate meta-regression: Time and GDP per capita

Incidence was not predicted by time in the global (p = 0.07) (Fig. 8c), North American, (p = 0.66), or Asian (p = 0.88) contexts, although within Europe a negative correlation was observed (OR = 0.99; 95% CI 0.98–0.99; p = 0.0346). It was not predicted by GDP per capita globally (inflation-adjusted to 2016 USD, thousands) (p = 0.30). Conversely, the worldwide prevalence was negatively associated with GDP per capita (OR = 0.98; 95% CI 0.95–1.00; p = 0.047) (Fig. 9b) but not to time (p = 0.17) (Fig. 9c).

Multiple meta-regression

Multiple meta-regression models consisting of latitude, time, and GDP per capita covariates were constructed. Continent was excluded because of its correlation with latitude and categorical status. There was positive association between latitude and incidence (OR = 1.02; 95% CI 1.01–1.03; p = 0.001) whereas GDP per capita (p = 0.54) and time (p = 0.39) were not associated. The multiple meta-regression model for prevalence revealed no associations.
The revised multiple meta-regression model incorporating MD/capita and the binary variable of Caucasian proportion demonstrated a positive relationship between incidence and only latitude (OR = 1.03; 95% CI 1.007–1.050; p = 0.01). The healthcare and ethnic covariates did not predict incidence in the presence of the other covariates (p = 0.76, p = 0.61 respectively).

Analyses of sexual predisposition

From 14 incidence studies reporting sexual distribution, there was no significant predominance of male amongst patients (p = 0.056). The male proportion in the reference population was 49%. No association existed between the sample and population male proportions (p = 0.81). Amongst the 4 prevalence studies with sexual data, there was no majority of males (p = 0.14), and no association to the preference male proportion of 49% (p = 0.52).

Analyses of publication Bias

The funnel plot of incidence studies with slight asymmetrical distribution was shown in Fig. 4b. The trim-and-fill method yielded an adjusted effect estimate of 0.25 cases/1000 LB, in comparison to the summary estimate of 0.249 cases/1000 LB. The funnel plot of prevalence studies was also shown in Fig. 5b and yielded an adjusted effect estimate of 0.010 cases/1000 population compared to the summary estimate of 0.015 cases/1000 population.

