Skip to main content
Erschienen in: Reproductive Biology and Endocrinology 1/2018

Open Access 01.12.2018 | Review

Lifestyle and fertility: the influence of stress and quality of life on male fertility

verfasst von: Alessandro Ilacqua, Giulia Izzo, Gian Pietro Emerenziani, Carlo Baldari, Antonio Aversa

Erschienen in: Reproductive Biology and Endocrinology | Ausgabe 1/2018

Abstract

Background

Male infertility is a widespread condition among couples. In about 50% of cases, couple infertility is attributable to the male partner, mainly due to a failure in spermatogenesis. In recent times, the crucial role that modifiable lifestyle factors play in the development of infertility have generated a growing interest in this field of study, i.e. aging, psychological stress, nutrition, physical activity, caffeine, high scrotal temperature, hot water, mobile telephone use. Several studies have investigated associations between semen quality and the presence of lifestyle stressors i.e. occupational, life events (war, earthquake, etc.) or couple infertility; overall, these studies provide evidence that semen quality is impaired by psychological stress. In this review, we will discuss the impact of quality of life (modifiable lifestyle factors) and psychological stress on male fertility. In addition, the role that increased scrotal temperature along with inappropriate nutritional and physical exercise attitudes exert on male fertility will be presented.

Conclusion

The decline of male fertility, particularly associated with advancing age, incorrect lifestyles and environmental factors plays an important role on natality, and its consequences on the future on human population makes this an important public health issue in this century. Thus, modification of lifestyle through a structured program of educational, environmental, nutritional/physical exercise and psychological support, combined with the use of nutraceutical antioxidants can prevent infertility and therefore, may help couples to obtain better quality of life and improved possibility to conceive spontaneously or optimize their chances of conception.

Background

In industrialized nations, decreasing the number of people affected by infertility has become a top priority for many health organizations. In Europe, several studies have suggested a possible decline in fecundity of the population [1]. The net effect has been a 7% decrease in fecundability, as suggested by several studies [2]. If the trend observed over 15 years will be extended to 45 years, the reduction in fecundability would be doubled and finally could increase to the extreme hypothesis of a 50% reduction [3]. Infertility affects both men and women. In 50% of involuntarily childless couples, a male-infertility-associated factor is found together with abnormal semen parameters. A fertile partner may compensate for the fertility problem of the man and thus infertility usually manifests itself if both partners have reduced fertility [4].
Lifestyle factors can be modified to enhance overall wellbeing and they are ultimately under one’s own control. Reproductive health can be affected positively or negatively by multiple factors, i.e. age of paternity, nutrients, physical exercise, obesity, caffeine, scrotal temperature, clothing, hot water, mobile telephones [5] that can thus impact the quality of life of sperm parameters and DNA damage induced by reactive oxygen species (ROS) [6]. Also, the altered balance between antioxidant system [7] and oxidative stress, may determine poor fertilization/ embryonic development, pregnancy loss, birth defects and childhood cancer [810]. In this review we will present evidence that modification of lifestyle through a structured program of educational, environmental, nutritional/physical exercise and psychological support, combined with the use of nutraceutical antioxidants can prevent infertility and therefore, may help couples to obtain better quality of life and improved possibility to conceive spontaneously or optimize their chances of conception.

Role of stress on male fertility

Stress is a prominent part of any society and infertility itself is stressful, due to social pressures, testing, diagnosis, treatments, failures, unfulfilled desires and even economic costs with which it is associated [11]. Semen parameters may be potentially linked to stress, whose presence may reduce luteinizing hormone (LH) and testosterone pulsing, thus reducing in turn spermatogenesis and sperm quality [12, 13].
Pre-clinical data have shown that acute stress might impair testicular function; testicular tissue from stressed rats shows higher levels of cortisol displayed apoptosis of both germ cells and Leydig cells [14, 15]. By contrast, the net effects of stress might be determined by chronic as demonstrated by the presence of glucocorticoid receptors (GRs) in Leydig, [16], Sertoli [17] and germs cells [15]; permanently high levels of glucocorticoid are believed to induce apoptosis of all cell types [1517]. The Leydig cell is the primary target of glucocorticoid regulation in the testes. Today, our current understanding of glucocorticoid signaling in the context of reproductive physiology is limited. In humans, stress results in a variety of neuroendocrine, immune and behavioral responses. Recently, new evidence supporting the GR response to glucorticoid in the regulation of Sertoli and Leydig cell’s function has been suggested for a single nucleotide NR3C1 polymorphisms (BcII [rs41423247] [18]. Thus, this variant gene (in an over-dominant manner with heterozygotes) is strongly associated with better sperm motility and a better testicular function [18].
In humans, polymorphism of the GR could suggest a response variability to stress [19]. An isolated stress such as a job, life events, and even social strain or two simultaneous stressful life events may have a significant negative impact on sperm quality [11]. The perceived stress of providing a semen sample was reported to be negatively linked to overall semen quality with a 39% decrease in sperm concentration, 48% decrease in motility, and worse overall semen parameters on the day of oocyte retrieval, although there was no change in either volume or morphology [20, 21]. Futhermore, environmental disasters, war or “stressful life events” are major determinants that do not allow to quantify their impact on fertility, thus determining underestimation of the actual stress burden. A high stress level may occur owing to a continuous high stress in daily life without occurrence of specific stressful exposures. This might explain the uncertain results, and a study setup based on stress due to environmental disasters or war should be preferably accompanied by an assessment of perceived stress [12, 2226].
Many studies show that men undergoing infertility treatment [2729] or men from the general population [30] have a decline in semen parameters during infertility treatment, but it is difficult to distinguish whether stress is a cause or a consequence of decreased semen quality in such studies. Stress can increase after diagnosis of male infertility, follow-up appointments, and failed in vitro fertilization treatments [11]. Men undergoing infertility treatment met the criteria for having an anxiety disorder or depression, the latter being more common [12]. Coping with various lifestyles may also affect fertility. It was reported that actively coping with stress, such as being assertive or confrontational, may negatively impact on fertility, by increasing adrenergic activation, leading to more vasoconstriction in the testes [31]. This vasoconstriction results in a lower testosterone level and decreased spermatogenesis. While men are not often thought to report their anxiety or sexual stress, the link between anxiety and sexual stress was surprisingly strong [32]. Two studies investigating self-reported “daily-life-stress” in men from the general population, while controlling for relevant confounders, have shown controversial results on semen parameters. One study detected linear negative associations between perceived stress and sperm motility, sperm concentration, and percentage of morphologically normal spermatozoa [33]. The other study did not find any association between stress and semen parameters, but found that fecundability decreased with increasing stress score in men with low semen quality [34]. Thus, a negative association between self-reported stress and semen quality reported in many studies represents a public health concern (Table 1). Psychological stress might be a modifiable or reversible factor, which is important in a clinical setting [5]. Future studies should objectively assess the impact of stress and prospectively evaluate whether timely counseling aimed at lowering stress levels may restore semen quality, and attempt to clarify the underlying biological mechanisms by which stress affects semen quality.
Table 1
Effects of psychological stress on semen parameters: clinical studies
First author and year
Population
Country
Stress exposure and/ or assessment
Semen parameter affected
Adjustment
Study design
Stress due to environmental disasters
 Fukuda 1996 [24]
27 infertile men
Japan
Earthquake
↓Motility →Sperm conc
Unadjusted
Longitudinal
 Abu-Musa 2007 [22]
10,000 semen
samples
Lebanon
War
↓Sperm conc [Morphology →Volume,
motility
Unadjusted
Cross- sectional
Stress due to examinations or other stressful life events
 Hjollund 2004 [34]
418 men
Denmark
Self-rated stress
→Sperm conc, semen volume, total count, morphology, motility
Age, smoking, alcohol, caffeine,
reproductive disorders, BMI,
Longitudinal
 Eskiocak 2005 [23]
34 students
Turkey
University
examinations
↓Motility, sperm conc, morphology→
Semen volume
Unadjusted
Longitudinal
 Zorn 2008 [32]
1076 infertile men
Slovenia
Life events
Sperm conc, motility, morphology
Age, smoking, abstinence time,
cryptorchidism, varicocele
Cross-sectional
 Gollenberg 2010 [12]
744 fertile men
USA
Life events
↓Sperm conc, total count
→Morphology, motility
Center, age, race, education,
fever, abstinence time
Cross-sectional
 Nordkap L 2016 [30]
1215 young men
Denmark
self-reported stress
↓ sperm count,motility and morphology ↑ FSH→
Age, reproductive
disorders, alcohol,
BMI, caffeine, cannabis, stress
Cross- sectional
Occupational stress
 Hjollund 2004 [34]
399 men
Denmark
Work-related
→Sperm conc, volume, total count, morphology
Age, reproductive
disorders, alcohol,
BMI, caffeine
Cross-sectional
 Janevic T 2014 [33]
327 infertile men
Poland
Work-related
Self-rated stress
Morphology
Age, reproductive diseases,
alcohol, BMI, smoking,
duration of infertility
Cross-sectional
 Stress due to infertility
 Pook 2005 [31]
120 infertile men
Germany
Self-rated stress
↓ Sperm conc
Unadjusted
Longitudinal
 Vellani 2013 [28]
94 male
IVF-patients / 85
controls
Italy
Self-rated stress
↓Motility, sperm conc,total count,
volume
Unadjusted (but excluded
men with diseases)
Cross- sectional
 Bhongade 2014 [27]
70 infertile men
India
Self-rated stress
↓Sperm conc, motility, morphology
Age, abstinence time
Cross- sectional

