Skip to main content
Erschienen in: Pediatric Nephrology 5/2020

28.03.2019 | Review

Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development

verfasst von: Robert D’Cruz, Katryna Stronks, Christopher J. Rowan, Norman D. Rosenblum

Erschienen in: Pediatric Nephrology | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Aberrant hedgehog (Hh) signaling during embryogenesis results in various severe congenital abnormalities, including renal malformations. The molecular mechanisms that underlie congenital renal malformations remain poorly understood. Here, we review the current understanding of the lineage-specific roles of Hh signaling during renal morphogenesis and how aberrant Hh signaling during embryonic kidney development contributes to renal malformation.
Literatur
1.
Zurück zum Zitat Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 3:407–413 Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 3:407–413
2.
Zurück zum Zitat Hu MC, Mo R, Bhella S, Wilson CW, Chuang P, Hui C, Rosenblum ND (2006) GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development 133:569–578PubMed Hu MC, Mo R, Bhella S, Wilson CW, Chuang P, Hui C, Rosenblum ND (2006) GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development 133:569–578PubMed
3.
Zurück zum Zitat Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086PubMed Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086PubMed
4.
Zurück zum Zitat Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312PubMed Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312PubMed
5.
Zurück zum Zitat Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD, Jay V, Rutka JT, Squire JA (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93:437–448PubMed Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD, Jay V, Rutka JT, Squire JA (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93:437–448PubMed
6.
Zurück zum Zitat Böse J, Grotewold L, Rüther U (2002) Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 11:1129–1135PubMed Böse J, Grotewold L, Rüther U (2002) Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 11:1129–1135PubMed
7.
Zurück zum Zitat Pallister PD, Hecht F, Herrman J (1989) Three additional cases of the congenital hypothalamic “hamartoblastoma” (Pallister-Hall) syndrome. Am J Med Genet 33:500–501PubMed Pallister PD, Hecht F, Herrman J (1989) Three additional cases of the congenital hypothalamic “hamartoblastoma” (Pallister-Hall) syndrome. Am J Med Genet 33:500–501PubMed
8.
Zurück zum Zitat Hall JG, Pallister PD, Clarren SK, Beckwith JB, Wiglesworth FW, Fraser FC, Cho S, Benke PJ, Reed SD (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus, and postaxial polydactyly—a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 7:47–74PubMed Hall JG, Pallister PD, Clarren SK, Beckwith JB, Wiglesworth FW, Fraser FC, Cho S, Benke PJ, Reed SD (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus, and postaxial polydactyly—a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 7:47–74PubMed
9.
Zurück zum Zitat Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipil P, West KA, McMahon AP, Humphreys BD (2012) Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 180:1441–1453PubMedPubMedCentral Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipil P, West KA, McMahon AP, Humphreys BD (2012) Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 180:1441–1453PubMedPubMedCentral
10.
Zurück zum Zitat Wilson CW, Chuang P-T (2010) Mechanism and evolution of cytosolic hedgehog signal transduction. Development 137:2079–2094PubMedPubMedCentral Wilson CW, Chuang P-T (2010) Mechanism and evolution of cytosolic hedgehog signal transduction. Development 137:2079–2094PubMedPubMedCentral
11.
Zurück zum Zitat Chen CH, Von Kessler DP, Park W, Wang B, Ma Y, Beachy PA (1999) Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of hedgehog target gene expression. Cell 98:305–316PubMed Chen CH, Von Kessler DP, Park W, Wang B, Ma Y, Beachy PA (1999) Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of hedgehog target gene expression. Cell 98:305–316PubMed
12.
Zurück zum Zitat Briscoe J, Thérond PP (2013) The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:418–431 Briscoe J, Thérond PP (2013) The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:418–431
13.
Zurück zum Zitat Wu F, Zhang Y, Sun B, McMahon AP, Wang Y (2017) Hedgehog signaling: from basic biology to cancer therapy. Cell Chem Biol 24:252–280PubMed Wu F, Zhang Y, Sun B, McMahon AP, Wang Y (2017) Hedgehog signaling: from basic biology to cancer therapy. Cell Chem Biol 24:252–280PubMed
14.