Discussion

Clinical and animal studies have advanced our understanding of IS, yet there is persistent uncertainty of its pathophysiology and clinical variance [70]. These knowledge gaps suggest the existence of risk factors that influence the onset and activity of IS. The objective of the current study was to identify such factors with a novel, epidemiological approach.
The unique and specific clinical features described in the epileptic spasm seizure semiology, which historically and colloquially have been termed infantile spasms, have remained unchanged since their first description by Dr. William James West in 1841 [1]. Thus, by selecting studies explicitly reporting “infantile spasms”, “West Syndrome”, or its seizure type [2], we ensured that identification and inclusion of patients was complete irrespective of the date at which the study was conducted. An initial selection of 1015 articles was narrowed to 54 relevant studies on IS epidemiology. 39 publications of incidence determined a summary rate of 0.249 cases/1000 LB. This was within the previously-reported range of 0.2–0.5 cases/1000 LB. 18 publications provided a pooled prevalence of 0.015 cases/1000 population, which could not be compared to historical accounts due to unstandardized age ranges. The high I2 values in both databases indicated significant between-study heterogeneity and supported the notion that global IS epidemiology was not constant. Accordingly, a 3.3-Fold increase of summary incidence in Finland versus that of the U.S.A. was observed, in comparison to Cowan & Hudson’s seminal report of a 2.6-Fold difference in 1991 [6]. The basis of this inequality was unclear, and we hypothesized that it, and overall global heterogeneity, was the result of geographical factors. Therefore, we constructed univariate meta-regression analyses plotting incidence and prevalence against environmental covariates.
The continental meta-regression demonstrated increased incidence in Europe compared to that of Asia and North America. However, the comparable between-continent incidence after exclusion of Scandinavian studies indicated that this region featured populations of increased IS onset. Results of the meta-regression analyses of the latitudinal covariate were consistent with this pattern. We first determined the positive, global latitudinal gradient of IS incidence (Fig. 6a). The effect was unchanged by the exclusion of community-based and birth cohort studies into the predominantly hospital-based, cross-sectional database (Fig. 8a and Fig. 8b). Furthermore, latitude was the only covariate that maintained predictive value of incidence in the multivariate analyses. This was despite outlying studies, such as Lee & Ong, 2001 and Matsuo et al., 2001, that sampled equatorially-located populations to determine incidences of 0.31 cases/1000 LB which were higher than studies at comparable latitudes and the summary incidence. The latitudinal covariate could not predict all studies of the incidence database, which may be the result of factors not addressed in an epidemiological analysis and enhanced by the narrow study selection. Nonetheless, the latitudinal effect on global incidence, present in both univariate and multivariate analyses, was a novel finding that was further interrogated.
The sub-continental analyses of latitude and IS incidence failed to reproduce the trend in North American and Asia. This may partly be justified by the significant decline in study selection sizes of these regions, to 8 and 9 publications respectively. Conversely, the latitudinal effect was observed in the European analysis which consisted of 22 publications. The Scandinavian cohort exhibited particularly elevated incidence compared to the Equatorial selection. To explore the factors responsible for this difference, meta-analytic and regression models were constructed for that region separately. Forest plots visualized the relatively increased incidence and low heterogeneity of the Scandinavian selection (Fig. 7). The lack of latitudinal effect in this region was not unexpected considering the small range of event rate and geography. However, the absent latitudinal effect in the Equatorial cohort was consistent with the alternative hypothesis that the global latitudinal trend was elicited based on polar results.
The elevation of IS incidence in Scandinavia was traditionally attributed to regionally-specific superior healthcare and case detection. We did not identify literature attesting to a superior case detection system in the region. Furthermore, we conducted univariate analyses comparing global incidence with three national health system covariates determined from the World Health Organization Health Repository. An important consideration and potential limitation was of temporal incongruency: while study observation periods ranged from 1957 to 2014, the healthcare metrics were accessible only for 2014 to 2016. There is uncertainty that, based on publicly available data, the contemporary statistics reflect their historical counterparts. The assumption of superior Scandinavian healthcare is grossly consistent with 2014 to 2016 statistics demonstrating higher number of medical doctors per capita, ranked as 2, 4, 5, 9 for Sweden, Iceland, Denmark, and Finland respectively out of 17 countries. Nonetheless, we interpreted the univariate analyses with caution. We determined only one healthcare metric to be positively associated with incidence, the number of medical doctors per capita. However, in the multivariate meta-regression model, this covariate became non-significant. This indicated that if a superior Scandinavian detection system had existed, it did not affect reported incidence. This was supported by the methodological assessment that showed comparable ascertainment quality with Equatorial studies. Ultimately, we could provide little evidence of healthcare difference in Scandinavia contributing to elevated incidence of IS.
Whether the increased Scandinavian incidence is attributable to ethnicity remains unknown. Our attempt to elucidate an ethnic effect with the analysis of proportion of Caucasian individuals on incidence was inconclusive. However, this method had low sensitivity due to the small selection of countries and unstandardized data. This ethnic role is plausible based on its relationship to epilepsy prevalence as well as distinct patterns of disease epidemiology comparing Scandinavian populations internationally and internally [7173]. Clarification of the effect is confounded by the hypothesized latitudinal effect; it may be necessary in future studies to examine a geographically limited, heterogenous selection of patients with ethnic stratification to identify a between-group effect. Furthermore, comparison of IS incidence between Scandinavian, or other at-risk ethnicities, to that of local populations across multiple nations and latitudes may demonstrate consistent elevation and reinforce suspicion of ethnic susceptibility. Ultimately, interrogation of the ethnic variable is highly dependent on the availability of data, and therefore continued accumulation of the epidemiologic database and strategic and creative design will likely be necessary to support these studies.
A further consideration in the determination of ethnic effect on IS incidence is the highly heterogenous determination of the seizure type: etiology which is proven in 60% of patients consists of dozens of pre- to post-natal disorders. Ethnicity may indirectly influence onset by affecting the incidence and/or predilection for seizure generation of these etiologies. Specifically, genetic disorders including chromosomal abnormalities and tuberous sclerosis complex constitute 15% of proven etiologies with unclear ethnic relationship [74]. We expect future studies to compile the currently-lacking ethnic data and corresponding etiologic distributions, to reveal nuanced patterns of etiological incidence, IS onset, and ethnicity.
The lack of latitudinal effect in the non-Scandinavian, Equatorial selection prevents confirmation of the latitudinal risk factor in IS onset. However, the decline in selection size from 39 to 26 sources represents a notable, potentially significant limitation especially in the context of known outlying studies in East-Asia. Furthermore, the relatively low probability value associated with this analysis (p = 0.10) indicated that the trend may be obscured. Dismissal of the latitudinal phenomenon would be premature on account of these statistical considerations. The existence of geo-epidemiological precedents in various immune-related disorders [75], viral infections [76], and the adaptive evolution of ACTN3 [77] indirectly support a latitudinal factor to IS incidence although only additional epidemiological studies on this topic may be conclusive. We expect that augmentation of the study selection outside of Scandinavia, including lacking southern hemispheric input, will reveal the Equatorial, and other regional, latitudinal trends.
If indeed the latitudinal effect exists, ultraviolet radiation (UVR), which is received in an inverse latitudinal manner, may be the relevant environmental agent. Environmental-neurophysiological interfaces have already been established in mice with seasonally-related, light-induced, mTOR and BDNF signalling-related dendritic morphologic adaptation [78], while UVR’s neurological role is thought to involve at least sleep duration [79], clock gene diversity [80], and development of multiple sclerosis [81]. In the case of IS, the UVR-epileptic interaction may be mediated by Vitamin D3, the secosteroid synthesized cutaneously in an UVR-dependent fashion, although infants primarily derive it from maternal contribution [82]. D3 depletion, which is associated to dysregulation of neurological immune activity [83] and neuronal hyper-excitability [84], in infants due to diminished maternal contribution secondary to latitude-related decrease in UVR exposure, may enable neurophysiological instability and seizures. This hypothesis is consistent with our analysis of age-of-onset of IS, which determined no association to latitude. Therefore, UVR would not induce seizure onset, but lower the seizure-threshold to predispose spasm generation by the underlying etiology.
A complementary environmentally-driven mechanism of IS development may involve melatonin, the key pineal hormone with modulatory effects on the circadian rhythm. Its secretion is physiologically suppressed by light exposure which results in a diurnal pattern of release, with peaking during night-time sleep. The expression of melatonin receptors across the brain suggest widespread and diverse neurological functions, and potential pathological roles, that remain poorly understood [85]. Evidence already exists for a proconvulsant effect of melatonin based on correlative studies of seizure frequency and elevated secretion during sleep and the pre-menstrual period [86]. Subsequent clinical studies have been inconclusive, however it is conceivable that the daily periods of prolonged darkness during winter nights in polar regions enhance the proconvulsant effect. Confirming the mechanisms of melatonin and D3-based processes of IS epileptogenesis is beyond the capability of the current database although elaboration of the latitudinal effect by etiology in future meta-analyses will be insightful.
Meta-regression of the other covariates was largely non-significant. Time was not a global predictor of incidence or prevalence (Fig. 8c and Fig. 9c). This was despite increasing survival of at-risk neonates and dissemination of IS awareness and diagnostic criteria, theoretically leading to increased incidence and prevalence [87]. Furthermore, the negative European correlation existing between time and incidence may have reflected increasingly effective management of etiological conditions across an expansive temporal scope. Perhaps these competing phenomena have manifested as overall static epidemiology, although there is no known study of this subject. GDP per capita was also negatively associated to IS prevalence globally, which suggested that national wealth modulated IS activity. This is a cautious conclusion considering that GDP was a non-specific measure of health care utilization. Finally, examination of the sex ratio of IS patients determined no correlation between proportion of study and population males. IS epidemiology has historically remarked a male preponderance [6] and this finding maintains the hypothesis that male sex is a risk factor. The relevant mechanisms may be indirect - as consequences of etiologies with poor outcomes more prevalent amongst males, and/or direct - as manifestations of the fundamental between-sex differences in brain morphology.
The main limitation of the current study was the restricted size of the database. The 54 studies questionably powered sub-analyses. Furthermore, recent human migration patterns could not be compiled due to lack of reporting, the foremost detractor of data validity. The methodological assessments also identified deficiency of unbiased case ascertainment in the incidence and prevalence databases, present at only 62 and 32% respectively. Adequate sample size was achieved in 46 and 16%, which likely enhanced the impacts of inadequate study selection. Fortunately, the other methodological domains were consistently fulfilled, and the overall scores and negligible publication bias indicated high quality of both databases.
This study has provided the first epidemiological evidence of a true geographical difference in IS incidence, which elaborates on the observations of Cowan & Hudson in 1991. This is apparent in the significant variability within the expanded global database, as well as between-continent and -region, that is independent of healthcare quality. The basis of the geographical effect is unconfirmed, although our subsequent analyses suggest a role of latitude and ethnicity, particularly in the Scandinavian region. Therefore, our findings justify the establishment of the global registry of IS epidemiology to facilitate detailed examination of this effect, and role of other environmental factors on IS generation, with additional studies and particularly Southern hemispheric input. Even with a limited database, our results have enabled and supported the hypotheses of Vitamin D3 and melatonin bases to seizure susceptibility, mechanisms which predispose IS onset independent of underlying etiology. These represent significant, emerging dimensions to IS pathophysiology. We anticipate that continued accumulation and analyses of epidemiological studies will expand this knowledge and clarify research targets. Specifically, future steps will likely interrogate the yet unconfirmed role of ethnicity, as demonstrated in other epilepsy syndromes, and incorporate novel concepts of the chronobiology of the mTOR pathway [78] and epigenetic factors in IS generation [84]. Consolidation of these clinical and pathophysiological findings may ultimately identify risk factors, motivate special scrutiny of susceptible populations, and support earlier identification and treatment to improve acute and chronic outcomes associated with IS [5, 8891].