Quality of life and male fertility

Currently, increased life expectancy, advanced age of marriage, various socio-economic factors and an overall change in role of women in society has led couples to start their family at a later age. The increased accessibility to assisted reproductive techniques (ART) has increased the chance of older parents with poor pregnancy outcomes to conceive children, hence, increasing the average paternal age at first childbirth. Increased paternal age is a major determinant fo testicular function [35, 36], reproductive hormones [37], sperm parameters [38, 39], sperm DNA integrity [40], telomere length [41], de novo mutation rate [42], chromosomal structure [43] and epigenetic factors [44, 45]. These changes negatively affect fertility and reproductive outcomes in older couples, contributing to higher incidences of congenital birth defects [46] and fetal deaths [47]. Increasing male age has also been shown to be associated with numerous disorders like achondroplasia [48], autism [49], schizophrenia and bipolar disorders [45]. Male aging results in the loss of antioxidant activity and elevated levels of ROS [50]. This imbalance between ROS and antioxidants causes oxidative stress and is well documented in the male reproductive tract [51, 52] and in the spermatozoa of aging rodents [53]. If not maintained within normal physiological levels, ROS can damage cellular macromolecules, inducing stress signaling and, at high levels, cell death [54]. A recent study confirmed that aging reduces fertility and the numbers of Sertoli and germ cells in mice with complete absence of either catalase (CAT-null (Cat−/−) or superoxide dismutase 1 (SOD1-null (Sod−/−) [55]. Thus, suggesting that these enzymes appear critical to the maintenance of germ cell quality with aging.
In humans, although spermatozoa are continuously produced with advanced paternal age, there is a growing body of evidence indicating that advanced paternal age is associated with negative impact on the quality of male germ cells [56], the number of Sertoli cells [57] and the number of Leydig cells [58]. A negative association between increasing paternal age and testicular volume was noted by several studies [35, 59]. In a study it was found that compared to the age group 18–40 years, men aged > 75 years had 31% smaller mean testicular volume [59]. In addition, some authors reported the thickening of basal membrane of seminiferous tubules with age [35] as well as disturbances in blood supply in senile testes have been associated with negative changes in spermiogenesis and thickness of basement membrane [60].
Male aging is characterized by different changes in the endocrine function. Hormonal changes are characterized mainly by a reduction of the biosynthesis of testicular inhibin B by Sertoli cells with increased secretion of follicle stimulating hormone (FSH) [61]. Leydig cells are responsible for testosterone production. The number of Leydig cells tends to reduce with increasing paternal age [58]. The average total number of Leydig cell nuclei decreases by half in age group of 50–76 years compared to age group of 20–48 years [58]. Wu et al. reported that age-affected testicular atrophy is a result of Hypothalamic-Pituitary-Testicular Axis alterations that disturb the functions of various reproductive hormones [62].
In a study where semen values of men above 45 years of age were analyzed, four measured parameters (semen volume, sperm concentration, sperm motility, and sperm morphology) and one derived parameter (total sperm count) were calculated according to the age range, and these values were compared to the reference values of the World Health Organization [63]. After the age of 45, semen volume gradually decreases due to functional decline of accessory glands [63]. In addition, sperm morphology is also affected with aging and the percentage of sperms with normal morphology begins to decrease after the age of 40 [64]. The age of a man is directly related to increase of sperm DNA fragmentation, due to elevation of oxidatixe stress [65]. Oxidative stress due to increased production of ROS or reduced antioxidant reserves, is responsible for a majority of DNA fragmentations (almost 80%) occurring during infections, inflammation or in cases of various clinical diagnosis of male infertility [66]. Recently, a meta-analysis confirmed that paternal aging led to a decrease in sperm parameters except for sperm concentration; however, impaired DNA fragmentation and reduced progressive motility were suggested as diagnostic parameters to be considered during fertility treatment of older men [67].
Also, as already noted, advanced paternal age increases sperm DNA fragmentation and may negatively affect the IVF/ICSI success rates [68, 69]. Despite increasing evidence of positive correlation between sperm DNA fragmentation and reduced male fertility, current guidelines do not support the routine use of sperm DNA integrity assessment in clinical practice [70]. Thus, it is clear that advanced paternal age should be considered as a risk factor for possible genetic disorders of newborns and we recommend to use caution in counselling couples with advanced age wanting to conceive with ART because of this evidence.

Antioxidants

A new emerging role in the male infertile management is the use of antioxidants [71]. They are molecules such as albumin, ceruloplasmin, and ferritin; and an array of small molecules, including ascorbic acid, α-tocopherol, β-carotene, reduced glutathione, uric acid, and bilirubin or enzymes superoxide dismutase, catalase, and glutathione peroxidase [71]. They help to remove ROS excess in the seminal ejaculate and assist in the conversion of ROS to compounds that are less detrimental to cells [71]. If there is abundancy of ROS than the local antioxidants can remove, it results in increased oxidative stress thus impairing sperm protein, lipid and DNA damage and sperm dysfunction [71]. The ascorbic acid (vitamin C) is a known antioxidant present in the testes with the precise role of protecting the latter from the oxidative damage [72]. It also contributes to the support of spermatogenesis, at least in part through its capacity to maintain this antioxidant in an active state [72]. Vitamin C is itself maintained in a reduced state by a GSH-dependent dehydroascorbate reductase, which is abundant in the testes [72]. An emerging role is attributed to myo-inositol, a precursor of the second messenger Ins (1,4,5) P3 [73, 74]. It modulates specific protein phosphorylation process and intracellular Ca++ concentration through one sperm-specific Ca++ − permeable channel (CatSper) in the plasma membrane of the flagellar principal piece, hence it may be beneficial to sperm motility [7579]. Another scavenger, N-Acetyl cysteine (NAC), is an amino acid that may exhibit antioxidant properties after being converted into cysteine, which is a precursor of glutathione [80]. In vitro studies have demonstrated a beneficial role for NAC on germ cell survival [81] through reduction of ROS levels, thus improving sperm motility [82]. However, most clinical studies using any antioxidant produced controversial results. A double-blind, placebo controlled, randomized study investigated the effect of a log-term administration of selenium and N-acetyl-cysteine on 468 infertile men with idiopathic oligo-asthenoteratospermia suggesting a beneficial effect [83]. Despite a positive association between vitamin D levels and semen quality (sperm motility), there is no proof-of-fact that its administration is able to improve sperm parameters [84]. A Cochrane meta-analysis of 33 trials, suggested that men who use oral antioxidants had a slightly significant increase in live birth rate when compared to controls [85]. Subfertile males using antioxidants, may improve live birth rates for couples attending fertility clinics [85]. Currently, we can conclude that there is no indication neither for screening infertile patients for ROS generation or seminal oxidative stress or treating them with specific antioxidants in the clinical setting once diagnostic workup is concluded in favour of a specific inflammatory etiology.

Nutritional factors

Nutritional factors are known to be critical determinants of normal reproductive function in both sexes [86]. A combination of reduced physical exercise, changes in dietary composition and increased energy intake have contributed to a growing worldwide epidemic in obesity [87, 88] and diabetes [89], with serious impacts on several aspects of health, including reproductive system health [88, 90]. Moreover, there is increasing evidence indicating a direct relationship between incorrect nutritional attitudes in decreased sperm quality.
Recent evidences from both animal and human studies indicate that high fat diets result in impaired reproduction, by affecting molecular and physical structure of sperm as well as the health of the developing fetus and subsequent offspring [90, 91]. The exposure to a high fat diet during that period leads to long-term changes in the reproductive system and metabolism of male rats, so it may implicate reproductive and metabolic programming mechanisms [92]: a reduction in seminiferous epithelium height and seminiferous tubular diameter [93], reduced sperm concentration, viability, motility and DNA integrity [94]. On the other hand, adult male Wistar rat offspring born to obese mothers after a long term of regular voluntary physical activity and diet leads to a reduction of adipose tissue and an improved sperm quality and fertility [95]. These beneficial effects were associated to decreased testicular oxidative stress biomarkers and increased sperm antioxidant activity found in exercised animals [95]. Rato et al. reported that testicular physiology is sensitive to alterations of whole-body metabolism and that testicular metabolism can be disturbed by high-energy diet intake, such as trans fatty acids and saturated fats and obesity [96]; other authors suggested that chronic inflammation can provoke an impairment of sperm concentration and motility [97].
Emerging data suggest the role of an individualized diet in order to improve semen parameters. It should be characterized by high intakes of fruits and vegetables [98, 99], legumes [98] and fish [100102], possibly as sources of antioxidants and polyunsaturated fatty acids (among which omega-3) and negatively associated with diets including meats (processed meat in particular) and full-fat dairy products that are sources of saturated fats [103]. In general, fruit and vegetable intake showed a consistently positive association with better motility and morphology [98, 99]. According to the Mediterranean diet score, a high adherence to this diet is strongly associated to better sperm parameter i.e. count, motility and morphology [104], and a lower DNA fragmentation index [105] than those people with lower adherence. By contrast it is known that the frequent use of red meat is negatively associated with sperm parameters [106].
The abuse of high caffeine-content energy drinks has increased in recent years. 28% of children and 31% of adolescents are reported to be regular consumers and this has been hypothesized to influence semen parameters [107]. As suggested by animal studies [108, 109], caffeine easily crosses biologic membranes and is rapidly distributed throughout the body and has been found in saliva, breast milk, the embryo and the fetal rat testis [110]. In humans, prenatal caffeine exposure impairs male gonadal development and thus later gonadal function [111]. However, the mechanism behind the possible harmful effect of caffeine is not well clarified. Coffee consumption has been hypothesized to influence not only semen parameters, but also sperm DNA integrity. Caffeine intake, possibly though sperm DNA damage, may negatively affect the male reproductive function [112, 113]. However, we can conclude that there is no clear association between caffeine and fertility indexes, so this relationship remains unclear and, in some ways, contrasting. It is our opinion that all the quoted observational studies regarding these nutritional factors have proven associations but not causations, the associations need to be confirmed with larger prospective cohort studies and especially with well-designed randomized controlled trials.

Physical exercise

The beneficial effects of a correct physical exercise on cardio-metabolic parameters are well known [114116]. Animal studies support the evidence that impaired sperm quality and fertility potential in rat offspring from obese dams, can be ameliorated by exercise performed during adulthood [95]. In mice, a low intensity swimming training improves reproductive system without affecting adiposity in obese animals, which suggests that adiposity itself is not the sole determinant in the impaired sperm function [90]. So, animals exposed to high fat diet and physical exercise, show an attenuation of fat visceral deposits, which can be associated with protection of reproductive system [117]. By contrast, there are conflicting data on the effect of physical activity (PA) on male fertility in humans. Observational studies conducted on general populations and student populations do not provide evidence of any improvement of semen parameters by PA [118]. Initial studies demonstrated that during continuous strenuous exercise, semen parameters and testicular function can be affected negatively by testicular heating [119], oxidative stress (ROS formation) [120], DNA fragmentation [121] and gonadotropin suppression [122].
Physically active subjects have been reported to have higher numbers of motile spermatozoa with normal morphology than sedentary controls [123, 124] and an improvement of sperm parameters has been found after reducing the exposure time of tv-watching [125]. Recent studies suggest that moderate-intensity continuous training may be more advantageous on the oxidant/antioxidant markers in seminal plasma than high-intensity continuous training and high-intensity interval training [126]. Finally, it is worth remembering that many evidences support the fact that continuous bicycling exerts a negative correlation with both total motile sperm counts and sperm concentration because of its influence on scrotal temperature [127]. We can conclude that any kind of extreme or agonistic physical activity may expose subjects to an increased risk of worsening in the reproductive function; the withdrawal of these activities as well as the recommendation of a supervised physical activity may improve fertility especially in patients with concomitant comorbidities i.e. diabetes/obesity.

