Skip to main content
Erschienen in: Inflammation 1/2015

01.02.2015

Leonurine Exerts Anti-Inflammatory Effect by Regulating Inflammatory Signaling Pathways and Cytokines in LPS-Induced Mouse Mastitis

verfasst von: Xiaojing Song, Tiancheng Wang, Zecai Zhang, Haichao Jiang, Wei Wang, Yongguo Cao, Naisheng Zhang

Erschienen in: Inflammation | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Bovine mastitis is defined as the inflammation of mammary gland and is the most multiple diseases in dairy cattle. There is still no effective treatment now. Leonurine, extracted from Leonurus cardiaca, has been proved to have anti-inflammatory effect. In the present study, we utilized a mouse mastitis model to study the effect of leonurine on LPS-induced mastitis. Leonurine was administered three times during the 24 h after inducing infection in the mammary gland. The results showed that leonurine significantly alleviated LPS-induced histopathological changes, downregulated the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), upregulated the level of anti-inflammatory cytokine interleukin-10 (IL-10), and inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further study revealed that leonurine inhibited the expression of Toll-like receptor 4 (TLR4) and the activation of nuclear factor-kappaB (NF-κB) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK). Therefore, the results demonstrated that leonurine could downregulate the expression of TNF-α, IL-6, iNOS, and COX-2 and upregulate the expression of IL-10 mainly by inhibiting the expression of TLR4 and the activation of NF-κB and the phosphorylation of p38, ERK, and JNK. Leonurine may be a potential agent for mastitis therapy.
Literatur
1.
Zurück zum Zitat Viguier, C., S. Arora, N. Gilmartin, K. Welbeck, and R. O’Kennedy. 2009. Mastitis detection: current trends and future perspectives. Trends in Biotechnology 27(8): 486–493.CrossRefPubMed Viguier, C., S. Arora, N. Gilmartin, K. Welbeck, and R. O’Kennedy. 2009. Mastitis detection: current trends and future perspectives. Trends in Biotechnology 27(8): 486–493.CrossRefPubMed
2.
Zurück zum Zitat Gilbert, F.B., P. Cunha, K. Jensen, E.J. Glass, G. Foucras, C. Robert-Granie, R. Rupp, and P. Rainard. 2013. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Veterinary Research 44: 40.CrossRefPubMedCentralPubMed Gilbert, F.B., P. Cunha, K. Jensen, E.J. Glass, G. Foucras, C. Robert-Granie, R. Rupp, and P. Rainard. 2013. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Veterinary Research 44: 40.CrossRefPubMedCentralPubMed
3.
Zurück zum Zitat Coliform mastitis—a review. Journal of dairy science 1979, 62 (1):1–22. Coliform mastitis—a review. Journal of dairy science 1979, 62 (1):1–22.
4.
Zurück zum Zitat Zhao, X., and P. Lacasse. 2008. Mammary tissue damage during bovine mastitis: causes and control. Journal of Animal Science 86(13 Suppl): 57–65.CrossRef Zhao, X., and P. Lacasse. 2008. Mammary tissue damage during bovine mastitis: causes and control. Journal of Animal Science 86(13 Suppl): 57–65.CrossRef
5.
Zurück zum Zitat Schalm, O.W., E.J. Carroll, and N.C. Jain. 1971. Bovine mastitis. In Bovine mastitis A symposium. Philadelphia: Lea & Febiger. Schalm, O.W., E.J. Carroll, and N.C. Jain. 1971. Bovine mastitis. In Bovine mastitis A symposium. Philadelphia: Lea & Febiger.
6.
Zurück zum Zitat Oliver, S., and L. Calvinho. 1995. Influence of inflammation on mammary gland metabolism and milk composition. Journal of Animal Science 73(suppl 2): 18–33. Oliver, S., and L. Calvinho. 1995. Influence of inflammation on mammary gland metabolism and milk composition. Journal of Animal Science 73(suppl 2): 18–33.
7.
Zurück zum Zitat Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406(6797): 782–787.CrossRefPubMed Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406(6797): 782–787.CrossRefPubMed
8.
Zurück zum Zitat Hirschfeld, M., Y. Ma, J.H. Weis, S.N. Vogel, and J.J. Weis. 2000. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. Journal of Immunology 165(2): 618–622.CrossRef Hirschfeld, M., Y. Ma, J.H. Weis, S.N. Vogel, and J.J. Weis. 2000. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. Journal of Immunology 165(2): 618–622.CrossRef
9.