Conclusions

Results from this systematic review and meta-analysis of the epidemiology of infantile spasms indicate an environmental dimension to the seizure type. Specifically, the significant heterogeneity of incidence and prevalence suggest a real geographical difference. The global latitudinal trend and exceptional Scandinavian incidence are consistent with the roles of a latitudinally-dependent risk factor or ethnicity respectively. However, further interrogation is difficult based on the sparsity and heterogeneity of available studies.
To expand on these novel findings and concepts, we advocate for the establishment of a global registry of infantile spasms incidence and prevalence. Such a global repository may guide the standardization of future original epidemiological studies and collect currently-lacking Southern hemispheric perspective, to facilitate the next generations of synthesis studies and ultimately inform areas of research and clinical intervention.

Acknowledgements

The authors are grateful to Mamadou Diallo for his revision of the figures.

Funding

This study was funded with the operating grant No. 6240100083-CI-P006:EpLink (MAC) from the EpLink – The Epilepsy Research Program of the Ontario Brain Institute, Canada.

Availability of data and materials

The datasets supporting the conclusions of this article are provided as accompanying Excel (.xlsx) documents (Additional Files 1, 2, and 3) in the additional files sections.

Authors’ information

JLJ is a Medical Student in the Department of Medicine of the University of Toronto with research experience in learning and memory.
SC is a Biostatistician in the Peter Gilgan Center Research Learning of the SickKids Research Institute.
VS is a Medical Student in the Department of Medicine of the University of Toronto with training and research experience involving global health and clinical epidemiology.
DS is a Senior Biostatistician and Manager of Biostatistics, Design & Analysis in the Peter Gilgan Center Research Learning, SickKids Research Institute. He is also a lecturer with the Department of Public Health Sciences at the University of Toronto.
MAC is an Associate Professor in the Department of Paediatrics of the University of Toronto. He is a member of the Canadian Society of Clinical Neurophysiologists, the American Epilepsy Society, and the Canadian Association of Neuroscience. He is an investigator in the Peter Gilgan Center Research Learning of the SickKids Research Institute. He participated in the Task Force Working Group 2 (WG2) for the Neurobiology Commission of the (ILAE) from 2014 to 2018, to produce the standardization of the EEG methodology in developing rodents for the study of animal models of refractory epilepsies of childhood.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat West WJ. On a peculiar form of infantile convulsions. Lancet. 1841;1:724–5.CrossRef West WJ. On a peculiar form of infantile convulsions. Lancet. 1841;1:724–5.CrossRef
2.
Zurück zum Zitat Gastaut H, Roger J, Soulayrol R, Pinsard N. L’encéphalopathie myoclonique infantile avec hypsarythmie (syndrome de West): compte rendu de la réunion européenne d’information électroencéphalographique. Paris: Masson; 1964. Gastaut H, Roger J, Soulayrol R, Pinsard N. L’encéphalopathie myoclonique infantile avec hypsarythmie (syndrome de West): compte rendu de la réunion européenne d’information électroencéphalographique. Paris: Masson; 1964.
3.
Zurück zum Zitat Pavone P, Striano P, Falsaperla R, Pavone L, Ruggieri M. Infantile spasms syndrome, west syndrome and related phenotypes: what we know in 2013. Brain Dev-JPN. 2014;36(9):739–51.CrossRef Pavone P, Striano P, Falsaperla R, Pavone L, Ruggieri M. Infantile spasms syndrome, west syndrome and related phenotypes: what we know in 2013. Brain Dev-JPN. 2014;36(9):739–51.CrossRef
4.
5.
Zurück zum Zitat Lux AL. Latest American and European updates on infantile spasms. Curr Neurol Neurosci Rep. 2014;13:334.CrossRef Lux AL. Latest American and European updates on infantile spasms. Curr Neurol Neurosci Rep. 2014;13:334.CrossRef
6.
Zurück zum Zitat Cowan LD, Hudson LS. The epidemiology and natural history of infantile spasms. J Child Neurol. 1991;6:355–64.PubMedCrossRef Cowan LD, Hudson LS. The epidemiology and natural history of infantile spasms. J Child Neurol. 1991;6:355–64.PubMedCrossRef
7.
Zurück zum Zitat Caraballo RH, Ruggieri V, Gonzalez G. Infantile spams without hypsarrhythmia: a study of 16 cases. Seizure. 2011;20:197–202.PubMedCrossRef Caraballo RH, Ruggieri V, Gonzalez G. Infantile spams without hypsarrhythmia: a study of 16 cases. Seizure. 2011;20:197–202.PubMedCrossRef
8.
Zurück zum Zitat Fisher RS. An overview of the 2017 ILAE operational classification of seizure types. Epilepsy Behav. 2017;70:271–3.PubMedCrossRef Fisher RS. An overview of the 2017 ILAE operational classification of seizure types. Epilepsy Behav. 2017;70:271–3.PubMedCrossRef
9.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Douglas GA, The PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.PubMedCrossRef Moher D, Liberati A, Tetzlaff J, Douglas GA, The PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.PubMedCrossRef
13.
Zurück zum Zitat Loney PL, Chambers LW, Bennett KJ, Roberts JG, Stratford PW. Critical appraisal of the health research literature: prevalence or incidence of a health problem. Chronic Dis Can. 1998;19:170–6.PubMed Loney PL, Chambers LW, Bennett KJ, Roberts JG, Stratford PW. Critical appraisal of the health research literature: prevalence or incidence of a health problem. Chronic Dis Can. 1998;19:170–6.PubMed