Zurück zum Zitat Colavito SA, Zou MR, Yan Q, Nguyen DX, Stern DF (2014) Significance of glioma-associated oncogene homolog 1 (GLI1) expression in claudin-low breast cancer and crosstalk with the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway. Breast Cancer Res 16:1–18 Colavito SA, Zou MR, Yan Q, Nguyen DX, Stern DF (2014) Significance of glioma-associated oncogene homolog 1 (GLI1) expression in claudin-low breast cancer and crosstalk with the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway. Breast Cancer Res 16:1–18
15.
Zurück zum Zitat Wang Y, Jin G, Li Q, Wang Z, Hu W, Li P, Li S, Wu H, Kong X, Gao J, Li Z (2016) Hedgehog signaling non-canonical activated by pro-inflammatory cytokines in pancreatic ductal adenocarcinoma. J Cancer 7:2067–2076PubMedPubMedCentral Wang Y, Jin G, Li Q, Wang Z, Hu W, Li P, Li S, Wu H, Kong X, Gao J, Li Z (2016) Hedgehog signaling non-canonical activated by pro-inflammatory cytokines in pancreatic ductal adenocarcinoma. J Cancer 7:2067–2076PubMedPubMedCentral
16.
Zurück zum Zitat Sharma N, Nanta R, Sharma J, Gunewardena S, Singh KP, Shankar S, Srivastava RK (2015) PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth. Oncotarget 6:32039–32060PubMedPubMedCentral Sharma N, Nanta R, Sharma J, Gunewardena S, Singh KP, Shankar S, Srivastava RK (2015) PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth. Oncotarget 6:32039–32060PubMedPubMedCentral
17.
Zurück zum Zitat Singh R, Dhanyamraju PK, Lauth M (2017) DYRK1B blocks canonical and promotes non-canonical hedgehog signaling through activation of the mTOR/AKT pathway. Oncotarget 8:833–845PubMed Singh R, Dhanyamraju PK, Lauth M (2017) DYRK1B blocks canonical and promotes non-canonical hedgehog signaling through activation of the mTOR/AKT pathway. Oncotarget 8:833–845PubMed
18.
Zurück zum Zitat Didiasova M, Schaefer L, Wygrecka M (2018) Targeting gli transcription factors in cancer. Molecules 23:1–19 Didiasova M, Schaefer L, Wygrecka M (2018) Targeting gli transcription factors in cancer. Molecules 23:1–19
19.
Zurück zum Zitat Pan Y, Wang B (2009) Phosphorylation of Gli2 by protein kinase a is required for Gli2 processing and degradation and the sonic hedgehog-regulated mouse development. Dev Biol 55:177–189 Pan Y, Wang B (2009) Phosphorylation of Gli2 by protein kinase a is required for Gli2 processing and degradation and the sonic hedgehog-regulated mouse development. Dev Biol 55:177–189
20.
Zurück zum Zitat Niewiadomski P, Kong J, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG, Rohatgi R (2014) Gli protein activity is controlled by multi-site phosphorylation in vertebrate hedgehog signaling. Cell Rep 6:168–181PubMed Niewiadomski P, Kong J, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG, Rohatgi R (2014) Gli protein activity is controlled by multi-site phosphorylation in vertebrate hedgehog signaling. Cell Rep 6:168–181PubMed
21.
Zurück zum Zitat Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002) Shaggy/GSK3 antagonizes hedgehog signalling by regulating Cubitus interruptus. Nature 416:548–552PubMed Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002) Shaggy/GSK3 antagonizes hedgehog signalling by regulating Cubitus interruptus. Nature 416:548–552PubMed
22.
Zurück zum Zitat Atwood SX, Li M, Lee A, Tang JY, Oro AE (2013) Gli activation by aPKC iota/lambda regulates basal cell carcinoma growth. Nature 494:484–488PubMedPubMedCentral Atwood SX, Li M, Lee A, Tang JY, Oro AE (2013) Gli activation by aPKC iota/lambda regulates basal cell carcinoma growth. Nature 494:484–488PubMedPubMedCentral
23.
Zurück zum Zitat Price MA, Kalderon D (2002) Proteolysis of the hedgehog signaling effector Cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell 108:823–835PubMed Price MA, Kalderon D (2002) Proteolysis of the hedgehog signaling effector Cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell 108:823–835PubMed
24.
Zurück zum Zitat Mao J, Maye P, Kogerman P, Tejedor FJ, Toftgard R, Xie W, Wu G, Wu D (2002) Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem 277:35156–35161PubMed Mao J, Maye P, Kogerman P, Tejedor FJ, Toftgard R, Xie W, Wu G, Wu D (2002) Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem 277:35156–35161PubMed
25.