Temperature

The exposure of testes to an increase of temperature can impair fertility through the alteration of sperm parameters (number, motility and morphology) and the damage of sperm membrane integrity [128131]. The temperature of the scrotal sac reflects testicular temperature and its thermoregulation is fundamental defensive mechanisms [132]. Higher temperatures promote increased ROS generartion with subsequent damage on the sperm plasma membrane and determinate DNA fragmentation of both nuclear and mitochondrial genomes, conducing to cell damage and apoptosis [133]. Animal studies support the concept that elevated testicular temperature by 1–1.5 °C resulted in reduction of the testes size, lower sperm production, abnormal forms [134] and lower motility [135137]. Heat stress can affects testes especially cells with high mitotic rate, like mature spermatozoa spermatocytes and spermatids [130] According to studies conducted on mice, hyperthermia affects sperm cells determining DNA damage and apoptosis by intrinsic or extrinsic pathway [138, 139]. The consequence is a poor fertility capacity in vivo and in vitro.
Clinical studies suggest that slight variations of the testicular temperature may bring to alterations of spermatogenesis according to the delicate temperature sensitivity of testicular DNA synthesis, with temperature maximal sensitivity at 31 °C, whereas for RNA and protein synthesis the maximal sensitivity is 37–40 °C [132]. An increase of 1 °C is correlated to a 14% drop in the spermatogenesis with poorer sperm production [132]. Studies have found that high temperature exposure of sperm led to increase in apoptosis [132]. Accordingly, also portable computers seem to have thermal and non-thermal effects on male fertility, but data in literature are poor and inconclusive [140]. Non -thermal effects are attributed to radiofrequency exposure that can cause a decrease in sperm motility and morphology [141], while thermal effects are more possibly causing detrimental effects. To this end, there is increasing concern that the use of mobile phones, a source of low-level radiofrequency electromagnetic fields (RF-EMF), may be associated with decreased semen quality [142]. There are also some experimental evidences in rats that exposures to mobile phone RF-EMF may lead to histological changes to the testes, disrupted spermatogenesis, and increases in rectal temperature, but, again, the results are also conflicting [143, 144]. In laptop users, both thermal and non-thermal mechanisms have been similarly involved [145]. The state of the art on this topic is limited and is in progress. Prolonged sitting in the car is another risk factor for the rise of testicular temperature, that increases of about 2 °C after 2 h of sitting [146]. Finally, we want to highlight that the type of clothing a man chooses to wear, may have effects on reproductive health i.e. tight fitting underwear and pants showed a relative risk of 2.5 of having impaired semen quality [147]. Thus, it has been suggested that tight fitting versus loose fitting underwear is detrimental on sperm parameters. In accordance, also hot baths, jacuzzis, or saunas may also worsen fertility parameters [148]. A new chance to improve sperm parameters could be scrotal cooling. A randomized controlled trial on scrotal cooling using a hydrogel pad is in the initial recruitment phase [149]. Systematic review aimed to demonstrate beneficial effect of scrotal cooling on male fertility failed to demonstrate real efficacy in pregnancy rates [150]. We can conclude that increased temperature of the scrotal sac may represent an increased risk factor for all men in reproductive age; we recommend that any man seeking fertility is aware of such risk and also recommend the prevention of such risk factor in young, not-father men who are exposed.

Conclusions

The crucial role that modifiable lifestyle factors play in the development of male infertility has generated a growing interest in this field (Fig. 1). There are associations between psychological attitudes and infertility, but at present it is hard to establish a cause-effect relationship. While stress (physical, emotional, biological, etc) can reduce the potential of male fertility, there is no general consensus on how to measure it objectively. We feel confortable in recommending a special consideration for both partners’age, to thoroughly increase the odds of having a successful pregnancy and to avoid the risk for possible genetic disorders of newborns. We recommend using caution in counselling couples with advanced age wanting to conceive with ART because of this evidence; they should be timely reassured in order to reduce the exposure to stressors. A number of studies have confirmed a beneficial effect for antioxidants in reversing oxidative stress-induced sperm dysfunction specifically in patients with idiopathic male infertility. Their use should be thought of, but not before a diagnostic workup because a robust evidence on this topic is an arduous process. Inappropriate eating behaviors i.e. consuming high fat diet and sedentary lifestyle have been investigated by pre-clinical and clinical studies, so they seemed to worsen sperm parameters. Appropriate nutrients and eventual weight loss may positively influence male fertility. Indeed, it is a fact that obese and overweight men are also predisposed to develop hormonal dysfunctions that may impair their infertility. Up to now, data about choosing supplements or food groups are available only from cross-sectional or case-control studies and no conclusive data about them, i.e. caffeine, are available. PA may positively influence male fertility. A supervised PA administered by a specialist is recommended in any infertile subject with concomitant comorbidities i.e. diabetes/obesity, in order to attain an improvement of fertility, while exercising heavily should be avoided. Today, even if there are suggestive data on the possible influence of other factors such as the type of underwear or clothing or mobile phones use or hot water, little is known about the actual evidence, linking cessation of exposure of lifestyle modifiable factors with resumption of fertility. An access to an andrologist should be encouraged in order to obtain lifestyle recommendations combined with the possible use of nutraceutical antioxidants. The correction of inappropriate lifestyles could improve the degree of DNA fragmentation (even if these latter tests are not recommended in the routine screening) and facilitate the prevision of better quality of life to couples attempting to improve fertility chances of success and minimizing the need for costly and invasive infertility treatment.
It is our opinion that all the quoted observational studies regarding these nutritional factors may prove associations but not causations. Properly-designed randomized controlled trials are needed to conferm these correlations. Also, the effects of reducing/removing the exposition is not applicable to human studies for ethical reasons.

Acknowledgements

The authors wish to thank Dr. Andrea D’Anselmo for the english revision of the manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.
This study did not require Ethics approval and consent to participate.
Not applicable.