14.
Zurück zum Zitat Comprehensive Meta-Analysis [computer program]. Version 3.0. Englewood, NJ:Biostat Inc. 2017. Comprehensive Meta-Analysis [computer program]. Version 3.0. Englewood, NJ:Biostat Inc. 2017.
15.
Zurück zum Zitat Bobo JK, Thapa PB, Anderson JR, Gale JL. Acute encephalopathy and seizure rates in children under age two years in Oregon and Washington state. Am J Epidemiol. 1994;140(1):27–38.PubMedCrossRef Bobo JK, Thapa PB, Anderson JR, Gale JL. Acute encephalopathy and seizure rates in children under age two years in Oregon and Washington state. Am J Epidemiol. 1994;140(1):27–38.PubMedCrossRef
16.
Zurück zum Zitat Braathen G, Theorell K. A general hospital population of childhood epilepsy. Acta Pediatr. 1995;84:1143–6.CrossRef Braathen G, Theorell K. A general hospital population of childhood epilepsy. Acta Pediatr. 1995;84:1143–6.CrossRef
17.
Zurück zum Zitat Brna PM, Gordon KE, Dooley JM, Wood EP. The epidemiology of infantile spasms. Can J Neurol Sci. 2001;28:309–12.PubMedCrossRef Brna PM, Gordon KE, Dooley JM, Wood EP. The epidemiology of infantile spasms. Can J Neurol Sci. 2001;28:309–12.PubMedCrossRef
18.
Zurück zum Zitat Camfield CS, Camfield PR, Gordon K, Wirrell E, Dooley JM. Incidence of epilepsy in childhood and adolescence: a population-based study in Nova Scotia from 1977 to 1985. Epilepsia. 1996;37(1):19–23.PubMedCrossRef Camfield CS, Camfield PR, Gordon K, Wirrell E, Dooley JM. Incidence of epilepsy in childhood and adolescence: a population-based study in Nova Scotia from 1977 to 1985. Epilepsia. 1996;37(1):19–23.PubMedCrossRef
19.
Zurück zum Zitat Chen CC, Chen TF, Lin HC, Oon PC, Wu HM, Wang PJ, et al. Estimation of prevalence and incidence of infantile spasms in Taiwan using capture-recapture method. Epilepsy Res. 2004;58:37–42.PubMedCrossRef Chen CC, Chen TF, Lin HC, Oon PC, Wu HM, Wang PJ, et al. Estimation of prevalence and incidence of infantile spasms in Taiwan using capture-recapture method. Epilepsy Res. 2004;58:37–42.PubMedCrossRef
20.
Zurück zum Zitat Cortez MA, Burnham WM, Hwang PA. Infantile spasms: seasonal onset differences and zeitgebers. Pediatr Neurol. 1997;16(3):220–4.PubMedCrossRef Cortez MA, Burnham WM, Hwang PA. Infantile spasms: seasonal onset differences and zeitgebers. Pediatr Neurol. 1997;16(3):220–4.PubMedCrossRef
21.
Zurück zum Zitat Doerfer J, Wasser S. An epidemiologic study of febrile seizures and epilepsy in children. Epilepsy Res. 1987;1:149–51.PubMedCrossRef Doerfer J, Wasser S. An epidemiologic study of febrile seizures and epilepsy in children. Epilepsy Res. 1987;1:149–51.PubMedCrossRef
22.
Zurück zum Zitat Doose H, Sitepu B. Childhood epilepsy in a German City. Neuropediatrics. 1982;14:220–4.CrossRef Doose H, Sitepu B. Childhood epilepsy in a German City. Neuropediatrics. 1982;14:220–4.CrossRef
23.
Zurück zum Zitat Dura-Trave T, Yoldi-Petri ME, Gallinas-Victoriano F. Incidence of epilepsies and epileptic syndromes among children in Navarre, Spain: 2002 through 2005. J Child Neurol. 2008;23:878–82.PubMedCrossRef Dura-Trave T, Yoldi-Petri ME, Gallinas-Victoriano F. Incidence of epilepsies and epileptic syndromes among children in Navarre, Spain: 2002 through 2005. J Child Neurol. 2008;23:878–82.PubMedCrossRef
24.
Zurück zum Zitat Eltze CM, Chong WK, Cox T, Whitney A, Cortina-Borja M, Chin RF, et al. A population-based study of newly diagnosed epilepsy in infants. Epilepsia. 2013;54:437–45.PubMedCrossRef Eltze CM, Chong WK, Cox T, Whitney A, Cortina-Borja M, Chin RF, et al. A population-based study of newly diagnosed epilepsy in infants. Epilepsia. 2013;54:437–45.PubMedCrossRef
25.
Zurück zum Zitat Freitag CM, May TW, Pfafflin M, Konig S, Rating D. Incidence of epilepsies and epileptic syndromes in children and adolescents: a population-based prospective study in Germany. Epilepsia. 2001;42(8):979–85.PubMedCrossRef Freitag CM, May TW, Pfafflin M, Konig S, Rating D. Incidence of epilepsies and epileptic syndromes in children and adolescents: a population-based prospective study in Germany. Epilepsia. 2001;42(8):979–85.PubMedCrossRef
26.
Zurück zum Zitat Heijbel J, Blom S, Bergfors PG. Benign epilepsy of children centrotemporal eeg foci. A study of incidence rate in outpatient care. Epilepsia. 1975;16:657–64.PubMedCrossRef Heijbel J, Blom S, Bergfors PG. Benign epilepsy of children centrotemporal eeg foci. A study of incidence rate in outpatient care. Epilepsia. 1975;16:657–64.PubMedCrossRef
27.
Zurück zum Zitat Hino-Fukuyo N, Haginoya K, Iinuma K, Uematsu M, Tsuchiya S. Neuroepidemiology of west syndrome and early infantile epileptic encephalopathy in Miyagi prefecture, Japan. Epilepsy Res. 2009;87:299–301.PubMedCrossRef Hino-Fukuyo N, Haginoya K, Iinuma K, Uematsu M, Tsuchiya S. Neuroepidemiology of west syndrome and early infantile epileptic encephalopathy in Miyagi prefecture, Japan. Epilepsy Res. 2009;87:299–301.PubMedCrossRef
29.
Zurück zum Zitat Hwang YS. The Korean child neurology society. National survey on west syndrome in Korea. Brain Dev-JPN. 2001;23:565–9.CrossRef Hwang YS. The Korean child neurology society. National survey on west syndrome in Korea. Brain Dev-JPN. 2001;23:565–9.CrossRef
30.
Zurück zum Zitat Joensen P. Prevalence, incidence, and classification of epilepsy in the Faroes. Acta Neurol Scand. 1986;74:150–5.PubMedCrossRef Joensen P. Prevalence, incidence, and classification of epilepsy in the Faroes. Acta Neurol Scand. 1986;74:150–5.PubMedCrossRef
31.
