Skip to main content
Erschienen in: Medical Oncology 5/2017

01.05.2017 | Review Article

LincRNa-p21: function and mechanism in cancer

verfasst von: Shaoyun Chen, Hairong Liang, Hui Yang, Kairu Zhou, Longmei Xu, Jiaxian Liu, Bei Lai, Li Song, Hao Luo, Jianming Peng, Zhidong Liu, Yongmei Xiao, Wen Chen, Huanwen Tang

Erschienen in: Medical Oncology | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

In view of the rapid development of gene chips and high-throughput sequencing technology, noncoding RNAs (ncRNas) form a high percentage of the mammalian genome. Two major subgroups of ncRNAs that have been identified are the long ncRNAs (lncRNas) and the microRNAs. A number of studies in the past few years have showed crucial functions for lncRNas in cancer. LincRNa-p21 as a p53-dependent transcriptional target gene and a potential diagnostic marker is involved in proliferation, cell cycle, metabolism and reprogramming. In addition, more researches revealed that lincRNa-p21 is associated with cancer progression and contributed to the treatment and prognosis of cancer. In this review, we briefly summarize the function and molecular mechanisms of lincRNa-p21 in cancer and its regulation for the genes expression .
Literatur
1.
Zurück zum Zitat Gao D, Xiao Z, Li HP, Han DH, Zhang YP. LncRNA MALAT-1 elevates HMGB1 to promote autophagy resulting in inhibition of tumor cell apoptosis in multiple Myeloma. J Cell Biochem. 2017. doi:10.1002/jcb.25987. Gao D, Xiao Z, Li HP, Han DH, Zhang YP. LncRNA MALAT-1 elevates HMGB1 to promote autophagy resulting in inhibition of tumor cell apoptosis in multiple Myeloma. J Cell Biochem. 2017. doi:10.​1002/​jcb.​25987.
2.
Zurück zum Zitat Singh KK, Matkar PN, Pan Y, Quan A, Gupta V, Teoh H, et al. Endothelial long non-coding RNAs regulated by oxidized LDL. Mol Cell Biochem. 2017. doi:10.1007/s11010-017-2984-2. Singh KK, Matkar PN, Pan Y, Quan A, Gupta V, Teoh H, et al. Endothelial long non-coding RNAs regulated by oxidized LDL. Mol Cell Biochem. 2017. doi:10.​1007/​s11010-017-2984-2.
3.
Zurück zum Zitat Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng L, et al. Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma. Cell Death Dis. 2017;8(3):e2675.PubMedCrossRef Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng L, et al. Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma. Cell Death Dis. 2017;8(3):e2675.PubMedCrossRef
4.
Zurück zum Zitat Zhai H, Fesler A, Schee K, Fodstad Ø, Flatmark K, Ju J. Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer. Clin Colorectal Cancer. 2013;12(4):261–6.PubMedCrossRef Zhai H, Fesler A, Schee K, Fodstad Ø, Flatmark K, Ju J. Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer. Clin Colorectal Cancer. 2013;12(4):261–6.PubMedCrossRef
5.
Zurück zum Zitat Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding rna induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.PubMedPubMedCentralCrossRef Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding rna induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.PubMedCrossRef Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.PubMedCrossRef
7.
Zurück zum Zitat Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale J, De S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47(4):648–55.PubMedPubMedCentralCrossRef Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale J, De S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47(4):648–55.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Dimitrova N, Zamudio J, Jong R, Soukup D, Resnick R, Sarma K, et al. LincRNA-p21 activates p21 In cis to promote polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777–90.PubMedPubMedCentralCrossRef Dimitrova N, Zamudio J, Jong R, Soukup D, Resnick R, Sarma K, et al. LincRNA-p21 activates p21 In cis to promote polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777–90.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014;130(17):1452–65.PubMedPubMedCentralCrossRef Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014;130(17):1452–65.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362(6423):857–60.PubMedCrossRef Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362(6423):857–60.PubMedCrossRef
11.
Zurück zum Zitat Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.PubMedCrossRef Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.PubMedCrossRef
12.
Zurück zum Zitat Yin Y, Stephen CW, Luciani MG, Fåhraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol. 2002;4(6):462–7.PubMedCrossRef Yin Y, Stephen CW, Luciani MG, Fåhraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol. 2002;4(6):462–7.PubMedCrossRef