Competing interests

“The authors declare that they have no competing interests”.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Carlsen E, Giwercman A, Keuding N, Skakkebaek NE. Evidence for decreasing quality of sperm during past 50 years. Br Med J. 1992;305:609–13.CrossRef Carlsen E, Giwercman A, Keuding N, Skakkebaek NE. Evidence for decreasing quality of sperm during past 50 years. Br Med J. 1992;305:609–13.CrossRef
2.
Zurück zum Zitat Slama R, Kold-Jensen T, Scheike T, Ducot B, Spira A, Keiding N. How would a decline in sperm concentration over time influence the fertility: a comparative perspective? Epidemiology. 2004;15:458–65.PubMedCrossRef Slama R, Kold-Jensen T, Scheike T, Ducot B, Spira A, Keiding N. How would a decline in sperm concentration over time influence the fertility: a comparative perspective? Epidemiology. 2004;15:458–65.PubMedCrossRef
3.
Zurück zum Zitat Hoorens S, Gallo F, Cave JAK, Grant JC. Can assisted reproductive technologies help to offset population ageing? An assessment of the demographic and economic impact of ART in Denmark and UK. Hum Reprod. 2007;22:2471–5.PubMedCrossRef Hoorens S, Gallo F, Cave JAK, Grant JC. Can assisted reproductive technologies help to offset population ageing? An assessment of the demographic and economic impact of ART in Denmark and UK. Hum Reprod. 2007;22:2471–5.PubMedCrossRef
4.
Zurück zum Zitat Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.PubMedCrossRef Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.PubMedCrossRef
5.
Zurück zum Zitat Gameiro S, Boivin J, Dancet E, Emery M, Thorn P, Van den Broeck U, et al. Qualitative research in the ESHRE Guideline ‘Routine psychosocial care in infertility and medically assisted reproduction - a guide for staff Guideline Development Group of the ESHRE Guideline on Psychosocial Care in Infertility and Medically Assisted Reproduction. Hum Reprod. 2016;31:1928–9.PubMedCrossRef Gameiro S, Boivin J, Dancet E, Emery M, Thorn P, Van den Broeck U, et al. Qualitative research in the ESHRE Guideline ‘Routine psychosocial care in infertility and medically assisted reproduction - a guide for staff Guideline Development Group of the ESHRE Guideline on Psychosocial Care in Infertility and Medically Assisted Reproduction. Hum Reprod. 2016;31:1928–9.PubMedCrossRef
6.
Zurück zum Zitat Cho CL, Agarwal A, Majzoub A, Esteves SC. Clinical utility of sperm DNA fragmentation testing: concise practice recommendations. Transl Androl Urol. 2017;6:S366–73.PubMedPubMedCentralCrossRef Cho CL, Agarwal A, Majzoub A, Esteves SC. Clinical utility of sperm DNA fragmentation testing: concise practice recommendations. Transl Androl Urol. 2017;6:S366–73.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Yousefniapasha Y, Jorsaraei G, Gholinezhadchari M, Mahjoub S, Hajiahmadi M, Farsi M. Nitric oxide levels and total antioxidant capacity in the seminal plasma of infertile smoking men. Cell Journal. 2015;17:129–36.PubMedPubMedCentral Yousefniapasha Y, Jorsaraei G, Gholinezhadchari M, Mahjoub S, Hajiahmadi M, Farsi M. Nitric oxide levels and total antioxidant capacity in the seminal plasma of infertile smoking men. Cell Journal. 2015;17:129–36.PubMedPubMedCentral
8.
Zurück zum Zitat De Iuliis GN, Wingate JK, Koppers AJ, McLaughlin EA, Aitken RJ. Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J Clin Endocr Metab. 2006;91:1968–75.PubMedCrossRef De Iuliis GN, Wingate JK, Koppers AJ, McLaughlin EA, Aitken RJ. Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J Clin Endocr Metab. 2006;91:1968–75.PubMedCrossRef
9.
Zurück zum Zitat Aitken RJ, Baker MA, De Iuliis GN, Nixon B. New insights into sperm physiology and pathology. Handb Exp Pharmacol. 2010;198:99–115.CrossRef Aitken RJ, Baker MA, De Iuliis GN, Nixon B. New insights into sperm physiology and pathology. Handb Exp Pharmacol. 2010;198:99–115.CrossRef
10.
Zurück zum Zitat Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. W J Men’s Health. 2014;32:1–17.CrossRef Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. W J Men’s Health. 2014;32:1–17.CrossRef
11.
Zurück zum Zitat Anderson K, Niesenblat V, Norman R. Lifestyle factors in people seeking infertility treatment. A review. Aust N Z J Obstet Gynaecol. 2010;50:8–20.PubMedCrossRef Anderson K, Niesenblat V, Norman R. Lifestyle factors in people seeking infertility treatment. A review. Aust N Z J Obstet Gynaecol. 2010;50:8–20.PubMedCrossRef
12.
Zurück zum Zitat Gollenberg AL, Liu F, Brazil C, Drobnis EZ, Guzick D, Overstreet JW, et al. Semen quality in fertile men in relation to psychosocial stress. Fertil Steril. 2010;93:1104–11.PubMedCrossRef Gollenberg AL, Liu F, Brazil C, Drobnis EZ, Guzick D, Overstreet JW, et al. Semen quality in fertile men in relation to psychosocial stress. Fertil Steril. 2010;93:1104–11.PubMedCrossRef
13.
Zurück zum Zitat Corona G, Giagulli VA, Maseroli E, Vignozzi L, Aversa A, Zitzmann M, Saad F, Mannucci E, Maggi M. Testosterone supplementation and body composition: results from a meta-analysis study. Eur J Endocrinol. 2016;174:R99–116.PubMedCrossRef Corona G, Giagulli VA, Maseroli E, Vignozzi L, Aversa A, Zitzmann M, Saad F, Mannucci E, Maggi M. Testosterone supplementation and body composition: results from a meta-analysis study. Eur J Endocrinol. 2016;174:R99–116.PubMedCrossRef
14.
Zurück zum Zitat Chen Y, Wang Q, Wang FF, Gao HB, Zhang P. Stress induces glucocorticoid-mediated apoptosis of rat Leydig cells in vivo. Stress. 2012;15:74–84.PubMedCrossRef Chen Y, Wang Q, Wang FF, Gao HB, Zhang P. Stress induces glucocorticoid-mediated apoptosis of rat Leydig cells in vivo. Stress. 2012;15:74–84.PubMedCrossRef
15.
Zurück zum Zitat Yazawa H, Sasagawa I, Nakada T. Apoptosis of testicular germ cells induced by exogenous glucocorticoid in rats. Hum Reprod. 2000;15:1917–20.PubMedCrossRef Yazawa H, Sasagawa I, Nakada T. Apoptosis of testicular germ cells induced by exogenous glucocorticoid in rats. Hum Reprod. 2000;15:1917–20.PubMedCrossRef
17.
Zurück zum Zitat Hazra R, Upton D, Jimenez M, Desai R, Handelsman DJ, Allan CM. In vivo actions of the Sertoli cell glucocorticoid receptor. Endocrinology. 2014;155:1120–30.PubMedCrossRef Hazra R, Upton D, Jimenez M, Desai R, Handelsman DJ, Allan CM. In vivo actions of the Sertoli cell glucocorticoid receptor. Endocrinology. 2014;155:1120–30.PubMedCrossRef
18.
Zurück zum Zitat Nordkap L, Almstrup K, Nielsen JE, Bang AK, Priskorn L, Krause M, et al. Possible involvement of the glucocorticoid receptor (NR3C1) and selected NR3C1 gene variants in regulation of human testicular function. Andrology. 2017;5:1105–14.PubMedCrossRef Nordkap L, Almstrup K, Nielsen JE, Bang AK, Priskorn L, Krause M, et al. Possible involvement of the glucocorticoid receptor (NR3C1) and selected NR3C1 gene variants in regulation of human testicular function. Andrology. 2017;5:1105–14.PubMedCrossRef
19.
Zurück zum Zitat Panek M, Pietras T, Fabijan A, Zioło J, Wieteska Ł, Małachowska B, et al. The NR3C1 Glucocorticoid Receptor Gene Polymorphisms May Modulate the TGF-beta mRNA Expression in Asthma Patients. Inflammation. 2015;38:1479–92.PubMedCrossRef Panek M, Pietras T, Fabijan A, Zioło J, Wieteska Ł, Małachowska B, et al. The NR3C1 Glucocorticoid Receptor Gene Polymorphisms May Modulate the TGF-beta mRNA Expression in Asthma Patients. Inflammation. 2015;38:1479–92.PubMedCrossRef
20.
Zurück zum Zitat Spielberger CD, Gorsuch RL, Lushene RE, Jacobs GA. In: Alto P, editor. STAI: Manual for the State-Trait Anxiety Inventory. CA: Consulting Psychologists Press; 1970. Spielberger CD, Gorsuch RL, Lushene RE, Jacobs GA. In: Alto P, editor. STAI: Manual for the State-Trait Anxiety Inventory. CA: Consulting Psychologists Press; 1970.
21.
Zurück zum Zitat Ragni G, Caccamo A. Negative effect of stress of in vitro fertilization program on quality of semen. Acta Eur Fertil. 1992;23:21–3. Ragni G, Caccamo A. Negative effect of stress of in vitro fertilization program on quality of semen. Acta Eur Fertil. 1992;23:21–3.
22.
Zurück zum Zitat Abu-Musa AA, Nassar AH, Hannoun AB, Usta IM. Effect of the Lebanese civil war on sperm parameters. Fertil Steril. 2007;88:1579–82.PubMedCrossRef Abu-Musa AA, Nassar AH, Hannoun AB, Usta IM. Effect of the Lebanese civil war on sperm parameters. Fertil Steril. 2007;88:1579–82.PubMedCrossRef
23.
Zurück zum Zitat Eskiocak S, Gozen AS, Yapar SB, Tavas F, Kilic AS, Eskiocak M. Glutathione and free sulphydryl content of seminal plasma in healthy medical students during and after exam stress. Hum Reprod. 2005;20:2595–600.PubMedCrossRef Eskiocak S, Gozen AS, Yapar SB, Tavas F, Kilic AS, Eskiocak M. Glutathione and free sulphydryl content of seminal plasma in healthy medical students during and after exam stress. Hum Reprod. 2005;20:2595–600.PubMedCrossRef
24.
Zurück zum Zitat Fukuda M, Fukuda K, Shimizu T, Yomura W, Shimizu S. Kobe earthquake and reduced sperm motility. Hum Reprod. 1996;11:1244–6.PubMedCrossRef Fukuda M, Fukuda K, Shimizu T, Yomura W, Shimizu S. Kobe earthquake and reduced sperm motility. Hum Reprod. 1996;11:1244–6.PubMedCrossRef
25.
Zurück zum Zitat Fenster L, Katz DF, Wyrobek AJ, Pieper C, Rempel DM, Oman D, et al. Effects of psychological stress on human semen quality. J Androl. 1997;18:194.PubMed Fenster L, Katz DF, Wyrobek AJ, Pieper C, Rempel DM, Oman D, et al. Effects of psychological stress on human semen quality. J Androl. 1997;18:194.PubMed
26.
Zurück zum Zitat Giblin PT, Poland ML, Moghissi KS, Ager JW, Olson JM. Effects of stress and characteristic adaptability on semen quality in healthy men. Fertil Steril. 1988;49:127–32.PubMedCrossRef Giblin PT, Poland ML, Moghissi KS, Ager JW, Olson JM. Effects of stress and characteristic adaptability on semen quality in healthy men. Fertil Steril. 1988;49:127–32.PubMedCrossRef
27.
Zurück zum Zitat Bhongade MB, Prasad S, Jiloha RC, Ray PC, Mohapatra S, Koner BC. Effect of psychological stress on fertility hormones and seminal quality in male partners of infertile couples. Andrologia. 2015;47:336–42.PubMedCrossRef Bhongade MB, Prasad S, Jiloha RC, Ray PC, Mohapatra S, Koner BC. Effect of psychological stress on fertility hormones and seminal quality in male partners of infertile couples. Andrologia. 2015;47:336–42.PubMedCrossRef