Zurück zum Zitat Espinosa-Oliva AM, de Pablos RM, Herrera AJ. 2013. Intracranial injection of LPS in rat as animal model of neuroinflammation. In: Microglia. edn.: Springer : 295–305. Espinosa-Oliva AM, de Pablos RM, Herrera AJ. 2013. Intracranial injection of LPS in rat as animal model of neuroinflammation. In: Microglia. edn.: Springer : 295–305.
10.
Zurück zum Zitat González-Terán, B., J.R. Cortés, E. Manieri, N. Matesanz, Á. Verdugo, M.E. Rodríguez, Á. González-Rodríguez, Á. Valverde, P. Martín, and R.J. Davis. 2013. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis. The Journal of Clinical Investigation 123(1): 164–178.CrossRefPubMedCentralPubMed González-Terán, B., J.R. Cortés, E. Manieri, N. Matesanz, Á. Verdugo, M.E. Rodríguez, Á. González-Rodríguez, Á. Valverde, P. Martín, and R.J. Davis. 2013. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis. The Journal of Clinical Investigation 123(1): 164–178.CrossRefPubMedCentralPubMed
11.
Zurück zum Zitat Han, J.G., Y.S. Kim, B.S. Kim, and Y.K. Yim. 2014. The effect of Alismatis Rhizoma herbal-acupuncture at KI10 on LPS-induced nephritis in rats. The Acupuncture 31(1): 51–60.CrossRef Han, J.G., Y.S. Kim, B.S. Kim, and Y.K. Yim. 2014. The effect of Alismatis Rhizoma herbal-acupuncture at KI10 on LPS-induced nephritis in rats. The Acupuncture 31(1): 51–60.CrossRef
12.
Zurück zum Zitat Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11(4): 443–451.CrossRefPubMed Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11(4): 443–451.CrossRefPubMed
13.
Zurück zum Zitat Chandler, R.L. 1970. Experimental bacterial mastitis in the mouse. Journal of Medical Microbiology 3(2): 273–282.CrossRefPubMed Chandler, R.L. 1970. Experimental bacterial mastitis in the mouse. Journal of Medical Microbiology 3(2): 273–282.CrossRefPubMed
14.
Zurück zum Zitat Chandler, R.L. 1969. Preliminary report on the production of experimental mastitis in the mouse. The Veterinary Record 84(26): 671–672.CrossRefPubMed Chandler, R.L. 1969. Preliminary report on the production of experimental mastitis in the mouse. The Veterinary Record 84(26): 671–672.CrossRefPubMed
15.
Zurück zum Zitat Notebaert, S., and E. Meyer. 2006. Mouse models to study the pathogenesis and control of bovine mastitis. A review. Vet Quart 28(1): 2–13.CrossRef Notebaert, S., and E. Meyer. 2006. Mouse models to study the pathogenesis and control of bovine mastitis. A review. Vet Quart 28(1): 2–13.CrossRef
16.
Zurück zum Zitat Li, F., D. Liang, Z. Yang, T. Wang, W. Wang, X. Song, M. Guo, E. Zhou, D. Li, Y. Cao, et al. 2013. Astragalin suppresses inflammatory responses via down-regulation of NF-kappaB signaling pathway in lipopolysaccharide-induced mastitis in a murine model. International Immunopharmacology 17(2): 478–482.CrossRefPubMed Li, F., D. Liang, Z. Yang, T. Wang, W. Wang, X. Song, M. Guo, E. Zhou, D. Li, Y. Cao, et al. 2013. Astragalin suppresses inflammatory responses via down-regulation of NF-kappaB signaling pathway in lipopolysaccharide-induced mastitis in a murine model. International Immunopharmacology 17(2): 478–482.CrossRefPubMed
17.