13.
Zurück zum Zitat Wei G, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90(4):595–606.CrossRef Wei G, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90(4):595–606.CrossRef
14.
Zurück zum Zitat Lin Liu DMSR. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999;19(2):1202–9.CrossRef Lin Liu DMSR. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999;19(2):1202–9.CrossRef
16.
Zurück zum Zitat Toyama T, Iwase H, Watson P, Muzik H, Saettler E, Magliocco A, et al. Suppression of ING1 expression in sporadic breast cancer. Oncogene. 1999;18(37):5187–93.PubMedCrossRef Toyama T, Iwase H, Watson P, Muzik H, Saettler E, Magliocco A, et al. Suppression of ING1 expression in sporadic breast cancer. Oncogene. 1999;18(37):5187–93.PubMedCrossRef
17.
Zurück zum Zitat He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol. 1951;23(22):104–16. He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol. 1951;23(22):104–16.
18.
Zurück zum Zitat Gunduz M, Demircan K, Gunduz E, Katase N, Tamamura R, Nagatsuka H. Potential usage of ING family members in cancer diagnostics and molecular therapy. Curr Drug Targets. 2009;10(5):465–76.PubMedCrossRef Gunduz M, Demircan K, Gunduz E, Katase N, Tamamura R, Nagatsuka H. Potential usage of ING family members in cancer diagnostics and molecular therapy. Curr Drug Targets. 2009;10(5):465–76.PubMedCrossRef
19.
Zurück zum Zitat Tran UM, Rajarajacholan U, Soh J, Kim T, Thalappilly S, Sensen CW, et al. LincRNA-p21 acts as a mediator of ING1b-induced apoptosis. Cell Death Disease. 2015;6(3):478.CrossRef Tran UM, Rajarajacholan U, Soh J, Kim T, Thalappilly S, Sensen CW, et al. LincRNA-p21 acts as a mediator of ING1b-induced apoptosis. Cell Death Disease. 2015;6(3):478.CrossRef
20.
Zurück zum Zitat Zheng J, Dong P, Mao Y, Chen S, Wu X, Li G, et al. LincRNA-p21 inhibits hepatic stellate cells activation and liver fibrogenesis via p21. FEBS J. 2015;282(24):4810–21.PubMedCrossRef Zheng J, Dong P, Mao Y, Chen S, Wu X, Li G, et al. LincRNA-p21 inhibits hepatic stellate cells activation and liver fibrogenesis via p21. FEBS J. 2015;282(24):4810–21.PubMedCrossRef
21.
Zurück zum Zitat Braun AC. On the origin of the cancer cells. Am Sci. 1970;58(3):307–20.PubMed Braun AC. On the origin of the cancer cells. Am Sci. 1970;58(3):307–20.PubMed
22.
Zurück zum Zitat Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.PubMedCrossRef Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.PubMedCrossRef
23.
Zurück zum Zitat Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.PubMedCrossRef Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.PubMedCrossRef
24.
Zurück zum Zitat Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIF targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.PubMedCrossRef Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIF targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.PubMedCrossRef
25.
Zurück zum Zitat Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2013;53(1):88–100.PubMedCrossRef Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2013;53(1):88–100.PubMedCrossRef
26.
Zurück zum Zitat Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRef Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRef
27.
Zurück zum Zitat Polo J, Anderssen E, Walsh R, Schwarz B, Nefzger C, Lim SM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151(7):1617–32.PubMedPubMedCentralCrossRef Polo J, Anderssen E, Walsh R, Schwarz B, Nefzger C, Lim SM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151(7):1617–32.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Liu L, Xu Y, He M, Zhang M, Cui F, Lu L, et al. Transcriptional pause release is a rate-limiting step for somatic cell reprogramming. Cell Stem Cell. 2014;15(5):2335–43.CrossRef Liu L, Xu Y, He M, Zhang M, Cui F, Lu L, et al. Transcriptional pause release is a rate-limiting step for somatic cell reprogramming. Cell Stem Cell. 2014;15(5):2335–43.CrossRef
29.
Zurück zum Zitat Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, et al. Corrigendum: deterministic direct reprogramming of somatic cells to pluripotency. Nature. 2013;502(7469):65–70.PubMedCrossRef Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, et al. Corrigendum: deterministic direct reprogramming of somatic cells to pluripotency. Nature. 2013;502(7469):65–70.PubMedCrossRef
30.
Zurück zum Zitat Takahashi K, Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140(12):2457–61.PubMedCrossRef Takahashi K, Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140(12):2457–61.PubMedCrossRef
31.