Zurück zum Zitat Lee WL, Ong HT. Epidemiology of west syndrome in Singapore. Brain Dev-JPN. 2001;23:584–5.CrossRef Lee WL, Ong HT. Epidemiology of west syndrome in Singapore. Brain Dev-JPN. 2001;23:584–5.CrossRef
32.
Zurück zum Zitat Loiseau J, Loiseau P, Guyot M, Duche B, Dartigues JF, Aublet B. Survey of seizure disorders in the French southwest. I. Incidence of Epileptic Syndromes Epilepsia. 1990;31(4):391–6.PubMed Loiseau J, Loiseau P, Guyot M, Duche B, Dartigues JF, Aublet B. Survey of seizure disorders in the French southwest. I. Incidence of Epileptic Syndromes Epilepsia. 1990;31(4):391–6.PubMed
33.
Zurück zum Zitat Lommi M, Heiskala H, Gaily E. A population-based study on epilepsy with onset in the first year: incidence and syndrome classification. Epilepsia. 2010;51:128. Lommi M, Heiskala H, Gaily E. A population-based study on epilepsy with onset in the first year: incidence and syndrome classification. Epilepsia. 2010;51:128.
34.
Zurück zum Zitat Ludvigsson P, Olafsson E, Siguroardottir S, Hauser WA. Epidemiologic features of infantile spasms in Iceland. Epilepsia. 1994;35(4):802–5.CrossRef Ludvigsson P, Olafsson E, Siguroardottir S, Hauser WA. Epidemiologic features of infantile spasms in Iceland. Epilepsia. 1994;35(4):802–5.CrossRef
35.
Zurück zum Zitat Matsuo A, Matsuzaka T, Tsuru A, Moriuchi H, Nakashita Y, Tanaka S, et al. Epidemiological and clinical studies of west syndrome in Nagasaki prefecture, Japan. Brain Dev-JPN. 2001;23:575–9.CrossRef Matsuo A, Matsuzaka T, Tsuru A, Moriuchi H, Nakashita Y, Tanaka S, et al. Epidemiological and clinical studies of west syndrome in Nagasaki prefecture, Japan. Brain Dev-JPN. 2001;23:575–9.CrossRef
36.
Zurück zum Zitat Olafsson E, Ludvigsson P, Gudmundsson G, Hesdorffer D, Kjartonsso O, Hauser WA. Incidence of unprovoked seizures and epilepsy in Iceland and assessment of the epilepsy syndrome classification: a prospective study. Lancet Neurol. 2005;4:627–34.PubMedCrossRef Olafsson E, Ludvigsson P, Gudmundsson G, Hesdorffer D, Kjartonsso O, Hauser WA. Incidence of unprovoked seizures and epilepsy in Iceland and assessment of the epilepsy syndrome classification: a prospective study. Lancet Neurol. 2005;4:627–34.PubMedCrossRef
37.
Zurück zum Zitat Primec ZP, Neubauer D. Epidemiologic features of infantile spasms in Slovenia. Epilepsia. 2002;43:183–7.PubMedCrossRef Primec ZP, Neubauer D. Epidemiologic features of infantile spasms in Slovenia. Epilepsia. 2002;43:183–7.PubMedCrossRef
38.
Zurück zum Zitat Rantala H, Putkoknen T. Occurrence, outcome, and prognostic factors of infantile spasms and Lennox-Gastaut syndrome. Epilepsia. 1999;40:286–9.PubMedCrossRef Rantala H, Putkoknen T. Occurrence, outcome, and prognostic factors of infantile spasms and Lennox-Gastaut syndrome. Epilepsia. 1999;40:286–9.PubMedCrossRef
39.
Zurück zum Zitat Riikonen R. Decreasing perinatal mortality: unchanged infantile spasm morbidity. Dev Med Child Neurol. 1995;37:232–8.PubMedCrossRef Riikonen R. Decreasing perinatal mortality: unchanged infantile spasm morbidity. Dev Med Child Neurol. 1995;37:232–8.PubMedCrossRef
40.
Zurück zum Zitat Saemundsen E, Ludvigsson P, Rafnsson V. Autism spectrum disorders in children with a history of infantile spasms: a population-based study. J Child Neurol. 2007;22:1102–7.PubMedCrossRef Saemundsen E, Ludvigsson P, Rafnsson V. Autism spectrum disorders in children with a history of infantile spasms: a population-based study. J Child Neurol. 2007;22:1102–7.PubMedCrossRef
41.
Zurück zum Zitat Sarsenbayeva U, Tekebayeva L, Baigazieva L, Kazhaparova D, Kenzhegulova R, Jaxybayeva A. Incidence of epileptic encephalopathy in children from birth up to 5 years old in Kazakhstan [abstract]. Eur J Paediatr Neuro. 2015;19s:299. Sarsenbayeva U, Tekebayeva L, Baigazieva L, Kazhaparova D, Kenzhegulova R, Jaxybayeva A. Incidence of epileptic encephalopathy in children from birth up to 5 years old in Kazakhstan [abstract]. Eur J Paediatr Neuro. 2015;19s:299.
42.
Zurück zum Zitat Schmitt HJ, Schuind A, Knuf M, Beutel K, Schulte-Wissermann H, Gahr M, et al. Clinical experience of a tricomponent acellular pertussis vaccine combined with diphtheria and tetanus toxoids for primary vaccination in 22,505 infants. J Pediatr. 1996;129:695–701.PubMedCrossRef Schmitt HJ, Schuind A, Knuf M, Beutel K, Schulte-Wissermann H, Gahr M, et al. Clinical experience of a tricomponent acellular pertussis vaccine combined with diphtheria and tetanus toxoids for primary vaccination in 22,505 infants. J Pediatr. 1996;129:695–701.PubMedCrossRef
43.
Zurück zum Zitat Shields WD, Nielsen C, Buch D, Jacobsen V, Christenson P, Zachau-Christiansen B, et al. Relationship of pertussis immunization to the onset of neurologic disorders: a retrospective epidemiologic study. J Pediatr. 1988;113:801–5.PubMedCrossRef Shields WD, Nielsen C, Buch D, Jacobsen V, Christenson P, Zachau-Christiansen B, et al. Relationship of pertussis immunization to the onset of neurologic disorders: a retrospective epidemiologic study. J Pediatr. 1988;113:801–5.PubMedCrossRef
44.
Zurück zum Zitat Sidenvall R, Eeg-Olofsson O. Epidemiology of infantile spasms in Sweden. Epilepsia. 1995;36:572–4.PubMedCrossRef Sidenvall R, Eeg-Olofsson O. Epidemiology of infantile spasms in Sweden. Epilepsia. 1995;36:572–4.PubMedCrossRef
45.
Zurück zum Zitat Trevathan E, Murphy CC, Yeargin-Allsopp M. The descriptive epidemiology of infantile spasms among Atlanta children. Epilepsia. 1999;40:748–51.PubMedCrossRef Trevathan E, Murphy CC, Yeargin-Allsopp M. The descriptive epidemiology of infantile spasms among Atlanta children. Epilepsia. 1999;40:748–51.PubMedCrossRef