Zurück zum Zitat Wang B, Fallon JF, Beachy PA (2000) Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100:423–434PubMed Wang B, Fallon JF, Beachy PA (2000) Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100:423–434PubMed
26.
Zurück zum Zitat Rowan CJ, Li W, Martirosyan H, Erwood S, Hu D, Kim Y-K, Sheybani-Deloui S, Mulder J, Blake J, Chen L, Rosenblum ND (2018) Hedgehog-GLI signaling in Foxd1-positive stromal cells promotes murine nephrogenesis via TGFβ signaling. Development 145:1–13 Rowan CJ, Li W, Martirosyan H, Erwood S, Hu D, Kim Y-K, Sheybani-Deloui S, Mulder J, Blake J, Chen L, Rosenblum ND (2018) Hedgehog-GLI signaling in Foxd1-positive stromal cells promotes murine nephrogenesis via TGFβ signaling. Development 145:1–13
27.
Zurück zum Zitat Cain JE, Islam E, Haxho F, Chen L, Bridgewater D, Nieuwenhuis E, Hui CC, Rosenblum ND (2009) GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS One 4:1–13 Cain JE, Islam E, Haxho F, Chen L, Bridgewater D, Nieuwenhuis E, Hui CC, Rosenblum ND (2009) GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS One 4:1–13
28.
Zurück zum Zitat Blake J, Hu D, Cain JE, Rosenblum ND (2016) Urogenital development in Pallister-Hall syndrome is disrupted in a cell-lineage-specific manner by constitutive expression of GLI3 repressor. Hum Mol Genet 25:437–447PubMed Blake J, Hu D, Cain JE, Rosenblum ND (2016) Urogenital development in Pallister-Hall syndrome is disrupted in a cell-lineage-specific manner by constitutive expression of GLI3 repressor. Hum Mol Genet 25:437–447PubMed
29.
Zurück zum Zitat Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL (2002) Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753–4761PubMed Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL (2002) Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753–4761PubMed
30.
Zurück zum Zitat Jenkins D, Winyard PJD, Woolf AS (2007) Immunohistochemical analysis of sonic hedgehog signalling in normal human urinary tract development. J Anat 211:620–629PubMedPubMedCentral Jenkins D, Winyard PJD, Woolf AS (2007) Immunohistochemical analysis of sonic hedgehog signalling in normal human urinary tract development. J Anat 211:620–629PubMedPubMedCentral
31.
Zurück zum Zitat Johnston JJ, Olivos-Glander I, Killoran C, Elson E, Turner JT, Peters KF, Abbott MH, Aughton DJ, Aylsworth AS, Bamshad MJ, Booth C, Curry CJ, David A, Dinulos MB, Flannery DB, Fox MA, Graham JM, Grange DK, Guttmacher AE, Hannibal MC, Henn W, Hennekam RCM, Holmes LB, Hoyme HE, Leppig KA, Lin AE, Macleod P, Manchester DK, Marcelis C, Mazzanti L, McCann E, McDonald MT, Mendelsohn NJ, Moeschler JB, Moghaddam B, Neri G, Newbury-Ecob R, Pagon RA, Phillips JA, Sadler LS, Stoler JM, Tilstra D, Walsh Vockley CM, Zackai EH, Zadeh TM, Brueton L, Black GCM, Biesecker LG (2005) Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 76:609–622PubMedPubMedCentral Johnston JJ, Olivos-Glander I, Killoran C, Elson E, Turner JT, Peters KF, Abbott MH, Aughton DJ, Aylsworth AS, Bamshad MJ, Booth C, Curry CJ, David A, Dinulos MB, Flannery DB, Fox MA, Graham JM, Grange DK, Guttmacher AE, Hannibal MC, Henn W, Hennekam RCM, Holmes LB, Hoyme HE, Leppig KA, Lin AE, Macleod P, Manchester DK, Marcelis C, Mazzanti L, McCann E, McDonald MT, Mendelsohn NJ, Moeschler JB, Moghaddam B, Neri G, Newbury-Ecob R, Pagon RA, Phillips JA, Sadler LS, Stoler JM, Tilstra D, Walsh Vockley CM, Zackai EH, Zadeh TM, Brueton L, Black GCM, Biesecker LG (2005) Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 76:609–622PubMedPubMedCentral
32.