Zurück zum Zitat Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7.PubMedPubMedCentralCrossRef Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Lin N, Chang KY, Li Z, Gates K, Rana Z, Dang J, et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell. 2014;53(6):1005–19.PubMedPubMedCentralCrossRef Lin N, Chang KY, Li Z, Gates K, Rana Z, Dang J, et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell. 2014;53(6):1005–19.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Bao X, Wu H, Zhu X, Guo X, Hutchins AP, Luo Z, et al. The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res. 2014;25(1):80–92.PubMedPubMedCentralCrossRef Bao X, Wu H, Zhu X, Guo X, Hutchins AP, Luo Z, et al. The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res. 2014;25(1):80–92.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci Robbins ES, et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol. 1998;141(7):1659–73.PubMedPubMedCentralCrossRef Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci Robbins ES, et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol. 1998;141(7):1659–73.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Spurlock CF, Tossberg JT, Matlock BK, Olsen NJ, Aune TM. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol. 2014;66(11):2947–57.PubMedPubMedCentralCrossRef Spurlock CF, Tossberg JT, Matlock BK, Olsen NJ, Aune TM. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol. 2014;66(11):2947–57.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Yang N, Fu Y, Zhang H, Hui S, Zhu N, Yang G. LincRNA-p21 activates endoplasmic reticulum stress and inhibits hepatocellular carcinoma. Oncotarget. 2015;6(29):28151–63.PubMedCrossRef Yang N, Fu Y, Zhang H, Hui S, Zhu N, Yang G. LincRNA-p21 activates endoplasmic reticulum stress and inhibits hepatocellular carcinoma. Oncotarget. 2015;6(29):28151–63.PubMedCrossRef
37.
Zurück zum Zitat Işın M, Uysaler E, Özgür E, Yücel ÖB, Gezer U, Dalay N. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet. 2015;6:168.PubMedPubMedCentral Işın M, Uysaler E, Özgür E, Yücel ÖB, Gezer U, Dalay N. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet. 2015;6:168.PubMedPubMedCentral
38.
Zurück zum Zitat Pihikova D, Kasak P, Kubanikova P, Sokol R, Tkac J. Aberrant sialylation of a prostate-specific antigen: electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta. 2016;934:72–9.PubMedCrossRef Pihikova D, Kasak P, Kubanikova P, Sokol R, Tkac J. Aberrant sialylation of a prostate-specific antigen: electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta. 2016;934:72–9.PubMedCrossRef
39.
Zurück zum Zitat Zengle G, Xu B, Chen M. Long chain non-coding RNA in the progress of prostate cancer. J Southeast Univ (Med Sci Ed). 2016;35(3):431–6. Zengle G, Xu B, Chen M. Long chain non-coding RNA in the progress of prostate cancer. J Southeast Univ (Med Sci Ed). 2016;35(3):431–6.
40.
Zurück zum Zitat Wang R, Zhang X, Wang C-X. Research advance on long non-coding RNA in cancer. J Pract Hosp. 2016;13(3):9–13. Wang R, Zhang X, Wang C-X. Research advance on long non-coding RNA in cancer. J Pract Hosp. 2016;13(3):9–13.
42.
Zurück zum Zitat Castellazzi M, Spyrou G, La VN, Dangy JP, Piu F, Yaniv M, et al. Overexpression of c-jun, junB, or junD affects cell growth differently. Proc Natl Acad Sci USA. 1991;88(20):8890–4.PubMedPubMedCentralCrossRef Castellazzi M, Spyrou G, La VN, Dangy JP, Piu F, Yaniv M, et al. Overexpression of c-jun, junB, or junD affects cell growth differently. Proc Natl Acad Sci USA. 1991;88(20):8890–4.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Dong Z, Watts R, Sun Y, Zhan S, Colburn N. Progressive elevation of ap-1 activity during preneoplastic-to-neoplastic progression as modeled in mouse jb6 cell variants. Int J Oncol. 1995;7(2):359–64.PubMed Dong Z, Watts R, Sun Y, Zhan S, Colburn N. Progressive elevation of ap-1 activity during preneoplastic-to-neoplastic progression as modeled in mouse jb6 cell variants. Int J Oncol. 1995;7(2):359–64.PubMed
44.
Zurück zum Zitat Wang G, Li Z, Zhao Q, Zhu Y, Zhao C, Li X, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep. 2014;31(4):1839–45.PubMed Wang G, Li Z, Zhao Q, Zhu Y, Zhao C, Li X, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep. 2014;31(4):1839–45.PubMed
45.
Zurück zum Zitat White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142(2):219–32.PubMedCrossRef White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142(2):219–32.PubMedCrossRef
46.