46.
47.
Zurück zum Zitat Van Den Berg BJ, Yerushalmy J. Studies on convulsive disorders in young children: incidence of febrile and nonfebrile convulsions by age and other factors. Pediatr Res. 1969;3:298–304.CrossRef Van Den Berg BJ, Yerushalmy J. Studies on convulsive disorders in young children: incidence of febrile and nonfebrile convulsions by age and other factors. Pediatr Res. 1969;3:298–304.CrossRef
48.
Zurück zum Zitat Vardi G, Snapir SM, Merick J, Shorer Z, Levy J, Friger M, et al. Infantile spasms: neurological and developmental follow-up – a comparison between two ethnic groups: Israeli Jews and Bedouin in the south of Israel. Med Sci Monit. 2005;11:CR117–22.PubMed Vardi G, Snapir SM, Merick J, Shorer Z, Levy J, Friger M, et al. Infantile spasms: neurological and developmental follow-up – a comparison between two ethnic groups: Israeli Jews and Bedouin in the south of Israel. Med Sci Monit. 2005;11:CR117–22.PubMed
49.
50.
Zurück zum Zitat Wendt LV, Rantakallio P, Saukkonen AL, Makinen H. Epilepsy and associated handicaps in a 1 year birth cohort in northern Finland. Eur J Pediatr. 1985;144:149–51.CrossRef Wendt LV, Rantakallio P, Saukkonen AL, Makinen H. Epilepsy and associated handicaps in a 1 year birth cohort in northern Finland. Eur J Pediatr. 1985;144:149–51.CrossRef
51.
Zurück zum Zitat Wirrell EC, Grossardt BR, Wong-Kisiel LC, Nickels KC. Incidence and classification of new-onset epilepsy and epilepsy syndromes in children in Olmsted County, Minnesota from 1980 to 2004: a population-based study. Epilepsy Res. 2011;95:110–8.PubMedPubMedCentralCrossRef Wirrell EC, Grossardt BR, Wong-Kisiel LC, Nickels KC. Incidence and classification of new-onset epilepsy and epilepsy syndromes in children in Olmsted County, Minnesota from 1980 to 2004: a population-based study. Epilepsy Res. 2011;95:110–8.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Young C. Taiwan child neurology society. National survey of west syndrome in Taiwan. Brain Dev-JPN. 2001;23:570–4.CrossRef Young C. Taiwan child neurology society. National survey of west syndrome in Taiwan. Brain Dev-JPN. 2001;23:570–4.CrossRef
53.
Zurück zum Zitat Zarrelli MM, Beghi E, Rocca WA, Hauser WA. Incidence of epileptic syndromes in Rochester, Minnesota: 1980-1984. Epilepsia. 1999;40(12):1708–14.PubMedCrossRef Zarrelli MM, Beghi E, Rocca WA, Hauser WA. Incidence of epileptic syndromes in Rochester, Minnesota: 1980-1984. Epilepsia. 1999;40(12):1708–14.PubMedCrossRef
54.
Zurück zum Zitat Beilmann A, Napa A, Soot A, Talvik I, Talvik T. Prevalence of childhood epilepsy in Estonia. Epilepsia. 1999;40(7):1011–9.PubMedCrossRef Beilmann A, Napa A, Soot A, Talvik I, Talvik T. Prevalence of childhood epilepsy in Estonia. Epilepsia. 1999;40(7):1011–9.PubMedCrossRef
55.
Zurück zum Zitat Cowan LD, Bodensteiner JB, Leviton A, Doherty L. Prevalence of the epilepsies in children and adolescents. Epilepsia. 1989;30(1):94–106.PubMedCrossRef Cowan LD, Bodensteiner JB, Leviton A, Doherty L. Prevalence of the epilepsies in children and adolescents. Epilepsia. 1989;30(1):94–106.PubMedCrossRef
56.
Zurück zum Zitat Dura-Trave T, Yodi-Petri ME, Esparza-Estaun E, Victoriano-Gallinas F, Aguilera-Albesa S, Sagastibelza-Zabaleta A. Magnetic resonance imaging abnormalities in children with epilepsy. Eur J Neurol. 2012;19:1053–9.PubMedCrossRef Dura-Trave T, Yodi-Petri ME, Esparza-Estaun E, Victoriano-Gallinas F, Aguilera-Albesa S, Sagastibelza-Zabaleta A. Magnetic resonance imaging abnormalities in children with epilepsy. Eur J Neurol. 2012;19:1053–9.PubMedCrossRef
57.
Zurück zum Zitat Endziniene M, Pauza V, Miseviciene I. Prevalence of childhood epilepsy in Kaunas, Lithuania. Brain Dev-JPN. 1997;19:379–87.CrossRef Endziniene M, Pauza V, Miseviciene I. Prevalence of childhood epilepsy in Kaunas, Lithuania. Brain Dev-JPN. 1997;19:379–87.CrossRef
58.
Zurück zum Zitat Eriksson KJ, Koivikko MJ. Prevalence, classification, and severity of epilepsy and epileptic syndromes in children. Epilepsia. 1997;38:1275–82.PubMedCrossRef Eriksson KJ, Koivikko MJ. Prevalence, classification, and severity of epilepsy and epileptic syndromes in children. Epilepsia. 1997;38:1275–82.PubMedCrossRef
59.
Zurück zum Zitat Granieri E, Rosati G, Tola R, Pavoni M, Paolino E, Pinna L, et al. A descriptive study of epilepsy in the district of Copparo, Italy, 1964-1978. Epilepsia. 1983;24:502–14.PubMedCrossRef Granieri E, Rosati G, Tola R, Pavoni M, Paolino E, Pinna L, et al. A descriptive study of epilepsy in the district of Copparo, Italy, 1964-1978. Epilepsia. 1983;24:502–14.PubMedCrossRef
60.
Zurück zum Zitat Ishida S. Prevalence of epilepsy in Okayama prefecture: a neuroepidemiologic study. Folia Psychiatr Neurol Jpn. 1985;39:325–32.PubMed Ishida S. Prevalence of epilepsy in Okayama prefecture: a neuroepidemiologic study. Folia Psychiatr Neurol Jpn. 1985;39:325–32.PubMed
61.
Zurück zum Zitat Koul R, Razdan S, Motta A. Prevalence and pattern of epilepsy (lath/Mirgi/Laran) in rural Kashmir. India Epilepsia. 1988;29:116–22.PubMedCrossRef Koul R, Razdan S, Motta A. Prevalence and pattern of epilepsy (lath/Mirgi/Laran) in rural Kashmir. India Epilepsia. 1988;29:116–22.PubMedCrossRef
62.
Zurück zum Zitat Kurth T, Lewis BE, Walker AM. Health care resource utilization in patients with active epilepsy. Epilepsia. 2010;51:874–82.PubMedCrossRef Kurth T, Lewis BE, Walker AM. Health care resource utilization in patients with active epilepsy. Epilepsia. 2010;51:874–82.PubMedCrossRef
63.