28.
Zurück zum Zitat Vellani E, Colasante A, Mamazza L, Minasi MG, Greco E, Bevilacqua A. Association of state and trait anxiety to semen quality of in vitro fertilization patients: a controlled study. Fertil Steril. 2013;99:1565–72.PubMedCrossRef Vellani E, Colasante A, Mamazza L, Minasi MG, Greco E, Bevilacqua A. Association of state and trait anxiety to semen quality of in vitro fertilization patients: a controlled study. Fertil Steril. 2013;99:1565–72.PubMedCrossRef
29.
Zurück zum Zitat Gurhan N, Akyuz A, Atici D, Kisa S. Association of depression and anxiety with oocyte and sperm numbers and pregnancy outcomes during in vitro fertilization treatment. Psychol Rep. 2009;104:796–806.PubMedCrossRef Gurhan N, Akyuz A, Atici D, Kisa S. Association of depression and anxiety with oocyte and sperm numbers and pregnancy outcomes during in vitro fertilization treatment. Psychol Rep. 2009;104:796–806.PubMedCrossRef
30.
Zurück zum Zitat Nordkap L, Jensen TK, Hansen ÅM, Lassen TH, Bang AK, Joensen UN, et al. Psychological stress and testicular function: a cross-sectional study of 1,215 Danish men. Fertil Steril. 2016;105:174–87.PubMedCrossRef Nordkap L, Jensen TK, Hansen ÅM, Lassen TH, Bang AK, Joensen UN, et al. Psychological stress and testicular function: a cross-sectional study of 1,215 Danish men. Fertil Steril. 2016;105:174–87.PubMedCrossRef
31.
Zurück zum Zitat Pook M, Tuschen-Caffier B, Kubek J, Schill W, Krause W. Personality, coping and sperm count. Andrologia. 2005;37:29–35.PubMedCrossRef Pook M, Tuschen-Caffier B, Kubek J, Schill W, Krause W. Personality, coping and sperm count. Andrologia. 2005;37:29–35.PubMedCrossRef
32.
Zurück zum Zitat Zorn B, Auger J, Velikonja V, Kolbezen M, Meden-Vrtovec H. Psychological factors in male partners of infertile couples: Relationship with semen quality and early miscarriage. Int J Androl. 2008;31:557–64.PubMedCrossRef Zorn B, Auger J, Velikonja V, Kolbezen M, Meden-Vrtovec H. Psychological factors in male partners of infertile couples: Relationship with semen quality and early miscarriage. Int J Androl. 2008;31:557–64.PubMedCrossRef
33.
Zurück zum Zitat Janevic T, Kahn LG, Landsbergis P, Cirillo PM, Cohn BA, Liu X, et al. Effects of work and life stress on semen quality. Fertil Steril. 2014;102:530–8.PubMedPubMedCentralCrossRef Janevic T, Kahn LG, Landsbergis P, Cirillo PM, Cohn BA, Liu X, et al. Effects of work and life stress on semen quality. Fertil Steril. 2014;102:530–8.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Hjollund NH, Bonde JP, Henriksen TB, Giwercman A, Olsen J. Reproductive effects of male psychologic stress. Epidemiology. 2004;15:21–7.PubMedCrossRef Hjollund NH, Bonde JP, Henriksen TB, Giwercman A, Olsen J. Reproductive effects of male psychologic stress. Epidemiology. 2004;15:21–7.PubMedCrossRef
35.
Zurück zum Zitat Handelsman DJ, Staraj S. Testicular size: the effects of aging, malnutrition, and illness. J Androl. 1985;6:144–51.PubMedCrossRef Handelsman DJ, Staraj S. Testicular size: the effects of aging, malnutrition, and illness. J Androl. 1985;6:144–51.PubMedCrossRef
36.
Zurück zum Zitat Bray I, Gunnell D, Davey SG. Advanced paternal age: how old is too old? J Epidemiol Commun Health. 2006;60:851–3.CrossRef Bray I, Gunnell D, Davey SG. Advanced paternal age: how old is too old? J Epidemiol Commun Health. 2006;60:851–3.CrossRef
37.
Zurück zum Zitat Khera M, Broderick GA, Carson CC 3rd, Dobs AS, Faraday MM, Goldstein I, et al. Adult-Onset Hypogonadism. Mayo Clin Proc. 2016;91:908–26.PubMedCrossRef Khera M, Broderick GA, Carson CC 3rd, Dobs AS, Faraday MM, Goldstein I, et al. Adult-Onset Hypogonadism. Mayo Clin Proc. 2016;91:908–26.PubMedCrossRef
38.
Zurück zum Zitat Brahem S, Mehdi M, Elghezal H, Saad A. The effects of male aging on semen quality, sperm DNA fragmentation and chromosomal abnormalities in an infertile population. J Assist Reprod Genet. 2011;28:425–32.PubMedPubMedCentralCrossRef Brahem S, Mehdi M, Elghezal H, Saad A. The effects of male aging on semen quality, sperm DNA fragmentation and chromosomal abnormalities in an infertile population. J Assist Reprod Genet. 2011;28:425–32.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59:2–11.PubMedCrossRef Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59:2–11.PubMedCrossRef
40.
Zurück zum Zitat Moskovtsev SI, Willis J, Mullen JB. Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril. 2006;85:496–9.PubMedCrossRef Moskovtsev SI, Willis J, Mullen JB. Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril. 2006;85:496–9.PubMedCrossRef
41.
Zurück zum Zitat Broer L, Codd V, Nyholt DR, Deelen J, Mangino M, Willemsen G, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21:1163–8.PubMedPubMedCentralCrossRef Broer L, Codd V, Nyholt DR, Deelen J, Mangino M, Willemsen G, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21:1163–8.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Crow JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000;1:40–7.PubMedCrossRef Crow JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000;1:40–7.PubMedCrossRef
44.
Zurück zum Zitat Curley JP, Mashoodh R, Champagne FA. Epigenetics and the origins of paternal effects. Horm Behav. 2011;59:306–14.PubMedCrossRef Curley JP, Mashoodh R, Champagne FA. Epigenetics and the origins of paternal effects. Horm Behav. 2011;59:306–14.PubMedCrossRef
46.
Zurück zum Zitat Lian ZH, Zack MM, Erickson JD. Paternal age and the occurrence of birth defects. Am J Hum Genet. 1986;39:648–60.PubMedPubMedCentral Lian ZH, Zack MM, Erickson JD. Paternal age and the occurrence of birth defects. Am J Hum Genet. 1986;39:648–60.PubMedPubMedCentral
47.
Zurück zum Zitat Alio AP, Salihu HM, McIntosh C, August EM, Weldeselasse H, Sanchez E, et al. The effect of paternal age on fetal birth outcomes. Am J Mens Health. 2012;6:427–35.PubMedCrossRef Alio AP, Salihu HM, McIntosh C, August EM, Weldeselasse H, Sanchez E, et al. The effect of paternal age on fetal birth outcomes. Am J Mens Health. 2012;6:427–35.PubMedCrossRef
48.
Zurück zum Zitat Orioli IM, Castilla EE, Scarano G, Mastroiacovo P. Effect of paternal age in achondroplasia, thanatophoric dysplasia, and osteogenesis imperfecta. Am J Med Genet. 1995;59:209–17.PubMedCrossRef Orioli IM, Castilla EE, Scarano G, Mastroiacovo P. Effect of paternal age in achondroplasia, thanatophoric dysplasia, and osteogenesis imperfecta. Am J Med Genet. 1995;59:209–17.PubMedCrossRef
49.
Zurück zum Zitat D’Onofrio BM, Rickert ME, Frans E, Kuja-Halkola R, Almqvist C, Sjolander A, et al. Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiatry. 2014;71:432–8.PubMedPubMedCentralCrossRef D’Onofrio BM, Rickert ME, Frans E, Kuja-Halkola R, Almqvist C, Sjolander A, et al. Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiatry. 2014;71:432–8.PubMedPubMedCentralCrossRef
50.
51.
Zurück zum Zitat Mueller A, Hermo L, Robaire B. The effects of aging on the expression of glutathione S-transferases in the testis and epididymis of the Brown Norway rat. J Androl. 1998;19:450–65.PubMed Mueller A, Hermo L, Robaire B. The effects of aging on the expression of glutathione S-transferases in the testis and epididymis of the Brown Norway rat. J Androl. 1998;19:450–65.PubMed
52.
Zurück zum Zitat Jervis KM, Robaire B. The effects of long-term vitamin E treatment on gene expression and oxidative stress damage in the aging Brown Norway rat epididymis. Biol Reprod. 2004;71:1088–95.PubMedCrossRef Jervis KM, Robaire B. The effects of long-term vitamin E treatment on gene expression and oxidative stress damage in the aging Brown Norway rat epididymis. Biol Reprod. 2004;71:1088–95.PubMedCrossRef
53.
Zurück zum Zitat Weir CP, Robaire B. Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat. J Androl. 2007;28:229–40.PubMedCrossRef Weir CP, Robaire B. Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat. J Androl. 2007;28:229–40.PubMedCrossRef
54.
Zurück zum Zitat Halliwell B, Gutteridge JM. Free radicals, lipid peroxidation, cell damage and antioxidant therapy. Lancet. 1984;1:1396–7.PubMedCrossRef Halliwell B, Gutteridge JM. Free radicals, lipid peroxidation, cell damage and antioxidant therapy. Lancet. 1984;1:1396–7.PubMedCrossRef
56.
Zurück zum Zitat Lawson G, Fletcher R. Delayed fatherhood. J Fam Plan Reprod Health Care. 2014;40:283–8.CrossRef Lawson G, Fletcher R. Delayed fatherhood. J Fam Plan Reprod Health Care. 2014;40:283–8.CrossRef
57.
Zurück zum Zitat Mahmoud AM, Goemaere S, El-Garem Y, Van Pottelbergh I, Comhaire FH, Kaufman JM. Testicular volume in relation to hormonal indices of gonadal function in community-dwelling elderly men. J Clin Endocrinol Metab. 2003;88:179–84.PubMedCrossRef Mahmoud AM, Goemaere S, El-Garem Y, Van Pottelbergh I, Comhaire FH, Kaufman JM. Testicular volume in relation to hormonal indices of gonadal function in community-dwelling elderly men. J Clin Endocrinol Metab. 2003;88:179–84.PubMedCrossRef
58.
Zurück zum Zitat Neaves WB, Johnson L, Porter JC, Parker CR Jr, Petty CS. Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J Clin Endocrinol Metab. 1984;59:756–63.PubMedCrossRef Neaves WB, Johnson L, Porter JC, Parker CR Jr, Petty CS. Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J Clin Endocrinol Metab. 1984;59:756–63.PubMedCrossRef
59.
Zurück zum Zitat Johnson L, Abdo JG, Petty CS, Neaves WB. Effect of age on the composition of seminiferous tubular boundary tissue and on the volume of each component in humans. Fertil Steril. 1988;49:1045–51.PubMedCrossRef Johnson L, Abdo JG, Petty CS, Neaves WB. Effect of age on the composition of seminiferous tubular boundary tissue and on the volume of each component in humans. Fertil Steril. 1988;49:1045–51.PubMedCrossRef
60.
Zurück zum Zitat Sasano N, Ichijo S. Vascular patterns of the human testis with special reference to its senile changes. Tohoku J Exp Med. 1969;99:269–80.PubMedCrossRef Sasano N, Ichijo S. Vascular patterns of the human testis with special reference to its senile changes. Tohoku J Exp Med. 1969;99:269–80.PubMedCrossRef
61.