Zurück zum Zitat Kendziorra E, Ahlborn K, Spitzner M, Emons G, Gaedcke J, Kramer F, et al. Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis. 2011;32(12):1824–31.PubMedPubMedCentralCrossRef Kendziorra E, Ahlborn K, Spitzner M, Emons G, Gaedcke J, Kramer F, et al. Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis. 2011;32(12):1824–31.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Waaler J, Machon O, von Kries JP, Wilson SR, Lundenes E, Wedlich D, et al. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. Can Res. 2011;71(1):197–205.CrossRef Waaler J, Machon O, von Kries JP, Wilson SR, Lundenes E, Wedlich D, et al. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. Can Res. 2011;71(1):197–205.CrossRef
48.
Zurück zum Zitat Michael B. Crosstalk between Wnt signaling and RNA processing in colorectal cancer. J Cancer. 2013;4(2):96–103.CrossRef Michael B. Crosstalk between Wnt signaling and RNA processing in colorectal cancer. J Cancer. 2013;4(2):96–103.CrossRef
49.
Zurück zum Zitat Castellano JJ, Navarro A, Vinolas N, Marrades RM, Moises J, Cordeiro A, et al. LincRNA-p21 impacts prognosis in resected non-small-cell lung cancer patients through angiogenesis regulation. J Thorac Oncol. 2016;11(12):2173–82.PubMedCrossRef Castellano JJ, Navarro A, Vinolas N, Marrades RM, Moises J, Cordeiro A, et al. LincRNA-p21 impacts prognosis in resected non-small-cell lung cancer patients through angiogenesis regulation. J Thorac Oncol. 2016;11(12):2173–82.PubMedCrossRef
50.
Zurück zum Zitat Battegay EJ. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF & #946;-receptors. J Cell Biol. 1994;125(4):917–28.PubMedCrossRef Battegay EJ. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF & #946;-receptors. J Cell Biol. 1994;125(4):917–28.PubMedCrossRef
51.
Zurück zum Zitat Rojiani MV, Alidina J, Esposito N, Rojiani AM. Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol. 2010;3(8):775–81.PubMedPubMedCentral Rojiani MV, Alidina J, Esposito N, Rojiani AM. Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol. 2010;3(8):775–81.PubMedPubMedCentral
52.
Zurück zum Zitat de Mello RA, Costa BM, Reis RM, Hespanhol V. Insights into angiogenesis in non-small cell lung cancer: molecular mechanisms, polymorphic genes, and targeted therapies. Recent patents on anti-cancer drug discovery. 2012;7(1):118–31(14). de Mello RA, Costa BM, Reis RM, Hespanhol V. Insights into angiogenesis in non-small cell lung cancer: molecular mechanisms, polymorphic genes, and targeted therapies. Recent patents on anti-cancer drug discovery. 2012;7(1):118–31(14).
53.
Zurück zum Zitat Toh H, Cao M, Daniels E, Bateman A. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model. PLoS ONE. 2013;8(5):e64989.PubMedPubMedCentralCrossRef Toh H, Cao M, Daniels E, Bateman A. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model. PLoS ONE. 2013;8(5):e64989.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Beckham CJ, Olsen J, Yin PN, Wu CH, Ting HJ, Hagen FK, et al. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J Urol. 2014;192(2):583–92.PubMedCrossRef Beckham CJ, Olsen J, Yin PN, Wu CH, Ting HJ, Hagen FK, et al. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J Urol. 2014;192(2):583–92.PubMedCrossRef
55.
Zurück zum Zitat Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2014;53(1):88–100.PubMedCrossRef Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2014;53(1):88–100.PubMedCrossRef
56.
Zurück zum Zitat Blume CJ, Hotz-Wagenblatt A, Hullein J, Sellner L, Jethwa A, Stolz T, et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia. 2015;29(10):2015–23.PubMedCrossRef Blume CJ, Hotz-Wagenblatt A, Hullein J, Sellner L, Jethwa A, Stolz T, et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia. 2015;29(10):2015–23.PubMedCrossRef
57.
Zurück zum Zitat Jiang YJ, Bikle DD. LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J Steroid Biochem Mol Biol. 2014;144(part A):87–90.PubMed Jiang YJ, Bikle DD. LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J Steroid Biochem Mol Biol. 2014;144(part A):87–90.PubMed
58.
Zurück zum Zitat Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, Smart RC. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Disease. 2015;6(3):e1700.PubMedPubMedCentralCrossRef Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, Smart RC. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Disease. 2015;6(3):e1700.PubMedPubMedCentralCrossRef
Metadaten
Titel
LincRNa-p21: function and mechanism in cancer
verfasst von
Shaoyun Chen
Hairong Liang
Hui Yang
Kairu Zhou
Longmei Xu
Jiaxian Liu
Bei Lai
Li Song
Hao Luo
Jianming Peng
Zhidong Liu
Yongmei Xiao
Wen Chen
Huanwen Tang
Publikationsdatum
01.05.2017
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 5/2017
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-017-0959-5

Weitere Artikel der Ausgabe 5/2017

Medical Oncology 5/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.