Skip to main content

Quantitative Analysis in Myocardial SPECT Imaging

  • Chapter
Quantitative Analysis in Nuclear Medicine Imaging

5. Summary

A wide range of cardiac parameters can be quantitatively measured using automated and commercially available algorithms applied to myocardial SPECT images. Numerous published validation studies have shown that those quantitative measurements are accurate and reproducible, and provide incremental diagnostic and prognostic value compared to visual assessment alone. Quantitative analysis currently represents one of the key advantages of nuclear cardiology vis-à-vis competing imaging modalities, and will likely further contribute to its growth in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. V. Garcia, C. D. Cooke, K. F. Van Train, et al., Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol 66: 23E–31E (1990).

    Google Scholar 

  2. E. E. DePasquale, A. C. Nody, E. G. DePuey, et al., Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. Circulation 77: 316–327 (1988).

    Google Scholar 

  3. G. Germano, K. Van Train, H. Kiat, and D. Berman, in: Diagnostic nuclear medicine, edited by M. P. Sandler (Williams & Wilkins, Baltimore, 1995), pp. 347–386.

    Google Scholar 

  4. A. Rozanski, G. A. Diamond, J. S. Forrester, et al., Alternative referent standards for cardiac normality. Implications for diagnostic testing. Ann Int Med 101: 164–171 (1984).

    Google Scholar 

  5. K. F. Van Train, J. Areeda, E. V. Garcia, et al., Quantitative same-day rest-stress technetium-99m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 34: 1494–1502 (1993).

    Google Scholar 

  6. E. Ficaro, J. Kritzman, and J. Corbett, Development and clinical validation of normal Tc-99m sestamibi database: comparison of 3D-MSPECT to CEqual. (abstract) 40: 125P (1999).

    Google Scholar 

  7. G. Germano, P. B. Kavanagh, P. Waechter, et al., A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. J Nucl Med 41: 712–719 (2000).

    Google Scholar 

  8. P. J. Slomka, G. A. Hurwitz, J. Stephenson, and T. Cradduck, Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm. J Nucl Med 36: 1115–1122 (1995).

    Google Scholar 

  9. T. L. Faber, C. D. Cooke, R. D. Folks, et al., Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 40: 650–659 (1999).

    Google Scholar 

  10. S. Kirac, F. J. Wackers, and Y. H. Liu, Validation of the Yale circumferential quantification method using 201Tl and 99mTc: a phantom study. J Nucl Med 41: 1436–1441 (2000).

    Google Scholar 

  11. D. S. Berman, H. Kiat, K. Van Train, E. Garcia, et al., Technetium 99m sestamibi in the assessment of chronic coronary artery disease [see comments]. Sem Nucl Med 21: 190–212 (1991).

    Google Scholar 

  12. S. Reisman, D. Berman, J. Maddahi, and H. J. Swan, The severe stress thallium defect: an indicator of critical coronary stenosis. Am Heart J 110: 128–134 (1985).

    Google Scholar 

  13. L. Matzer, H. Kiat, K. Van Train, et al., Quantitative severity of stress thallium-201 myocardial perfusion single-photon emission computed tomography defects in one-vessel coronary artery disease. Am J Cardiol 72: 273–279 (1993).

    Google Scholar 

  14. T. Sharir, G. Germano, P. B. Waechter, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. II: validation and diagnostic yield. J Nucl Med 41: 720–727 (2000).

    Google Scholar 

  15. R. Hachamovitch, D. S. Berman, H. Kiat, et al., Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 93: 905–914 (1996).

    Google Scholar 

  16. R. Hachamovitch, D. S. Berman, L. J. Shaw, et al., Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97: 535–543 (1998).

    Google Scholar 

  17. D. Berman, L. Shaw, and G. Germano, Nuclear cardiology, In Hurst’s the heart, edited by V. Fuster (McGraw-Hill Medical Pub. Division, New York, 2001), pp. 525–565.

    Google Scholar 

  18. M. D. Cerqueira, N. J. Weissman, V. Dilsizian, et al., Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol 9: 240–245 (2002).

    Google Scholar 

  19. D. S. Berman, X. P. Kang, A. Abidov, et al., Prognostic value of myocardial perfusion SPECT comparing 17-segment and 20-segment scoring systems. (abstract) J Am Coll Cardiol 41: 445A (2003).

    Google Scholar 

  20. J. De Sutter, C. Van de Wiele, Y. D’Asseler, et al., Automatic quantification of defect size using normal templates: a comparative clinical study of three commercially available algorithms. Eur J Nucl Med 27: 1827–1834 (2000).