Zurück zum Zitat Narumi Y, Kosho T, Tsuruta G, Shiohara M, Shimazaki E, Mori T, Shimizu A, Igawa Y, Nishizawa S, Takagi K, Kawamura R, Wakui K, Fukushima Y (2010) Genital abnormalities in Pallister-Hall syndrome: report of two patients and review of the literature. Am J Med Genet A 152(A):3143–3147 Narumi Y, Kosho T, Tsuruta G, Shiohara M, Shimazaki E, Mori T, Shimizu A, Igawa Y, Nishizawa S, Takagi K, Kawamura R, Wakui K, Fukushima Y (2010) Genital abnormalities in Pallister-Hall syndrome: report of two patients and review of the literature. Am J Med Genet A 152(A):3143–3147
33.
Zurück zum Zitat Jamsheer A, Sowińska A, Trzeciak T, Jamsheer-Bratkowska M, Geppert A, Latos-Bieleńska A (2012) Expanded mutational spectrum of the GLI3 gene substantiates genotype-phenotype correlations. J Appl Genet 53:415–422PubMedPubMedCentral Jamsheer A, Sowińska A, Trzeciak T, Jamsheer-Bratkowska M, Geppert A, Latos-Bieleńska A (2012) Expanded mutational spectrum of the GLI3 gene substantiates genotype-phenotype correlations. J Appl Genet 53:415–422PubMedPubMedCentral
34.
Zurück zum Zitat McPherson E, Cold C (2013) Severe Pallister-Hall syndrome with persistent urogenital sinus, renal agenesis, imperforate anus, bilateral hypothalamic hamartomas, and severe skeletal anomalies. Am J Med Genet A 161:2666–2669 McPherson E, Cold C (2013) Severe Pallister-Hall syndrome with persistent urogenital sinus, renal agenesis, imperforate anus, bilateral hypothalamic hamartomas, and severe skeletal anomalies. Am J Med Genet A 161:2666–2669
35.
Zurück zum Zitat Démurger F, Ichkou A, Mougou-Zerelli S, Le Merrer M, Goudefroye G, Delezoide AL, Quélin C, Manouvrier S, Baujat G, Fradin M, Pasquier L, Megarbané A, Faivre L, Baumann C, Nampoothiri S, Roume J, Isidor B, Lacombe D, Delrue MA, Mercier S, Philip N, Schaefer E, Holder M, Krause A, Laffargue F, Sinico M, Amram D, André G, Liquier A, Rossi M, Amiel J, Giuliano F, Boute O, Dieux-Coeslier A, Jacquemont ML, Afenjar A, Van Maldergem L, Lackmy-Port-Lis M, Vincent-Delorme C, Chauvet ML, Cormier-Daire V, Devisme L, Geneviève D, Munnich A, Viot G, Raoul O, Romana S, Gonzales M, Encha-Razavi F, Odent S, Vekemans M, Attie-Bitach T (2015) New insights into genotype-phenotype correlation for GLI3 mutations. Eur J Hum Genet 23:92–102PubMed Démurger F, Ichkou A, Mougou-Zerelli S, Le Merrer M, Goudefroye G, Delezoide AL, Quélin C, Manouvrier S, Baujat G, Fradin M, Pasquier L, Megarbané A, Faivre L, Baumann C, Nampoothiri S, Roume J, Isidor B, Lacombe D, Delrue MA, Mercier S, Philip N, Schaefer E, Holder M, Krause A, Laffargue F, Sinico M, Amram D, André G, Liquier A, Rossi M, Amiel J, Giuliano F, Boute O, Dieux-Coeslier A, Jacquemont ML, Afenjar A, Van Maldergem L, Lackmy-Port-Lis M, Vincent-Delorme C, Chauvet ML, Cormier-Daire V, Devisme L, Geneviève D, Munnich A, Viot G, Raoul O, Romana S, Gonzales M, Encha-Razavi F, Odent S, Vekemans M, Attie-Bitach T (2015) New insights into genotype-phenotype correlation for GLI3 mutations. Eur J Hum Genet 23:92–102PubMed
36.
