Skip to main content

06.12.2024 | Original Article

LINC01614 Accelerates CRC Progression via STAT1/LINC01614/miR-4443/PFKFB3-Mediated Aerobic Glycolysis

verfasst von: Jiangyan Xia, Chenglin Zhou, Heng Zhao, Jun Zhang, Xiaoming Chai

Erschienen in: Digestive Diseases and Sciences

Einloggen, um Zugang zu erhalten

Abstract

Background

Colorectal cancer (CRC) is an aggressive malignancy among malignant tumours, with a high incidence globally. LINC01614, a long non-coding RNA, has been identified as an essential regulator in multiple cancer types. However, its biological functions and underlying molecular mechanisms in CRC remain largely unknown.

Methods

In this study, we employed RT-qPCR to assess the expression levels of LINC01614 in CRC samples. In vitro, glucose metabolism experiments were conducted to evaluate glucose metabolism in cells. The binding relationship between miR-4443, PFKFB3, and LINC01614 was confirmed through fluorescence reporter gene detection. The subcellular localization of LINC01614 in CRC cells was determined using FISH and subcellular fractionation experiments. Additionally, a mouse subcutaneous tumor model was established for in vivo experiments.

Results

Our findings reveal that LINC01614 is upregulated in CRC tissues. Silencing of LINC01614 suppresses the malignant behaviors of CRC cells, including cell proliferation, invasion, migration, and aerobic glycolysis. Furthermore, we discovered that LINC01614 promotes the expression of PFKFB3. Additional experiments demonstrated that LINC01614 binds to miR-4443, leading to the upregulation of PFKFB3 expression. Further experiments confirmed that the LINC01614/miR-4443/PFKFB3 axis promotes CRC cell malignancy by enhancing aerobic glycolysis. Additionally, we found that STAT1 promotes the transcription of LINC01614.