Zurück zum Zitat Guo, M.Y., N.S. Zhang, D.P. Li, D.J. Liang, Z.C. Liu, F.Y. Li, Y.H. Fu, Y.G. Cao, X.M. Deng, and Z.T. Yang. 2013. Baicalin plays an anti-inflammatory role through reducing nuclear factor-kappa B and p38 phosphorylation in S. aureus-induced mastitis. International Immunopharmacology 16(2): 125–130.CrossRefPubMed Guo, M.Y., N.S. Zhang, D.P. Li, D.J. Liang, Z.C. Liu, F.Y. Li, Y.H. Fu, Y.G. Cao, X.M. Deng, and Z.T. Yang. 2013. Baicalin plays an anti-inflammatory role through reducing nuclear factor-kappa B and p38 phosphorylation in S. aureus-induced mastitis. International Immunopharmacology 16(2): 125–130.CrossRefPubMed
18.
Zurück zum Zitat Wang T, Guo M, Song X, Zhang Z, Jiang H, Wang W, Fu Y, Cao Y, Zhu L, Zhang N. 2014. Stevioside plays an anti-inflammatory role by regulating the nf-kappaB and MAPK pathways in S. aureus-infected mouse mammary glands. Inflammation. Wang T, Guo M, Song X, Zhang Z, Jiang H, Wang W, Fu Y, Cao Y, Zhu L, Zhang N. 2014. Stevioside plays an anti-inflammatory role by regulating the nf-kappaB and MAPK pathways in S. aureus-infected mouse mammary glands. Inflammation.
19.
Zurück zum Zitat Liu, X.H., L.L. Pan, H.Y. Deng, Q.H. Xiong, D. Wu, G.Y. Huang, Q.H. Gong, and Y.Z. Zhu. 2013. Leonurine (SCM-198) attenuates myocardial fibrotic response via inhibition of NADPH oxidase 4. Free Radical Biology & Medicine 54: 93–104.CrossRef Liu, X.H., L.L. Pan, H.Y. Deng, Q.H. Xiong, D. Wu, G.Y. Huang, Q.H. Gong, and Y.Z. Zhu. 2013. Leonurine (SCM-198) attenuates myocardial fibrotic response via inhibition of NADPH oxidase 4. Free Radical Biology & Medicine 54: 93–104.CrossRef
20.
Zurück zum Zitat Liu, X.H., H. Xin, A.J. Hou, and Y.Z. Zhu. 2009. Protective effects of leonurine in neonatal rat hypoxic cardiomyocytes and rat infarcted heart. Clin Exp Pharmacol P 36(7): 696–703.CrossRef Liu, X.H., H. Xin, A.J. Hou, and Y.Z. Zhu. 2009. Protective effects of leonurine in neonatal rat hypoxic cardiomyocytes and rat infarcted heart. Clin Exp Pharmacol P 36(7): 696–703.CrossRef
21.
Zurück zum Zitat Liu, X.H., L.L. Pan, Q.H. Gong, and Y.Z. Zhu. 2010. Antiapoptotic effect of novel compound from Herba leonuri-leonurine (SCM-198): a mechanism through inhibition of mitochondria dysfunction in H9c2 cells. Curr Pharm Biotechno 11(8): 895–905.CrossRef Liu, X.H., L.L. Pan, Q.H. Gong, and Y.Z. Zhu. 2010. Antiapoptotic effect of novel compound from Herba leonuri-leonurine (SCM-198): a mechanism through inhibition of mitochondria dysfunction in H9c2 cells. Curr Pharm Biotechno 11(8): 895–905.CrossRef
22.
Zurück zum Zitat Liu, X.H., L.L. Pan, X.L. Wang, Q.H. Gong, and Y.Z. Zhu. 2012. Leonurine protects against tumor necrosis factor-alpha-mediated inflammation in human umbilical vein endothelial cells. Atherosclerosis 222(1): 34–42.CrossRefPubMed Liu, X.H., L.L. Pan, X.L. Wang, Q.H. Gong, and Y.Z. Zhu. 2012. Leonurine protects against tumor necrosis factor-alpha-mediated inflammation in human umbilical vein endothelial cells. Atherosclerosis 222(1): 34–42.CrossRefPubMed
23.
Zurück zum Zitat Song X, Zhang W, Wang T, Jiang H, Zhang Z, Fu Y, Yang Z, Cao Y, Zhang N. 2014. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice. Inflammation. Song X, Zhang W, Wang T, Jiang H, Zhang Z, Fu Y, Yang Z, Cao Y, Zhang N. 2014. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice. Inflammation.
24.
Zurück zum Zitat Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews Immunology 2(10): 725–734.CrossRefPubMed Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews Immunology 2(10): 725–734.CrossRefPubMed
25.