Zurück zum Zitat Kang S, Graham JM Jr, Olney AH, Biesecker LG (1997) GLI3 frameshift mutations cause autosomal dominant Pallister–Hall syndrome. Nat Genet 15:57–61 Kang S, Graham JM Jr, Olney AH, Biesecker LG (1997) GLI3 frameshift mutations cause autosomal dominant Pallister–Hall syndrome. Nat Genet 15:57–61
37.
Zurück zum Zitat Tsanev R, Tiigimägi P, Michelson P, Metsis M, Østerlund T, Kogerman P (2009) Identification of the gene transcription repressor domain of Gli3. FEBS Lett 583:224–228PubMedPubMedCentral Tsanev R, Tiigimägi P, Michelson P, Metsis M, Østerlund T, Kogerman P (2009) Identification of the gene transcription repressor domain of Gli3. FEBS Lett 583:224–228PubMedPubMedCentral
38.
Zurück zum Zitat Johnston JJ, Sapp JC, Turner JT, Amor D, Aftimos S, Aleck KA, Bocian M, Bodurtha JN, Cox GF, Cynthia J (2010) Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum Mutat 31:1142–1154PubMedPubMedCentral Johnston JJ, Sapp JC, Turner JT, Amor D, Aftimos S, Aleck KA, Bocian M, Bodurtha JN, Cox GF, Cynthia J (2010) Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum Mutat 31:1142–1154PubMedPubMedCentral
39.
Zurück zum Zitat Ito S, Kitazawa R, Haraguchi R, Kondo T, Ouchi A, Ueda Y, Kitazawa S (2018) Novel GLI3 variant causing overlapped Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS) phenotype with agenesis of gallbladder and pancreas. Diagn Pathol 13:1–4PubMedPubMedCentral Ito S, Kitazawa R, Haraguchi R, Kondo T, Ouchi A, Ueda Y, Kitazawa S (2018) Novel GLI3 variant causing overlapped Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS) phenotype with agenesis of gallbladder and pancreas. Diagn Pathol 13:1–4PubMedPubMedCentral
40.
Zurück zum Zitat Shirakawa T, Nakashima Y, Watanabe S, Harada S, Kinoshita M, Kihara T, Hamasaki Y, Shishido S, Yoshiura K, Moriuchi H, Dateki S (2018) A novel heterozygous GLI2 mutation in a patient with congenital urethral stricture and renal hypoplasia/dysplasia leading to end-stage renal failure. CEN Case Rep 7:94–97PubMedPubMedCentral Shirakawa T, Nakashima Y, Watanabe S, Harada S, Kinoshita M, Kihara T, Hamasaki Y, Shishido S, Yoshiura K, Moriuchi H, Dateki S (2018) A novel heterozygous GLI2 mutation in a patient with congenital urethral stricture and renal hypoplasia/dysplasia leading to end-stage renal failure. CEN Case Rep 7:94–97PubMedPubMedCentral
41.
Zurück zum Zitat Benzacken B, Siffroi JP, Le Bourhis C, Krabchi K, Joye N, Maschino F, Viguie F, Soulie J, Gonzales M, Migne G, Bucourt M, Encha-Razavi F, Carbillon L, Taillemite JL (1997) Different proximal and distal rearrangements of chromosome 7q associated with holoprosencephaly. J Med Genet 34:899–903PubMedPubMedCentral Benzacken B, Siffroi JP, Le Bourhis C, Krabchi K, Joye N, Maschino F, Viguie F, Soulie J, Gonzales M, Migne G, Bucourt M, Encha-Razavi F, Carbillon L, Taillemite JL (1997) Different proximal and distal rearrangements of chromosome 7q associated with holoprosencephaly. J Med Genet 34:899–903PubMedPubMedCentral
42.
Zurück zum Zitat Masuno M, Fukushma Y, Sugio Y, Ikeda M, Kuroki Y (1990) Two unrelated cases of single maxillary central incisor with 7q terminal deletion. Jpn J Hum Genet 35:311–312 Masuno M, Fukushma Y, Sugio Y, Ikeda M, Kuroki Y (1990) Two unrelated cases of single maxillary central incisor with 7q terminal deletion. Jpn J Hum Genet 35:311–312
43.