Conclusion

These findings uncover a novel regulatory pathway wherein STAT1-induced LINC01614 enhances PFKFB3 expression by sponging miR-4443, thereby accelerating CRC development. This understanding may lead to novel therapeutic strategies for CRC treatment.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–1480.CrossRefPubMed Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–1480.CrossRefPubMed
2.
3.
4.
Zurück zum Zitat Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325:669–685.CrossRefPubMed Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325:669–685.CrossRefPubMed
5.
Zurück zum Zitat Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 2022;86:1216–1230.CrossRefPubMed Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 2022;86:1216–1230.CrossRefPubMed
6.
Zurück zum Zitat Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 2023;24. Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 2023;24.
7.
Zurück zum Zitat Zhong X, He X, Wang Y et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 2022;15:160.CrossRefPubMedPubMedCentral Zhong X, He X, Wang Y et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 2022;15:160.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Park JH, Pyun WY, Park HW. Cancer metabolism: phenotype, signaling and therapeutic targets. Cells. 2020;9. Park JH, Pyun WY, Park HW. Cancer metabolism: phenotype, signaling and therapeutic targets. Cells. 2020;9.
9.
10.
Zurück zum Zitat Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25:211–232.CrossRefPubMed Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25:211–232.CrossRefPubMed
11.
12.
Zurück zum Zitat Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci. 2019;20. Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci. 2019;20.
14.
Zurück zum Zitat Xin Z, Hu C, Zhang C et al. LncRNA-HMG incites colorectal cancer cells to chemoresistance via repressing p53-mediated ferroptosis. Redox Biol. 2024;77:103362.CrossRefPubMedPubMedCentral Xin Z, Hu C, Zhang C et al. LncRNA-HMG incites colorectal cancer cells to chemoresistance via repressing p53-mediated ferroptosis. Redox Biol. 2024;77:103362.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Yvonne T, John R, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–352.CrossRef Yvonne T, John R, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–352.CrossRef
16.
Zurück zum Zitat Leonardo S, Laura P, Yvonne T, Lev K, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–358.CrossRef Leonardo S, Laura P, Yvonne T, Lev K, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–358.CrossRef
17.
Zurück zum Zitat Shuwen H, Qing Z, Yan Z, Xi Y. Competitive endogenous RNA in colorectal cancer: a systematic review. Gene. 2018;645:157–162.CrossRefPubMed Shuwen H, Qing Z, Yan Z, Xi Y. Competitive endogenous RNA in colorectal cancer: a systematic review. Gene. 2018;645:157–162.CrossRefPubMed
18.
Zurück zum Zitat Lin X, Zhuang S, Chen X et al. lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol Ther. 2022;30:688–702.CrossRefPubMed Lin X, Zhuang S, Chen X et al. lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol Ther. 2022;30:688–702.CrossRefPubMed
19.
Zurück zum Zitat Xu M, Chen X, Lin K et al. The long noncoding RNA SNHG1 regulates colorectal cancer cell growth through interactions with EZH2 and miR-154-5p. Mol Cancer. 2018;17:141.CrossRefPubMedPubMedCentral Xu M, Chen X, Lin K et al. The long noncoding RNA SNHG1 regulates colorectal cancer cell growth through interactions with EZH2 and miR-154-5p. Mol Cancer. 2018;17:141.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Liu T, Han C, Fang P et al. Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. J Hematol Oncol. 2022;15:141.CrossRefPubMedPubMedCentral Liu T, Han C, Fang P et al. Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. J Hematol Oncol. 2022;15:141.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Chen Y, Cheng WY, Shi H et al. Classifying gastric cancer using FLORA reveals clinically relevant molecular subtypes and highlights LINC01614 as a biomarker for patient prognosis. Oncogene. 2021;40:2898–2909.CrossRefPubMedPubMedCentral Chen Y, Cheng WY, Shi H et al. Classifying gastric cancer using FLORA reveals clinically relevant molecular subtypes and highlights LINC01614 as a biomarker for patient prognosis. Oncogene. 2021;40:2898–2909.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Lin Y.-H. Crosstalk of lncRNA and cellular metabolism and their regulatory mechanism in cancer. IJMS. 2020;21. Lin Y.-H. Crosstalk of lncRNA and cellular metabolism and their regulatory mechanism in cancer. IJMS. 2020;21.
23.
Zurück zum Zitat Zhandong Z, Wei Y, Ning L et al. LncRNA MCF2L-AS1 aggravates proliferation, invasion and glycolysis of colorectal cancer cells via the crosstalk with miR-874-3p/FOXM1 signaling axis. Carcinogenesis 2020;42:263–271.CrossRef Zhandong Z, Wei Y, Ning L et al. LncRNA MCF2L-AS1 aggravates proliferation, invasion and glycolysis of colorectal cancer cells via the crosstalk with miR-874-3p/FOXM1 signaling axis. Carcinogenesis 2020;42:263–271.CrossRef
24.
Zurück zum Zitat Shuai L, Kongxi Z, Lan L, Jiaoyang G, Huanmin N, Jianqiang G. lncARSR sponges miR-34a-5p to promote colorectal cancer invasion and metastasis via hexokinase-1-mediated glycolysis. Cancer Sci 2020;111:3938–3952.CrossRef Shuai L, Kongxi Z, Lan L, Jiaoyang G, Huanmin N, Jianqiang G. lncARSR sponges miR-34a-5p to promote colorectal cancer invasion and metastasis via hexokinase-1-mediated glycolysis. Cancer Sci 2020;111:3938–3952.CrossRef
25.
Zurück zum Zitat Hui Y, Yiren H, Mingzhe W et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J Adv Res 2022;37:91–106.CrossRef Hui Y, Yiren H, Mingzhe W et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J Adv Res 2022;37:91–106.CrossRef
26.