Zurück zum Zitat Strandberg, Y., C. Gray, T. Vuocolo, L. Donaldson, M. Broadway, and R. Tellam. 2005. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 31(1): 72–86.CrossRefPubMed Strandberg, Y., C. Gray, T. Vuocolo, L. Donaldson, M. Broadway, and R. Tellam. 2005. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 31(1): 72–86.CrossRefPubMed
26.
Zurück zum Zitat Brouillette, E., and F. Malouin. 2005. The pathogenesis and control of Staphylococcus aureus-induced mastitis: study models in the mouse. Microbes and Infection 7(3): 560–568.CrossRefPubMed Brouillette, E., and F. Malouin. 2005. The pathogenesis and control of Staphylococcus aureus-induced mastitis: study models in the mouse. Microbes and Infection 7(3): 560–568.CrossRefPubMed
27.
Zurück zum Zitat Bannerman, D.D., M.J. Paape, J.W. Lee, X. Zhao, J.C. Hope, and P. Rainard. 2004. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clinical and Diagnostic Laboratory Immunology 11(3): 463–472.PubMedCentralPubMed Bannerman, D.D., M.J. Paape, J.W. Lee, X. Zhao, J.C. Hope, and P. Rainard. 2004. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clinical and Diagnostic Laboratory Immunology 11(3): 463–472.PubMedCentralPubMed
28.
Zurück zum Zitat Wojtyniak, K., M. Szymanski, and I. Matlawska. 2013. Leonurus cardiaca L. (motherwort): a review of its phytochemistry and pharmacology. Phytotherapy research : PTR 27(8): 1115–1120.CrossRefPubMed Wojtyniak, K., M. Szymanski, and I. Matlawska. 2013. Leonurus cardiaca L. (motherwort): a review of its phytochemistry and pharmacology. Phytotherapy research : PTR 27(8): 1115–1120.CrossRefPubMed
29.
Zurück zum Zitat Xu, D., M. Chen, X. Ren, X. Ren, and Y. Wu. 2014. Leonurine ameliorates LPS-induced acute kidney injury via suppressing ROS-mediated NF-kappaB signaling pathway. Fitoterapia 97C: 148–155.CrossRef Xu, D., M. Chen, X. Ren, X. Ren, and Y. Wu. 2014. Leonurine ameliorates LPS-induced acute kidney injury via suppressing ROS-mediated NF-kappaB signaling pathway. Fitoterapia 97C: 148–155.CrossRef
30.
Zurück zum Zitat Oviedo-Boyso, J., J.J. Valdez-Alarcon, M. Cajero-Juarez, A. Ochoa-Zarzosa, J.E. Lopez-Meza, A. Bravo-Patino, and V.M. Baizabal-Aguirre. 2007. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. The Journal of Infection 54(4): 399–409.CrossRefPubMed Oviedo-Boyso, J., J.J. Valdez-Alarcon, M. Cajero-Juarez, A. Ochoa-Zarzosa, J.E. Lopez-Meza, A. Bravo-Patino, and V.M. Baizabal-Aguirre. 2007. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. The Journal of Infection 54(4): 399–409.CrossRefPubMed
31.
Zurück zum Zitat Persson Waller, K., I.G. Colditz, S. Lun, and K. Ostensson. 2003. Cytokines in mammary lymph and milk during endotoxin-induced bovine mastitis. Research in Veterinary Science 74(1): 31–36.CrossRefPubMed Persson Waller, K., I.G. Colditz, S. Lun, and K. Ostensson. 2003. Cytokines in mammary lymph and milk during endotoxin-induced bovine mastitis. Research in Veterinary Science 74(1): 31–36.CrossRefPubMed
32.
Zurück zum Zitat Platzer, C. 2003. Interleukin-10: an anti-inflammatory and immunosuppressive cytokine in the normal and pathological immune response. Current Medicinal Chemistry-Anti-Inflammatory & Anti-Allergy Agents 2(4): 309–323.CrossRef Platzer, C. 2003. Interleukin-10: an anti-inflammatory and immunosuppressive cytokine in the normal and pathological immune response. Current Medicinal Chemistry-Anti-Inflammatory & Anti-Allergy Agents 2(4): 309–323.CrossRef
33.