Zurück zum Zitat Wang J, Spitz L, Hayward R, Kiely E, Hall CM, O’Donoghue DP, Palmer R, Goodman FR, Scambler PJ, Winter RM, Reardon W (1999) Sacral dysgenesis associated with terminal deletion of chromosome 7q: a report of two families. Eur J Pediatr 158:902–905PubMed Wang J, Spitz L, Hayward R, Kiely E, Hall CM, O’Donoghue DP, Palmer R, Goodman FR, Scambler PJ, Winter RM, Reardon W (1999) Sacral dysgenesis associated with terminal deletion of chromosome 7q: a report of two families. Eur J Pediatr 158:902–905PubMed
44.
Zurück zum Zitat Zen PR, Riegel M, Rosa RF, Pinto LL, Graziadio C, Schwartz IV, Paskulin GA (2010) Esophageal stenosis in a child presenting a de novo 7q terminal deletion. Eur J Med Genet 53:333–336PubMed Zen PR, Riegel M, Rosa RF, Pinto LL, Graziadio C, Schwartz IV, Paskulin GA (2010) Esophageal stenosis in a child presenting a de novo 7q terminal deletion. Eur J Med Genet 53:333–336PubMed
45.
Zurück zum Zitat Dubourg C, Lazaro L, Pasquier L, Bendavid C, Blayau M, Le Duff F, Durou MR, Odent S, David V (2004) Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosence-phaly spectrum: mutation review and genotype-phenotype correlations. Hum Mutat 24:43–51PubMed Dubourg C, Lazaro L, Pasquier L, Bendavid C, Blayau M, Le Duff F, Durou MR, Odent S, David V (2004) Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosence-phaly spectrum: mutation review and genotype-phenotype correlations. Hum Mutat 24:43–51PubMed
46.
Zurück zum Zitat Sheybani-Deloui S, Chi L, Staite MV, Cain JE, Nieman BJ, Henkelman RM, Wainwright BJ, Potter SS, Bagli DJ, Lorenzo AJ, Rosenblum ND (2017) Activated hedgehog-GLI signaling causes congenital Ureteropelvic junction obstruction. J Am Soc Nephrol 29:1–13 Sheybani-Deloui S, Chi L, Staite MV, Cain JE, Nieman BJ, Henkelman RM, Wainwright BJ, Potter SS, Bagli DJ, Lorenzo AJ, Rosenblum ND (2017) Activated hedgehog-GLI signaling causes congenital Ureteropelvic junction obstruction. J Am Soc Nephrol 29:1–13
47.
Zurück zum Zitat Chen H, Ji HY, Yang Y (2016) The expression of Gli3 and Teashirt3 in the stenotic tissue of congenital pelvi-ureteric junction obstruction in children. Int J Med Sci 13:412–417PubMedPubMedCentral Chen H, Ji HY, Yang Y (2016) The expression of Gli3 and Teashirt3 in the stenotic tissue of congenital pelvi-ureteric junction obstruction in children. Int J Med Sci 13:412–417PubMedPubMedCentral
48.
Zurück zum Zitat Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND (2011) GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121:1199–1206PubMedPubMedCentral Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND (2011) GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121:1199–1206PubMedPubMedCentral
49.
Zurück zum Zitat Rowan CJ, Sheybani-Deloui S, Rosenblum ND (2017) Kidney Development and Disease 60:205–229 Rowan CJ, Sheybani-Deloui S, Rosenblum ND (2017) Kidney Development and Disease 60:205–229
50.
Zurück zum Zitat Mugford JW, Sipilä P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98PubMedPubMedCentral Mugford JW, Sipilä P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98PubMedPubMedCentral
51.
Zurück zum Zitat Motoyama J, Takabatake T, Takeshima K, Hui CC (1998) Ptch2, a second mouse patched gene is co-expressed with sonic hedgehog. Nat Genet 18:104–106PubMed Motoyama J, Takabatake T, Takeshima K, Hui CC (1998) Ptch2, a second mouse patched gene is co-expressed with sonic hedgehog. Nat Genet 18:104–106PubMed
52.
Zurück zum Zitat Li W, Hartwig S, Rosenblum ND (2014) Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev Dyn 243:853–863PubMed Li W, Hartwig S, Rosenblum ND (2014) Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev Dyn 243:853–863PubMed
Metadaten
Titel
Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development
verfasst von
Robert D’Cruz
Katryna Stronks
Christopher J. Rowan
Norman D. Rosenblum
Publikationsdatum
28.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 5/2020
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-019-04240-8

Weitere Artikel der Ausgabe 5/2020

Pediatric Nephrology 5/2020 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.