Zurück zum Zitat Liu S, Bu X, Kan A et al. SP1-induced lncRNA DUBR promotes stemness and oxaliplatin resistance of hepatocellular carcinoma via E2F1-CIP2A feedback. Cancer Lett. 2021;528:16–30.CrossRefPubMed Liu S, Bu X, Kan A et al. SP1-induced lncRNA DUBR promotes stemness and oxaliplatin resistance of hepatocellular carcinoma via E2F1-CIP2A feedback. Cancer Lett. 2021;528:16–30.CrossRefPubMed
27.
28.
Zurück zum Zitat Liu X, Su K, Sun X et al. Sec62 promotes stemness and chemoresistance of human colorectal cancer through activating Wnt/β-catenin pathway. J Exp Clin Cancer Res. 2021;40:132.CrossRefPubMedPubMedCentral Liu X, Su K, Sun X et al. Sec62 promotes stemness and chemoresistance of human colorectal cancer through activating Wnt/β-catenin pathway. J Exp Clin Cancer Res. 2021;40:132.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Xu H, Wang T, Nie H, et al. USP36 promotes colorectal cancer progression through inhibition of p53 signaling pathway via stabilizing RBM28. Oncogene. 2024. Xu H, Wang T, Nie H, et al. USP36 promotes colorectal cancer progression through inhibition of p53 signaling pathway via stabilizing RBM28. Oncogene. 2024.
30.
Zurück zum Zitat Yue-Tao T, Jin-Fei L, Ting L, Jia-Jun L, Rui-Hua X, Huai-Qiang J. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. 2020;41:109–120. Yue-Tao T, Jin-Fei L, Ting L, Jia-Jun L, Rui-Hua X, Huai-Qiang J. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. 2020;41:109–120.
31.
Zurück zum Zitat Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2014;77:3965–3981.CrossRef Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2014;77:3965–3981.CrossRef
33.
Zurück zum Zitat Sarraf JS, Puty TC, da Silva EM et al. Noncoding RNAs and colorectal cancer: a general overview. MicroRNA 2020;9:336–345.CrossRefPubMed Sarraf JS, Puty TC, da Silva EM et al. Noncoding RNAs and colorectal cancer: a general overview. MicroRNA 2020;9:336–345.CrossRefPubMed
34.
Zurück zum Zitat Li W, Cheng Y, Cheng J et al. Long noncoding RNA LINC01614 is a diagnostic and prognostic marker for breast cancer. Discov Med 2023;35:19–27.CrossRefPubMed Li W, Cheng Y, Cheng J et al. Long noncoding RNA LINC01614 is a diagnostic and prognostic marker for breast cancer. Discov Med 2023;35:19–27.CrossRefPubMed
35.
Zurück zum Zitat Tian X, Hu D, Wang N, Zhang L, Wang X. LINC01614 is a promising diagnostic and prognostic marker in HNSC linked to the tumor microenvironment and oncogenic function. Front Genet 2024;15:1337525.CrossRefPubMedPubMedCentral Tian X, Hu D, Wang N, Zhang L, Wang X. LINC01614 is a promising diagnostic and prognostic marker in HNSC linked to the tumor microenvironment and oncogenic function. Front Genet 2024;15:1337525.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Hou Y, Zhou M, Li Y et al. Risk SNP-mediated LINC01614 upregulation drives head and neck squamous cell carcinoma progression via PI3K/AKT signaling pathway. Mol Carcinog 2022;61:797–811.CrossRefPubMed Hou Y, Zhou M, Li Y et al. Risk SNP-mediated LINC01614 upregulation drives head and neck squamous cell carcinoma progression via PI3K/AKT signaling pathway. Mol Carcinog 2022;61:797–811.CrossRefPubMed
37.
Zurück zum Zitat Liu A-N, Qu H-J, Yu C-Y, Sun P. Knockdown of LINC01614 inhibits lung adenocarcinoma cell progression by up-regulating miR-217 and down-regulating FOXP1. J Cell Mol Med 2018;22:4034–4044.CrossRefPubMedPubMedCentral Liu A-N, Qu H-J, Yu C-Y, Sun P. Knockdown of LINC01614 inhibits lung adenocarcinoma cell progression by up-regulating miR-217 and down-regulating FOXP1. J Cell Mol Med 2018;22:4034–4044.CrossRefPubMedPubMedCentral
38.
39.
Zurück zum Zitat Cao L, Wu J, Qu X et al. Glycometabolic rearrangements–aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. J Exp Clin Cancer Res. 2020;39:267.CrossRefPubMedPubMedCentral Cao L, Wu J, Qu X et al. Glycometabolic rearrangements–aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. J Exp Clin Cancer Res. 2020;39:267.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–899.CrossRefPubMed Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–899.CrossRefPubMed
41.
Zurück zum Zitat Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019;150:104511.CrossRefPubMed Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019;150:104511.CrossRefPubMed
42.
Zurück zum Zitat Kotowski K, Rosik J, Machaj F, et al. Role of PFKFB3 and PFKFB4 in cancer: genetic basis, impact on disease development/progression, and potential as therapeutic targets. Cancers (Basel). 2021;13. Kotowski K, Rosik J, Machaj F, et al. Role of PFKFB3 and PFKFB4 in cancer: genetic basis, impact on disease development/progression, and potential as therapeutic targets. Cancers (Basel). 2021;13.
44.
Zurück zum Zitat Bartrons R, Rodríguez-García A, Simon-Molas H, Castaño E, Manzano A, Navarro-Sabaté À. The potential utility of PFKFB3 as a therapeutic target. Expert Opin Ther Targets. 2018;22:659–674.CrossRefPubMed Bartrons R, Rodríguez-García A, Simon-Molas H, Castaño E, Manzano A, Navarro-Sabaté À. The potential utility of PFKFB3 as a therapeutic target. Expert Opin Ther Targets. 2018;22:659–674.CrossRefPubMed
45.
Zurück zum Zitat De Oliveira T, Goldhardt T, Edelmann M, et al. Effects of the novel PFKFB3 Inhibitor KAN0438757 on colorectal cancer cells and its systemic toxicity evaluation in vivo. Cancers (Basel). 2021;13. De Oliveira T, Goldhardt T, Edelmann M, et al. Effects of the novel PFKFB3 Inhibitor KAN0438757 on colorectal cancer cells and its systemic toxicity evaluation in vivo. Cancers (Basel). 2021;13.
46.
Zurück zum Zitat Yan S, Zhou N, Zhang D, et al. PFKFB3 Inhibition attenuates oxaliplatin-induced autophagy and enhances its cytotoxicity in colon cancer cells. Int J Mol Sci. 2019;20. Yan S, Zhou N, Zhang D, et al. PFKFB3 Inhibition attenuates oxaliplatin-induced autophagy and enhances its cytotoxicity in colon cancer cells. Int J Mol Sci. 2019;20.
Metadaten
Titel
LINC01614 Accelerates CRC Progression via STAT1/LINC01614/miR-4443/PFKFB3-Mediated Aerobic Glycolysis
verfasst von
Jiangyan Xia
Chenglin Zhou
Heng Zhao
Jun Zhang
Xiaoming Chai
Publikationsdatum
06.12.2024
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-024-08756-4