Zurück zum Zitat Ilacqua A, Francomano D, Aversa A. The physiology of the testis. In: Belfiore A, LeRoith D, editors. Principles of Endocrinology and Hormone Action, Endocrinology. Switzerland: Springer International Publishing AG; 2018. p. 1–38. Ilacqua A, Francomano D, Aversa A. The physiology of the testis. In: Belfiore A, LeRoith D, editors. Principles of Endocrinology and Hormone Action, Endocrinology. Switzerland: Springer International Publishing AG; 2018. p. 1–38.
62.
Zurück zum Zitat Wu FC, Tajar A, Pye SR, Silman AJ, Finn JD, O’Neill TW, et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab. 2008;93:2737–45.PubMedCrossRef Wu FC, Tajar A, Pye SR, Silman AJ, Finn JD, O’Neill TW, et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab. 2008;93:2737–45.PubMedCrossRef
63.
Zurück zum Zitat Kidd SA, Eskenazi B, Wyrobek AJ. Effects of male age on semen quality and fertility: a review of the literature. Fertil Steril. 2001;75:237–48.PubMedCrossRef Kidd SA, Eskenazi B, Wyrobek AJ. Effects of male age on semen quality and fertility: a review of the literature. Fertil Steril. 2001;75:237–48.PubMedCrossRef
64.
Zurück zum Zitat Stone BA, Alex A, Werlin LB, Marrs RP. Age thresholds for changes in semen parameters in men. Fertil Steril. 2013;100:952–8.PubMedCrossRef Stone BA, Alex A, Werlin LB, Marrs RP. Age thresholds for changes in semen parameters in men. Fertil Steril. 2013;100:952–8.PubMedCrossRef
65.
Zurück zum Zitat Muratori M, Marchiani S, Tamburrino L, Cambi M, Lotti F, Natali I, et al. DNA fragmentation in brighter sperm predicts male fertility independently from age and semen parameters. Fertil Steril. 2015;104:582–90.PubMedCrossRef Muratori M, Marchiani S, Tamburrino L, Cambi M, Lotti F, Natali I, et al. DNA fragmentation in brighter sperm predicts male fertility independently from age and semen parameters. Fertil Steril. 2015;104:582–90.PubMedCrossRef
66.
67.
Zurück zum Zitat Johnson SL, Dunleavy J, Gemmell NJ, Nakagawa S. Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev. 2015;19:22–33.PubMedCrossRef Johnson SL, Dunleavy J, Gemmell NJ, Nakagawa S. Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev. 2015;19:22–33.PubMedCrossRef
68.
Zurück zum Zitat Carlini T, Paoli D, Pelloni M, Faja F, Dal Lago A, Lombardo F, et al. Sperm DNA fragmentation in Italian couples with recurrent pregnancy loss. Reprod BioMed Online. 2017;34:58–65.PubMedCrossRef Carlini T, Paoli D, Pelloni M, Faja F, Dal Lago A, Lombardo F, et al. Sperm DNA fragmentation in Italian couples with recurrent pregnancy loss. Reprod BioMed Online. 2017;34:58–65.PubMedCrossRef
69.
Zurück zum Zitat Alvarez Sedó C, Bilinski M, Lorenzi D, Uriondo H, Noblía F, Longobucco V, et al. Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assist Reprod. 2017;21:343–50.PubMed Alvarez Sedó C, Bilinski M, Lorenzi D, Uriondo H, Noblía F, Longobucco V, et al. Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assist Reprod. 2017;21:343–50.PubMed
70.
Zurück zum Zitat Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril. 2013;1(99):673–7. Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril. 2013;1(99):673–7.
71.
Zurück zum Zitat . Calogero AE, Aversa A, La Vignera S, Corona G, Ferlin A. The use of nutraceuticals in male sexual and reproductive disturbances: position statement from the Italian Society of Andrology and Sexual Medicine (SIAMS). J Endocrinol Invest. 2017; 40:1389–1397.PubMedCrossRef . Calogero AE, Aversa A, La Vignera S, Corona G, Ferlin A. The use of nutraceuticals in male sexual and reproductive disturbances: position statement from the Italian Society of Andrology and Sexual Medicine (SIAMS). J Endocrinol Invest. 2017; 40:1389–1397.PubMedCrossRef
72.
Zurück zum Zitat Nayanatara AK, Vinodini NA, Ahemed B, Ramaswamy CR, Ramesh BS. Role of ascorbic acid in monosodium glutamate mediated effect on testicular weight, sperm morphology and sperm count, in rat testis. J Chin clin med. 2008;3:1–5.CrossRef Nayanatara AK, Vinodini NA, Ahemed B, Ramaswamy CR, Ramesh BS. Role of ascorbic acid in monosodium glutamate mediated effect on testicular weight, sperm morphology and sperm count, in rat testis. J Chin clin med. 2008;3:1–5.CrossRef
73.
Zurück zum Zitat Berridge MJ. Inositol lipids and cell proliferation. Biochim Biophys Acta. 1987;907:33–45.PubMed Berridge MJ. Inositol lipids and cell proliferation. Biochim Biophys Acta. 1987;907:33–45.PubMed
74.
75.
Zurück zum Zitat . Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca (2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod 2001; 65: 1606–1615.PubMedCrossRef . Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca (2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod 2001; 65: 1606–1615.PubMedCrossRef
76.
Zurück zum Zitat Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod. 2003;68:1590–6.PubMedCrossRef Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod. 2003;68:1590–6.PubMedCrossRef
77.
Zurück zum Zitat Harper CV, Barratt CL, Publicover SJ. Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [ Ca (2+)] (i) oscillations and cyclical transitions in flagellar beating. J Biol Chem. 2004;279:46315–25.PubMedCrossRef Harper CV, Barratt CL, Publicover SJ. Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [ Ca (2+)] (i) oscillations and cyclical transitions in flagellar beating. J Biol Chem. 2004;279:46315–25.PubMedCrossRef
78.
Zurück zum Zitat Costello S, Michelangeli F, Nash K, Lefievre L, Morris J, Machado-Oliveira G, et al. Ca2+ stores in sperm: their identities and functions. Reproduction. 2009;138:425–37.PubMedPubMedCentralCrossRef Costello S, Michelangeli F, Nash K, Lefievre L, Morris J, Machado-Oliveira G, et al. Ca2+ stores in sperm: their identities and functions. Reproduction. 2009;138:425–37.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol. 2012;74:453–75.PubMedCrossRef Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol. 2012;74:453–75.PubMedCrossRef
80.
Zurück zum Zitat Gressier B, Cabanis A, Lebegue S, Brunet C, Dine T, Luyckx M, et al. Decrease of hypochlorous acid and hydroxyl radical generated by stimulated human neutrophils: Comparison in vitro of some thiol-containing drugs. Methods Find Exp Clin Pharmacol. 1994;16:9–13.PubMed Gressier B, Cabanis A, Lebegue S, Brunet C, Dine T, Luyckx M, et al. Decrease of hypochlorous acid and hydroxyl radical generated by stimulated human neutrophils: Comparison in vitro of some thiol-containing drugs. Methods Find Exp Clin Pharmacol. 1994;16:9–13.PubMed
81.
Zurück zum Zitat Erkkilä K, Hirvonen V, Wuokko E, Parvinen M, Dunkel L. N-acetyl-L-cysteine inhibits apoptosis in human male germ cells in vitro. J Clin Endocrinol Metab. 1998;83:2523–31.PubMed Erkkilä K, Hirvonen V, Wuokko E, Parvinen M, Dunkel L. N-acetyl-L-cysteine inhibits apoptosis in human male germ cells in vitro. J Clin Endocrinol Metab. 1998;83:2523–31.PubMed
82.
Zurück zum Zitat Oeda T, Henkel R, Ohmori H, Schill WB. Scavenging effect of N-acetyl-L-cysteine against reactive oxygen species in human semen: A possible therapeutic modality for male factor infertility? Andrologia. 1997;29:125–31.PubMedCrossRef Oeda T, Henkel R, Ohmori H, Schill WB. Scavenging effect of N-acetyl-L-cysteine against reactive oxygen species in human semen: A possible therapeutic modality for male factor infertility? Andrologia. 1997;29:125–31.PubMedCrossRef
83.
Zurück zum Zitat Safarinejad MR, Safarinejad S. Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. J Urol. 2009;181:741–51.PubMedCrossRef Safarinejad MR, Safarinejad S. Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. J Urol. 2009;181:741–51.PubMedCrossRef
84.
Zurück zum Zitat de Angelis C, Galdiero M, Pivonello C, Garifalos F, Menafra D, Cariati F, et al. The role of vitamin D in male fertility: A focus on the testis. Rev Endocr Metab Disord. 2017;18:285–305.PubMedCrossRef de Angelis C, Galdiero M, Pivonello C, Garifalos F, Menafra D, Cariati F, et al. The role of vitamin D in male fertility: A focus on the testis. Rev Endocr Metab Disord. 2017;18:285–305.PubMedCrossRef
86.
Zurück zum Zitat Norman RJ, Noakes M, Wu R, Davies MJ, Moran L, Wang JX. Improving reproductive performance in overweight/obese women with effective weight management. Hum Reprod Update. 2004;10:267–80.PubMedCrossRef Norman RJ, Noakes M, Wu R, Davies MJ, Moran L, Wang JX. Improving reproductive performance in overweight/obese women with effective weight management. Hum Reprod Update. 2004;10:267–80.PubMedCrossRef
88.
Zurück zum Zitat Ilacqua A, Francomano D, Aversa A. Obesity and testicular function. In: Lenzi A, Migliaccio S, Donini LM, editors. Multidisciplinary Approach to Obesity: From Assessment to Treatment; 2015. p. 99–106.CrossRef Ilacqua A, Francomano D, Aversa A. Obesity and testicular function. In: Lenzi A, Migliaccio S, Donini LM, editors. Multidisciplinary Approach to Obesity: From Assessment to Treatment; 2015. p. 99–106.CrossRef
89.
Zurück zum Zitat Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Reprod Update. 2018;24:86–105.CrossRef Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Reprod Update. 2018;24:86–105.CrossRef
90.
Zurück zum Zitat Rato L, Alves MG, Cavaco JE, Oliveira PF. High-energy diets: a threat for male fertility? Obes Rev. 2014;15:996–1007.PubMedCrossRef Rato L, Alves MG, Cavaco JE, Oliveira PF. High-energy diets: a threat for male fertility? Obes Rev. 2014;15:996–1007.PubMedCrossRef
91.
Zurück zum Zitat Mitchell M, Bakos HW, Lane M. Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil Steril. 2011;95:1349–53.PubMedCrossRef Mitchell M, Bakos HW, Lane M. Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil Steril. 2011;95:1349–53.PubMedCrossRef
93.
Zurück zum Zitat Erdemir F, Atilgan DMF, Boztepe O, Siha-àrlaktas B, Sahin S. The effect of diet induced obesity on testicular tissue and serum oxidative stress parameters. Actas Urológicas Españolas. 2012;36:153–9.PubMedCrossRef Erdemir F, Atilgan DMF, Boztepe O, Siha-àrlaktas B, Sahin S. The effect of diet induced obesity on testicular tissue and serum oxidative stress parameters. Actas Urológicas Españolas. 2012;36:153–9.PubMedCrossRef
94.