Zurück zum Zitat Redpath, S., P. Ghazal, and N.R. Gascoigne. 2001. Hijacking and exploitation of IL-10 by intracellular pathogens. Trends in Microbiology 9(2): 86–92.CrossRefPubMed Redpath, S., P. Ghazal, and N.R. Gascoigne. 2001. Hijacking and exploitation of IL-10 by intracellular pathogens. Trends in Microbiology 9(2): 86–92.CrossRefPubMed
34.
Zurück zum Zitat Liang, D., F. Li, Y. Fu, Y. Cao, X. Song, T. Wang, W. Wang, M. Guo, E. Zhou, D. Li, et al. 2014. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-kappaB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation 37(1): 214–222.CrossRefPubMed Liang, D., F. Li, Y. Fu, Y. Cao, X. Song, T. Wang, W. Wang, M. Guo, E. Zhou, D. Li, et al. 2014. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-kappaB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation 37(1): 214–222.CrossRefPubMed
35.
Zurück zum Zitat Muller-Decker, K., and G. Furstenberger. 2007. The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Molecular Carcinogenesis 46(8): 705–710.CrossRefPubMed Muller-Decker, K., and G. Furstenberger. 2007. The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Molecular Carcinogenesis 46(8): 705–710.CrossRefPubMed
36.
Zurück zum Zitat Sakthivel, K.M., and C. Guruvayoorappan. 2013. Amentoflavone inhibits iNOS, COX-2 expression and modulates cytokine profile, NF-kappaB signal transduction pathways in rats with ulcerative colitis. International Immunopharmacology 17(3): 907–916.CrossRefPubMed Sakthivel, K.M., and C. Guruvayoorappan. 2013. Amentoflavone inhibits iNOS, COX-2 expression and modulates cytokine profile, NF-kappaB signal transduction pathways in rats with ulcerative colitis. International Immunopharmacology 17(3): 907–916.CrossRefPubMed
37.
Zurück zum Zitat Xiong H, Cheng Y, Zhang X, Zhang X. 2014. Effects of taraxasterol on iNOS and COX-2 expression in LPS-induced RAW 264.7 macrophages. Journal of ethnopharmacology. Xiong H, Cheng Y, Zhang X, Zhang X. 2014. Effects of taraxasterol on iNOS and COX-2 expression in LPS-induced RAW 264.7 macrophages. Journal of ethnopharmacology.
38.
Zurück zum Zitat Zhu, Y., M. Zhu, and P. Lance. 2012. iNOS signaling interacts with COX-2 pathway in colonic fibroblasts. Experimental Cell Research 318(16): 2116–2127.CrossRefPubMed Zhu, Y., M. Zhu, and P. Lance. 2012. iNOS signaling interacts with COX-2 pathway in colonic fibroblasts. Experimental Cell Research 318(16): 2116–2127.CrossRefPubMed
39.
Zurück zum Zitat Kundu, J.K., and Y.-J. Surh. 2004. Molecular basis of chemoprevention by resveratrol: NF-κB and AP-1 as potential targets. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 555(1): 65–80.CrossRef Kundu, J.K., and Y.-J. Surh. 2004. Molecular basis of chemoprevention by resveratrol: NF-κB and AP-1 as potential targets. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 555(1): 65–80.CrossRef
40.
Zurück zum Zitat Thalhamer, T., M.A. McGrath, and M.M. Harnett. 2008. MAPKs and their relevance to arthritis and inflammation. Rheumatology 47(4): 409–414.CrossRefPubMed Thalhamer, T., M.A. McGrath, and M.M. Harnett. 2008. MAPKs and their relevance to arthritis and inflammation. Rheumatology 47(4): 409–414.CrossRefPubMed
41.
Zurück zum Zitat Lu, Y.C., W.C. Yeh, and P. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42(2): 145–151.CrossRefPubMed Lu, Y.C., W.C. Yeh, and P. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42(2): 145–151.CrossRefPubMed
Metadaten
Titel
Leonurine Exerts Anti-Inflammatory Effect by Regulating Inflammatory Signaling Pathways and Cytokines in LPS-Induced Mouse Mastitis
verfasst von
Xiaojing Song
Tiancheng Wang
Zecai Zhang
Haichao Jiang
Wei Wang
Yongguo Cao
Naisheng Zhang
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0009-9

Weitere Artikel der Ausgabe 1/2015

Inflammation 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.