Zurück zum Zitat Kwong KL, Chak WK, Wong SN, So KT. Epidemiology of childhood epilepsy in a cohort of 309 Chinese children. Pediatr Neurol. 2001;24:276–82.PubMedCrossRef Kwong KL, Chak WK, Wong SN, So KT. Epidemiology of childhood epilepsy in a cohort of 309 Chinese children. Pediatr Neurol. 2001;24:276–82.PubMedCrossRef
64.
Zurück zum Zitat Larsson K, Eeg-Olofsson O. A population based study of epilepsy in children from a Swedish county. Eur J Paediatr Neurol. 2006;10:107–13.PubMedCrossRef Larsson K, Eeg-Olofsson O. A population based study of epilepsy in children from a Swedish county. Eur J Paediatr Neurol. 2006;10:107–13.PubMedCrossRef
65.
Zurück zum Zitat Maremmani C, Rossi G, Bonuccelli U, Murri L. Descriptive epidemiologic study of epilepsy syndromes in a district of Northwest Tuscany. Italy Epilepsia. 1991;32(3):294–8.PubMedCrossRef Maremmani C, Rossi G, Bonuccelli U, Murri L. Descriptive epidemiologic study of epilepsy syndromes in a district of Northwest Tuscany. Italy Epilepsia. 1991;32(3):294–8.PubMedCrossRef
66.
Zurück zum Zitat Oka E, Murakami N, Ohmori I, Ogino T. A population-based neuroepidemiological survey of west syndrome in Okayama prefecture, Japan. Brain Dev-JPN. 2001;23:580–3.CrossRef Oka E, Murakami N, Ohmori I, Ogino T. A population-based neuroepidemiological survey of west syndrome in Okayama prefecture, Japan. Brain Dev-JPN. 2001;23:580–3.CrossRef
67.
Zurück zum Zitat Olafsson E, Hauser WA. Prevalence of epilepsy in rural Iceland: a population-based study. Epilepsia. 1999;40:1529–34.PubMedCrossRef Olafsson E, Hauser WA. Prevalence of epilepsy in rural Iceland: a population-based study. Epilepsia. 1999;40:1529–34.PubMedCrossRef
68.
Zurück zum Zitat Sidenvall R, Forsgren L, Heijbel J. Prevalence and characteristics of epilepsy in children in northern Sweden. Seizure. 1996;5:139–46.PubMedCrossRef Sidenvall R, Forsgren L, Heijbel J. Prevalence and characteristics of epilepsy in children in northern Sweden. Seizure. 1996;5:139–46.PubMedCrossRef
70.
Zurück zum Zitat Shao LR, Stafstrom CE. Pediatric epileptic encephalopathies: pathophysiology and animal models. Semin Pediatr Neurol. 2016;23:98–107.PubMedCrossRef Shao LR, Stafstrom CE. Pediatric epileptic encephalopathies: pathophysiology and animal models. Semin Pediatr Neurol. 2016;23:98–107.PubMedCrossRef
71.
Zurück zum Zitat Wright J, Pickard N, Whitfield A, Hakin N. A population-based study of the prevalence, clinical characteristics and effect of ethnicity in epilepsy. Seizure. 2009;9(5):309–13.CrossRef Wright J, Pickard N, Whitfield A, Hakin N. A population-based study of the prevalence, clinical characteristics and effect of ethnicity in epilepsy. Seizure. 2009;9(5):309–13.CrossRef
72.
Zurück zum Zitat Helleskov A, Milikyan M, Globa E, Shcherderkina I, Poertner F, Larsen AM, et al. Both low blood glucose and insufficient treatment confer risk of neurodevelopmental impairment in congenital hyperinsulinism: a multinational cohort study. Front Endocrinol (Lausanne). 2017;8:156.CrossRef Helleskov A, Milikyan M, Globa E, Shcherderkina I, Poertner F, Larsen AM, et al. Both low blood glucose and insufficient treatment confer risk of neurodevelopmental impairment in congenital hyperinsulinism: a multinational cohort study. Front Endocrinol (Lausanne). 2017;8:156.CrossRef
73.
Zurück zum Zitat Lund-Blix NA, Dydensborg SS, Stordal K, Nybo A, Ronningen KS, Joner G, et al. Infant feeding and risk of type 1 diabetes in two large Scandinavian birth cohorts. Diabetes Care. 2017;40:920–7.PubMedPubMedCentralCrossRef Lund-Blix NA, Dydensborg SS, Stordal K, Nybo A, Ronningen KS, Joner G, et al. Infant feeding and risk of type 1 diabetes in two large Scandinavian birth cohorts. Diabetes Care. 2017;40:920–7.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Osborne JP, Lux AL, Edwards SW, Hancock E, Johnson AL, Kennedy AL, et al. The underlying etiology of infantile spasms (west syndrome): information from the United Kingdom infantile spasms study (UKISS) on contemporary causes and their classification. Epilepsia. 2010;51(10):2168–74.PubMedCrossRef Osborne JP, Lux AL, Edwards SW, Hancock E, Johnson AL, Kennedy AL, et al. The underlying etiology of infantile spasms (west syndrome): information from the United Kingdom infantile spasms study (UKISS) on contemporary causes and their classification. Epilepsia. 2010;51(10):2168–74.PubMedCrossRef
75.
Zurück zum Zitat Staples JA, Pnsonby AL, Lim LL, McMichael AJ. Ecologic analysis of some immune-related disorders including type 1 diabetes, in Australia: latitude, regional ultraviolet radiation, and disease prevalence. Environ Health Perspect. 2003;111:518–23.PubMedPubMedCentralCrossRef Staples JA, Pnsonby AL, Lim LL, McMichael AJ. Ecologic analysis of some immune-related disorders including type 1 diabetes, in Australia: latitude, regional ultraviolet radiation, and disease prevalence. Environ Health Perspect. 2003;111:518–23.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Finkelman BS, Viboud C, Koelle K, Ferrari MJ, Bharti N, Grenfell BT. Global patterns in seasonal activity of influenza a/H3N2, a/H1N1, and B from 1997 to 2005:viral coexistence and latitudinal gradients. PLoS One. 2007;2:e1296.PubMedPubMedCentralCrossRef Finkelman BS, Viboud C, Koelle K, Ferrari MJ, Bharti N, Grenfell BT. Global patterns in seasonal activity of influenza a/H3N2, a/H1N1, and B from 1997 to 2005:viral coexistence and latitudinal gradients. PLoS One. 2007;2:e1296.