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Nierenzellkarzinom: Kein Nachteil durch subkutan appliziertes Nivolumab

Die subkutane Applikation von Nivolumab ist nach Daten einer Phase-3-Studie ähnlich gut wirksam wie die intravenöse: Die Pharmakokinetik ist vergleichbar, die objektive Response war in der Studie sogar leicht besser als in der Gruppe mit Infusionen.

Vorteile für Androgenentzug plus Androgenrezeptorblockade

Für Männer mit metastasiertem hormonsensitivem Prostata-Ca. (mHSPC), die keine Hormonchemotherapie wollen oder vertragen, ist der Androgenentzug plus Darolutamid eine Alternative: Das Progressionsrisiko wird im Vergleich zum alleinigen Androgenentzug fast halbiert.

Mit Lidocain kommt der Darm nicht schneller in Schwung

Verzögertes Wiederanspringen der Darmfunktion ist ein Hauptfaktor dafür, wenn Patientinnen und Patienten nach einer Kolonresektion länger als geplant im Krankenhaus bleiben müssen. Ob man diesem Problem mit Lidocain vorbeugen kann, war Thema einer Studie.

Koronare Herzkrankheit: Das waren die Top-Studien 2024

Zum Thema Koronare Herzkrankheit gab es 2024 wichtige neue Studien. Beleuchtet wurden darin unter anderem der Stellenwert von Betablockern nach Herzinfarkt, neue Optionen für eine Lipidsenkung sowie die Therapie bei infarktbedingtem kardiogenem Schock.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.