Zurück zum Zitat Mortazavi M, Salehi I, Alizadeh Z, Vahabian M, Roushandeh AM. Protective effects of antioxidants on sperm parameters and seminiferous tubules epithelium in high fat-fed rats. J Reprod Infertil. 2014;15:22–8.PubMedPubMedCentral Mortazavi M, Salehi I, Alizadeh Z, Vahabian M, Roushandeh AM. Protective effects of antioxidants on sperm parameters and seminiferous tubules epithelium in high fat-fed rats. J Reprod Infertil. 2014;15:22–8.PubMedPubMedCentral
95.
Zurück zum Zitat . Santos M, Rodriguez-Gonzalez GL, Ibanez C, Vega CC, Nathanielsz PW, Zambrano E. Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats. Am J Physiol Regul Integr Comp Physiol 2015; 308: R219–R225.PubMedCrossRef . Santos M, Rodriguez-Gonzalez GL, Ibanez C, Vega CC, Nathanielsz PW, Zambrano E. Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats. Am J Physiol Regul Integr Comp Physiol 2015; 308: R219–R225.PubMedCrossRef
96.
Zurück zum Zitat Rato L, Alves MG, Dias TR, Lopes G, Cavaco JE, Socorro S, et al. High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology. 2013;1:495–504.PubMedCrossRef Rato L, Alves MG, Dias TR, Lopes G, Cavaco JE, Socorro S, et al. High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology. 2013;1:495–504.PubMedCrossRef
98.
Zurück zum Zitat Braga D, Halpern G, Figueira R, Setti AS, Iaconelli A Jr, Borges E Jr. Food intake and social habits in male patients and its relationship to intracytoplasic sperm injection. Fertil Steril. 2012;97:53–9.PubMedCrossRef Braga D, Halpern G, Figueira R, Setti AS, Iaconelli A Jr, Borges E Jr. Food intake and social habits in male patients and its relationship to intracytoplasic sperm injection. Fertil Steril. 2012;97:53–9.PubMedCrossRef
99.
Zurück zum Zitat Mendiola J, Torres-Cantero AM, Moreno-Grau JM, Ten J, Roca M, Moreno-Grau S, et al. Food intake and its relationship with semen quality: a case-control study. Fertil Steril. 2009;91:812–8.PubMedCrossRef Mendiola J, Torres-Cantero AM, Moreno-Grau JM, Ten J, Roca M, Moreno-Grau S, et al. Food intake and its relationship with semen quality: a case-control study. Fertil Steril. 2009;91:812–8.PubMedCrossRef
100.
Zurück zum Zitat Attaman JA, Toth TL, Furtado J, Campos H, Hauser R, Chavarro JE. Dietary fat and semen quality among men attending a fertility clinic. Hum Reprod. 2012;27:1466–74.PubMedPubMedCentralCrossRef Attaman JA, Toth TL, Furtado J, Campos H, Hauser R, Chavarro JE. Dietary fat and semen quality among men attending a fertility clinic. Hum Reprod. 2012;27:1466–74.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Afeiche MC, Gaskins AJ, Williams PL, Toth TL, Wright DL, Tanrikut C, et al. Processed meat intake is unfavorably and fish intake favorably associated with semen quality indicators among men attending a Fertility Clinic. J Nutr. 2014;144:1091–8.PubMedPubMedCentralCrossRef Afeiche MC, Gaskins AJ, Williams PL, Toth TL, Wright DL, Tanrikut C, et al. Processed meat intake is unfavorably and fish intake favorably associated with semen quality indicators among men attending a Fertility Clinic. J Nutr. 2014;144:1091–8.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Eslamian G, Amirjannati N, Rashidkhani B, Sadeghi MR, Hekmatdoost A. Intake of food groups and idiopathic asthenozoospermia: a case-control study. Hum Reprod. 2012;27:3328–36.PubMedCrossRef Eslamian G, Amirjannati N, Rashidkhani B, Sadeghi MR, Hekmatdoost A. Intake of food groups and idiopathic asthenozoospermia: a case-control study. Hum Reprod. 2012;27:3328–36.PubMedCrossRef
103.
Zurück zum Zitat Ricci E, Al-Beitawi S, Cipriani S, Alteri A, Chiaffarino F, Candiani M, et al. Dietary habits and semen parameters: a systematic narrative review. Andrology. 2018;6:104–16.PubMedCrossRef Ricci E, Al-Beitawi S, Cipriani S, Alteri A, Chiaffarino F, Candiani M, et al. Dietary habits and semen parameters: a systematic narrative review. Andrology. 2018;6:104–16.PubMedCrossRef
104.
Zurück zum Zitat Karayiannis D, Kontogianni MD, Mendorou C, Douka L, Mastrominas M, Yiannakouris N. Association between adherence to the Mediterranean diet and semen quality parameters in malepartners of couples attempting fertility. Hum Reprod. 2017;32:215–22.PubMed Karayiannis D, Kontogianni MD, Mendorou C, Douka L, Mastrominas M, Yiannakouris N. Association between adherence to the Mediterranean diet and semen quality parameters in malepartners of couples attempting fertility. Hum Reprod. 2017;32:215–22.PubMed
105.
Zurück zum Zitat Jurewicz J, Radwan M, Sobala W, Radwan P, Bochenek M, Hanke W. Dietary patterns and their relationship with semen quality. Am J Mens Health. 2016;93:86–91. Jurewicz J, Radwan M, Sobala W, Radwan P, Bochenek M, Hanke W. Dietary patterns and their relationship with semen quality. Am J Mens Health. 2016;93:86–91.
106.
Zurück zum Zitat Afeiche MC, Williams PL, Gaskins AJ, Mendiola J, Jørgensen N, Swan SH, et al. Meat intake and reproductive parameters among young men. Epidemiology. 2014;25:323–30.PubMedPubMedCentralCrossRef Afeiche MC, Williams PL, Gaskins AJ, Mendiola J, Jørgensen N, Swan SH, et al. Meat intake and reproductive parameters among young men. Epidemiology. 2014;25:323–30.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Seifert SM, Schaechter JL, Hershorin ER, Lipshultz SE. Health effects of energy drinks on children, adolescents, and young adults. Pediatrics. 2011;127:511–28.PubMedPubMedCentralCrossRef Seifert SM, Schaechter JL, Hershorin ER, Lipshultz SE. Health effects of energy drinks on children, adolescents, and young adults. Pediatrics. 2011;127:511–28.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Friedman L, Weinberger MA, Farber TM, Moreland FM, Peters EL, Gilmore CE, et al. Testicular atrophy and impaired spermatogenesis in rats fed high levels of the methylxanthines caffeine, theobromine, or theophylline. J Environ Pathol Toxicol. 1979;2:687–706.PubMed Friedman L, Weinberger MA, Farber TM, Moreland FM, Peters EL, Gilmore CE, et al. Testicular atrophy and impaired spermatogenesis in rats fed high levels of the methylxanthines caffeine, theobromine, or theophylline. J Environ Pathol Toxicol. 1979;2:687–706.PubMed
109.
Zurück zum Zitat Pollard I, Williamson S, Magre SJ. Influence of caffeine administered during pregnancy on the early differentiation of fetal rat ovaries and testes. J Dev Physiol. 1990;13:59–65.PubMed Pollard I, Williamson S, Magre SJ. Influence of caffeine administered during pregnancy on the early differentiation of fetal rat ovaries and testes. J Dev Physiol. 1990;13:59–65.PubMed
111.
Zurück zum Zitat Dorostghoal M, Erfani Majd N, Nooraei P. Maternal caffeine consumption has irreversible effects on reproductive parameters and fertility in male offspring rats. Clin Exp Reprod Med. 2012;39:144–52.PubMedPubMedCentralCrossRef Dorostghoal M, Erfani Majd N, Nooraei P. Maternal caffeine consumption has irreversible effects on reproductive parameters and fertility in male offspring rats. Clin Exp Reprod Med. 2012;39:144–52.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Zini A, Bach PV, Al-Malki AH, Schlegel PN. Use of testicular sperm for ICSI in oligozoospermic couples: how far should we go? Hum Reprod. 2017;32:7–13.PubMed Zini A, Bach PV, Al-Malki AH, Schlegel PN. Use of testicular sperm for ICSI in oligozoospermic couples: how far should we go? Hum Reprod. 2017;32:7–13.PubMed
114.
Zurück zum Zitat Henriksen EJ. Invited review: effects of acute exercise and exercise training on insulin resistance. J Appl Physiol. 2002;93:788–96.PubMedCrossRef Henriksen EJ. Invited review: effects of acute exercise and exercise training on insulin resistance. J Appl Physiol. 2002;93:788–96.PubMedCrossRef
115.
Zurück zum Zitat Gaesser GA, Angadi SS, Sawyer BJ. Exercise and diet, independent of weight loss, improve cardiometabolic risk profile in overweight and obese individuals. Phys Sportsmed. 2011;39:87–97.PubMedCrossRef Gaesser GA, Angadi SS, Sawyer BJ. Exercise and diet, independent of weight loss, improve cardiometabolic risk profile in overweight and obese individuals. Phys Sportsmed. 2011;39:87–97.PubMedCrossRef
116.
Zurück zum Zitat Gomes RM, Tofolo LP, Rinaldi W, Scomparin DX, Grassiolli S, Barella LF, et al. Moderate exercise restores pancreatic Beta-cell function and autonomic nervous system activity in obese rats induced by high-fat diet. Cell Physiol Biochem. 2013;32:310–21.PubMedCrossRef Gomes RM, Tofolo LP, Rinaldi W, Scomparin DX, Grassiolli S, Barella LF, et al. Moderate exercise restores pancreatic Beta-cell function and autonomic nervous system activity in obese rats induced by high-fat diet. Cell Physiol Biochem. 2013;32:310–21.PubMedCrossRef
117.
Zurück zum Zitat Palmer NO, Bakos HW, Owens JA, Setchell BP, Lane M. Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am J Physiol Endocrinol Metab. 2012;302:E768–80.PubMedCrossRef Palmer NO, Bakos HW, Owens JA, Setchell BP, Lane M. Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am J Physiol Endocrinol Metab. 2012;302:E768–80.PubMedCrossRef
118.
Zurück zum Zitat Eisenberg ML, Kim S, Chen Z, Sundaram R, Schisterman EF, Buck Louis GM. The relationship between male BMI and waist circumference on semen quality: Data from the LIFE study. Hum Reprod. 2014;29:193–200.PubMedCrossRef Eisenberg ML, Kim S, Chen Z, Sundaram R, Schisterman EF, Buck Louis GM. The relationship between male BMI and waist circumference on semen quality: Data from the LIFE study. Hum Reprod. 2014;29:193–200.PubMedCrossRef
119.
Zurück zum Zitat Hjollund NH, Storgaard L, Ernst E, Bonde JP, Olsen J. The relation between daily activities and scrotal temperature. Reprod Tox. 2002;16:209.CrossRef Hjollund NH, Storgaard L, Ernst E, Bonde JP, Olsen J. The relation between daily activities and scrotal temperature. Reprod Tox. 2002;16:209.CrossRef
120.
Zurück zum Zitat Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise Free. Radical Biol Med. 2001;31:911–22.CrossRef Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise Free. Radical Biol Med. 2001;31:911–22.CrossRef
121.
Zurück zum Zitat Saleh R, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23:737–52.PubMed Saleh R, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23:737–52.PubMed
122.