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Friedlander SM, Herrmann AL, Lowry DP, Mepham ER, Lek M, North KN, et al. ACTN3 allele frequency in humans covaries with global latitudinal gradient. PLoS One. 2013;8:e52282.PubMedPubMedCentralCrossRef Friedlander SM, Herrmann AL, Lowry DP, Mepham ER, Lek M, North KN, et al. ACTN3 allele frequency in humans covaries with global latitudinal gradient. PLoS One. 2013;8:e52282.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Mendoza-Viveros L, Chiang CK, Ong JLK, Hegazi S, Cheng AH, Bouchard-Cannon P, et al. MiR-132/212 modulates seasonal adaptation and dendritic morphology of the central circadian clock. Cell Rep. 2017;19:505–20.PubMedPubMedCentralCrossRef Mendoza-Viveros L, Chiang CK, Ong JLK, Hegazi S, Cheng AH, Bouchard-Cannon P, et al. MiR-132/212 modulates seasonal adaptation and dendritic morphology of the central circadian clock. Cell Rep. 2017;19:505–20.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Brockmann PE, Gozal D, Villarroel L, Damiani F, Nunez F, Cajochen C. Geographic latitude and sleep duration: a population-based survey from the tropic of Capricorn to the Antarctic circle. Chronobiol Int. 2017;34:373–81.PubMedCrossRef Brockmann PE, Gozal D, Villarroel L, Damiani F, Nunez F, Cajochen C. Geographic latitude and sleep duration: a population-based survey from the tropic of Capricorn to the Antarctic circle. Chronobiol Int. 2017;34:373–81.PubMedCrossRef
80.
Zurück zum Zitat Dall’Ara I, Ghirotto S, Ingusci S, Bagarolo G, Bertolucci C, Barbujani G. Demographic history and adaptation account for clock gene diversity in humans. Heredity (Edinb). 2016;117:165–72.CrossRef Dall’Ara I, Ghirotto S, Ingusci S, Bagarolo G, Bertolucci C, Barbujani G. Demographic history and adaptation account for clock gene diversity in humans. Heredity (Edinb). 2016;117:165–72.CrossRef
81.
Zurück zum Zitat Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9:520–32.PubMedCrossRef Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9:520–32.PubMedCrossRef
82.
Zurück zum Zitat Karras SN, Shah I, Petroczi A, Goulis DG, Bili H, Papadopoulou F, et al. An observational study reveals that neonatal vitamin D is primarily determined by maternal contributions: implications of a new assay on the roles of vitamin D forms. Nutr J. 2013;12:77.PubMedPubMedCentralCrossRef Karras SN, Shah I, Petroczi A, Goulis DG, Bili H, Papadopoulou F, et al. An observational study reveals that neonatal vitamin D is primarily determined by maternal contributions: implications of a new assay on the roles of vitamin D forms. Nutr J. 2013;12:77.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296:2832–8.PubMedCrossRef Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296:2832–8.PubMedCrossRef
84.
85.
Zurück zum Zitat Ng KY, Leong MK, Liang H, Paxinos G. Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct. 2017;222:2921–39.PubMedCrossRef Ng KY, Leong MK, Liang H, Paxinos G. Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct. 2017;222:2921–39.PubMedCrossRef
86.
Zurück zum Zitat Sandyk R, Tsagas N, Anninos PA. Melatonin as a proconvulsive hormone in humans. Int J Neurosci. 1992;63:125–35.PubMedCrossRef Sandyk R, Tsagas N, Anninos PA. Melatonin as a proconvulsive hormone in humans. Int J Neurosci. 1992;63:125–35.PubMedCrossRef
87.
Zurück zum Zitat Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M. Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics. 2005;115:997–1003.PubMedCrossRef Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M. Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics. 2005;115:997–1003.PubMedCrossRef
89.
Zurück zum Zitat Mackay MT, Weiss SK, Adams-Webber T, Ashwal S, Stephens D, Ballaban-Gill K, et al. Practice parameter: medical treatment of infantile spasms: report of the American Academy of Neurology and the child neurology society. Neurology. 2004;62:1668–81.PubMedCrossRef Mackay MT, Weiss SK, Adams-Webber T, Ashwal S, Stephens D, Ballaban-Gill K, et al. Practice parameter: medical treatment of infantile spasms: report of the American Academy of Neurology and the child neurology society. Neurology. 2004;62:1668–81.PubMedCrossRef
90.
Zurück zum Zitat Go CY, Mackay MT, Weiss SK, Stephens D, Adams-Webber T, Ashwal S, et al. Evidence-based guideline update: medical treatment of infantile spasms. Report of the guideline development subcommittee of the American Academy of Neurology and the practice committee of the child neurology society. Neurology. 2012;78:1974–80.PubMedPubMedCentralCrossRef Go CY, Mackay MT, Weiss SK, Stephens D, Adams-Webber T, Ashwal S, et al. Evidence-based guideline update: medical treatment of infantile spasms. Report of the guideline development subcommittee of the American Academy of Neurology and the practice committee of the child neurology society. Neurology. 2012;78:1974–80.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Widjaja E, Go C, McCoy B, Snead OC. Neurodevelopmental outcome of infantile spasms: a systematic review and meta-analysis. Epilepsy Res. 2015;109:155–62.PubMedCrossRef Widjaja E, Go C, McCoy B, Snead OC. Neurodevelopmental outcome of infantile spasms: a systematic review and meta-analysis. Epilepsy Res. 2015;109:155–62.PubMedCrossRef
Metadaten
Titel
Latitudinal differences on the global epidemiology of infantile spasms: systematic review and meta-analysis
verfasst von
Jason L. Jia
Shiyi Chen
Vishalini Sivarajah
Derek Stephens
Miguel A. Cortez
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Orphanet Journal of Rare Diseases / Ausgabe 1/2018
Elektronische ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0952-x

Weitere Artikel der Ausgabe 1/2018

Orphanet Journal of Rare Diseases 1/2018 Zur Ausgabe