Zurück zum Zitat Safarinejad MR, Azma K, Kolahi AA. The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamus-pituitary-testis axis, and semen quality: a randomized controlled study. J Endocrinol. 2009;200:259–71.PubMedCrossRef Safarinejad MR, Azma K, Kolahi AA. The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamus-pituitary-testis axis, and semen quality: a randomized controlled study. J Endocrinol. 2009;200:259–71.PubMedCrossRef
123.
Zurück zum Zitat Vaamonde D, Da Silva-Grigoletto ME, Garcia-Manso JM, Barrera N, Vaamonde-Lemos R. Physically active men show better semen parameters and hormone values than sedentary men. Eur J Appl Phys. 2012;112:3267–73.CrossRef Vaamonde D, Da Silva-Grigoletto ME, Garcia-Manso JM, Barrera N, Vaamonde-Lemos R. Physically active men show better semen parameters and hormone values than sedentary men. Eur J Appl Phys. 2012;112:3267–73.CrossRef
124.
Zurück zum Zitat Lalinde-Acevedo PC, BJM M-T, Agarwal A, du Plessis SS, Ahmad G, Cadavid ÁP, et al. Physically Active Men Show Better Semen Parameters than Their Sedentary Counterparts. Int J Fertil Steril. 2017;11:156–65.PubMedPubMedCentral Lalinde-Acevedo PC, BJM M-T, Agarwal A, du Plessis SS, Ahmad G, Cadavid ÁP, et al. Physically Active Men Show Better Semen Parameters than Their Sedentary Counterparts. Int J Fertil Steril. 2017;11:156–65.PubMedPubMedCentral
125.
Zurück zum Zitat Gaskins AJ, Mendiola J, Afeiche M, Jørgensen N, Swan SH, Chavarro JE. Physical activity and television watching in relation to semen quality in young men. Br J Sports Med. 2015;49:265–70.PubMedCrossRef Gaskins AJ, Mendiola J, Afeiche M, Jørgensen N, Swan SH, Chavarro JE. Physical activity and television watching in relation to semen quality in young men. Br J Sports Med. 2015;49:265–70.PubMedCrossRef
126.
Zurück zum Zitat Hajizadeh Maleki B, Tartibian B, Chehrazi M. The effects of three different exercise modalities on markers of male reproduction in healthy subjects: a randomized controlled trial. Reproduction. 2017;153:157–74.PubMedCrossRef Hajizadeh Maleki B, Tartibian B, Chehrazi M. The effects of three different exercise modalities on markers of male reproduction in healthy subjects: a randomized controlled trial. Reproduction. 2017;153:157–74.PubMedCrossRef
127.
Zurück zum Zitat Jung A, Strauss P, Lindner HJ, Schuppe HC. Influence of moderate cycling on scrotal temperature. Int J Androl. 2008;31:403–7.PubMedCrossRef Jung A, Strauss P, Lindner HJ, Schuppe HC. Influence of moderate cycling on scrotal temperature. Int J Androl. 2008;31:403–7.PubMedCrossRef
128.
Zurück zum Zitat Wang X, Liu F, Gao X, Liu X, Kong X, Wang H. Comparative proteomic analysis of heat stress proteins associated with rat sperm maturation. Mol Med Rep. 2016;13:3547–52.PubMedCrossRef Wang X, Liu F, Gao X, Liu X, Kong X, Wang H. Comparative proteomic analysis of heat stress proteins associated with rat sperm maturation. Mol Med Rep. 2016;13:3547–52.PubMedCrossRef
129.
Zurück zum Zitat Rao M, Xia W, Yang J, Hu LX, Hu SF, Lei H, et al. Transient scrotal hyperthermia affects human sperm DNA integrity, sperm apoptosis, and sperm protein expression. Andrology. 2016;4:1054–63.PubMedCrossRef Rao M, Xia W, Yang J, Hu LX, Hu SF, Lei H, et al. Transient scrotal hyperthermia affects human sperm DNA integrity, sperm apoptosis, and sperm protein expression. Andrology. 2016;4:1054–63.PubMedCrossRef
132.
Zurück zum Zitat Durairajanayagam D, Agarwal A, Ong C. Causes, effects and molecular mechanism of testicular heat stress. Reprod BioMed Online. 2015;30:14–27.PubMedCrossRef Durairajanayagam D, Agarwal A, Ong C. Causes, effects and molecular mechanism of testicular heat stress. Reprod BioMed Online. 2015;30:14–27.PubMedCrossRef
133.
Zurück zum Zitat Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250:66–9.PubMedCrossRef Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250:66–9.PubMedCrossRef
134.
Zurück zum Zitat Momen MN, Ananian FB, Fahmy IM, Mostafa T. Effects of high environmental temperature on semen parameters among fertile men. Fert Ster. 2010;39:203–15. Momen MN, Ananian FB, Fahmy IM, Mostafa T. Effects of high environmental temperature on semen parameters among fertile men. Fert Ster. 2010;39:203–15.
135.
Zurück zum Zitat Sieber MH, Thomsen MB, Spradling AC. Electron transport chain remodeling by GSK3 during oogenesis connects nutrient state to reproduction. Cell. 2016;164:420–32.PubMedCrossRefPubMedCentral Sieber MH, Thomsen MB, Spradling AC. Electron transport chain remodeling by GSK3 during oogenesis connects nutrient state to reproduction. Cell. 2016;164:420–32.PubMedCrossRefPubMedCentral
136.
Zurück zum Zitat Zhu X, Shi D, Li X, Gong W, Wu F, Guo X, et al. TLR signaling affects sperm mitochondrial function and motility via phosphatidylinositol 3-kinase and glycogen synthase kinase-3alpha. Cell Signal. 2016;28:148–56.PubMedCrossRef Zhu X, Shi D, Li X, Gong W, Wu F, Guo X, et al. TLR signaling affects sperm mitochondrial function and motility via phosphatidylinositol 3-kinase and glycogen synthase kinase-3alpha. Cell Signal. 2016;28:148–56.PubMedCrossRef
138.
Zurück zum Zitat Yaeram J, Setchell BP, Maddocks S. Effect of heat stress on the fertility of male mice in vivo and in vitro. Reprod Fertil Dev. 2006;18:647–53.PubMedCrossRef Yaeram J, Setchell BP, Maddocks S. Effect of heat stress on the fertility of male mice in vivo and in vitro. Reprod Fertil Dev. 2006;18:647–53.PubMedCrossRef
139.
Zurück zum Zitat Wechalekar H, Setchell BP, Peirce EJ, Ricci M, Leigh C, Breed WG, et al. Whole-body heat exposure induces membrane changes in spermatozoa from the cauda epididymidis of laboratory mice. Asian J Androl. 2010;12:591–8.PubMedPubMedCentralCrossRef Wechalekar H, Setchell BP, Peirce EJ, Ricci M, Leigh C, Breed WG, et al. Whole-body heat exposure induces membrane changes in spermatozoa from the cauda epididymidis of laboratory mice. Asian J Androl. 2010;12:591–8.PubMedPubMedCentralCrossRef
140.
141.
Zurück zum Zitat Oni O, Amuda D, Gilbert C. Effects of radiofrequency radiation from WiFi devices on human ejaculated semen. Int J Res Rev Appl Sci. 2011;19:292–4. Oni O, Amuda D, Gilbert C. Effects of radiofrequency radiation from WiFi devices on human ejaculated semen. Int J Res Rev Appl Sci. 2011;19:292–4.
142.
Zurück zum Zitat La Vignera S, Condorelli RA, Vicari E, D'Agata R, Calogero AE. Effects of the exposure to mobile phones on male reproduction: a review of the literature. J Androl. 2012;33:350–6.PubMedCrossRef La Vignera S, Condorelli RA, Vicari E, D'Agata R, Calogero AE. Effects of the exposure to mobile phones on male reproduction: a review of the literature. J Androl. 2012;33:350–6.PubMedCrossRef
143.
Zurück zum Zitat Lee HJ, Pack JK, Kim TH, Kim N, Choi SY, Lee JS, et al. The lack of histological changes of CDMA cellular phone-based radio frequency on rat testis. Bioelectromagnetics. 2010;31:528–34.PubMedCrossRef Lee HJ, Pack JK, Kim TH, Kim N, Choi SY, Lee JS, et al. The lack of histological changes of CDMA cellular phone-based radio frequency on rat testis. Bioelectromagnetics. 2010;31:528–34.PubMedCrossRef
144.
Zurück zum Zitat Yan JG, Agresti M, Bruce T, Yan YH, Granlund A, Matloub HS. Effects of cellular phone emissions on sperm motility in rats. Fertil Steril. 2007;88:957–64.PubMedCrossRef Yan JG, Agresti M, Bruce T, Yan YH, Granlund A, Matloub HS. Effects of cellular phone emissions on sperm motility in rats. Fertil Steril. 2007;88:957–64.PubMedCrossRef
145.
Zurück zum Zitat Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environ Int. 2014;70:106–12.PubMedCrossRef Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environ Int. 2014;70:106–12.PubMedCrossRef
146.
Zurück zum Zitat Figà-Talamanca I, Cini C, Varricchio GC, Dondero F, Gandini L, Lenzi A, et al. Effects of prolonged autovehicle driving on male reproductive function: a study among taxi drivers. Amer J Industr Med. 1996;30:750–8.CrossRef Figà-Talamanca I, Cini C, Varricchio GC, Dondero F, Gandini L, Lenzi A, et al. Effects of prolonged autovehicle driving on male reproductive function: a study among taxi drivers. Amer J Industr Med. 1996;30:750–8.CrossRef
147.
Zurück zum Zitat Parazzini F, Marchini M, Luchini L, Tozzi L, Mezzopane R, Fedele L. Tight underpants and trousers and risk of dyspermia. Int J Androl. 1995;18:137–40.PubMedCrossRef Parazzini F, Marchini M, Luchini L, Tozzi L, Mezzopane R, Fedele L. Tight underpants and trousers and risk of dyspermia. Int J Androl. 1995;18:137–40.PubMedCrossRef
148.
Zurück zum Zitat Garolla A, Torino M, Sartini B, Cosci I, Patassini C, Carraro U, et al. Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum Reprod. 2013;28:877–85.PubMedCrossRef Garolla A, Torino M, Sartini B, Cosci I, Patassini C, Carraro U, et al. Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum Reprod. 2013;28:877–85.PubMedCrossRef
149.
Zurück zum Zitat Osman MW, Nikolopoulos I, Haoula Z, Kannamannadiar J, Atiomo W. A study of the effect of the FertilMateTM scrotum cooling patch on male fertility. SCOP trial (scrotal cooling patch) Study protocol for a randomised controlled trial. Trials. 2012. https://doi.org/10.1186/1745-6215-13-47. Osman MW, Nikolopoulos I, Haoula Z, Kannamannadiar J, Atiomo W. A study of the effect of the FertilMateTM scrotum cooling patch on male fertility. SCOP trial (scrotal cooling patch) Study protocol for a randomised controlled trial. Trials. 2012. https://​doi.​org/​10.​1186/​1745-6215-13-47.
150.
Zurück zum Zitat Nikolopoulos I, Osman W, Haoula Z, Jayaprakasan K, Atiomo W. Scrotal cooling and its benefits to male fertility: a systematic review. J Obstet Gynaecol. 2013;33:338–42.PubMedCrossRef Nikolopoulos I, Osman W, Haoula Z, Jayaprakasan K, Atiomo W. Scrotal cooling and its benefits to male fertility: a systematic review. J Obstet Gynaecol. 2013;33:338–42.PubMedCrossRef
Metadaten
Titel
Lifestyle and fertility: the influence of stress and quality of life on male fertility
verfasst von
Alessandro Ilacqua
Giulia Izzo
Gian Pietro Emerenziani
Carlo Baldari
Antonio Aversa
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Reproductive Biology and Endocrinology / Ausgabe 1/2018
Elektronische ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-018-0436-9

Weitere Artikel der Ausgabe 1/2018

Reproductive Biology and Endocrinology 1/2018 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.