    Google Scholar 

  21. J. Krasnow, I. Trask, S. Dahlberg, et al., Automatic determination of SPECT perfusion defect size and reversibility; comparison of four quantitative software programs. J Nucl Cardiol 8: S129 (abstract) (2001).

    Google Scholar 

  22. K. F. Van Train, E. V. Garcia, J. Maddahi, et al., Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 35: 609–618 (1994).

    Google Scholar 

  23. K. Nakajima, J. Taki, T. Higuchi, et al., Gated SPET quantification of small hearts: mathematical simulation and clinical application. Eur J Nucl Med 27: 1372–1379 (2000).

    Google Scholar 

  24. P. V. Ford, S. N. Chatziioannou, W. H. Moore, and R. D. Dhekne, Overestimation of the LVEF by quantitative gated SPECT in simulated left ventricles. J Nucl Med 42: 454–459 (2001).

    Google Scholar 

  25. G. Germano, H. Kiat, P. B. Kavanagh, et al., Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 36: 2138–2147 (1995).

    Google Scholar 

  26. K. Nakajima, T. Higuchi, J. Taki, et al., Accuracy of ventricular volume and ejection fraction measured by gated myocardial SPECT: Comparison of 4 software programs. J Nucl Med 42: 1571–1578 (2001).

    Google Scholar 

  27. P. T. Lam, F. J. T. Wackers, and Y. H. Liu, Validation of a new method for quantification of left ventricular function from ECG-gated SPECT. J Nucl Med 42: 93P–94P (abstract) (2001).

    Google Scholar 

  28. G. Germano, and D. Berman, Gated single-photon emission computed tomography. in: Nuclear cardiac imaging: principles and applications. Ed 3, edited by A. E. Iskandrian, and M. S. Verani (Oxford University Press, New York, 2003), pp. 121–136.

    Google Scholar 

  29. D. Zanger, A. Bhatnagar, E. Hausner, et al., Automated calculation of ejection fraction from gated Tc-99m sestamibi images-comparison to quantitative echocardiography. (abstract) J Nucl Cardiol 4: S78 (1997).

    Google Scholar 

  30. T. Bateman, A. Magalski, C. Barnhart, et al., Global left ventricular function assessment using gated SPECT: comparison with echocardiography. (abstract) 31: 441A (1998).

    Google Scholar 

  31. E. Cwajg, J. Cwajg, Z. He, et al., Comparison between gated-SPECT and echocardiography for the analysis of global and regional left ventricular function and volumes. (abstract) 31: 440A–441A (1998).

    Google Scholar 

  32. E. Cwajg, J. Cwajg, Z. X. He, et al., Gated myocardial perfusion tomography for the assessment of left ventricular function and volumes: comparison with echocardiography. J Nucl Med 40: 1857–1865 (1999).

    Google Scholar 

  33. D. Mathew, Y. Zabrodina, and F. Mannting, Volumetric and functional analysis of left ventricle by gated SPECT: a comparison with echocardiographic measurements. (abstract) J Am Coll Cardiol 31: 44A (1998).

    Google Scholar 

  34. K. Nichols, D. Lefkovitz, T. Faber, et al., Ventricular volumes compared among three gated SPECT methods and echocardiography. (abstract) 33: 409A (1999).

    Google Scholar 

  35. K. Nichols, D. Lefkowitz, T. Faber, et al., Echocardiographic validation of gated SPECT ventricular function measurements. J Nucl Med 41: 308–1314 (2000).

    Google Scholar 

  36. Z. He, G. Vick, P. Vaduganathan, and M. Verani, Comparison of left ventricular volumes and ejection fraction measured by gated SPECT and by cine magnetic resonance imaging. (abstract) J Am Coll Cardiol 31: 44A (1998).

    Google Scholar 

  37. D. Atsma, H. Kayser, C. Croon, P. et al., Good correlation between left ventricular ejection fraction, endsystolic and enddiastolic volume measured by gated SPECT as compared to magnetic resonance imaging. (abstract) 33: 436A (1999).

    Google Scholar 

  38. P. Vaduganathan, Z. X. He, G. W. Vick, et al., Evaluation of left ventricular wall motion, volumes, and ejection fraction by gated myocardial tomography with technetium 99m-labeled tetrofosmin: a comparison with cine magnetic resonance imaging. J Nucl Cardiol 6: 3–10 (1999).

    Google Scholar 

  39. E. Tadamura, T. Kudoh, M. Motooka, et al., Assessment of regional and global left ventricular function by reinjection T1-201 and rest Tc-99m sestamibi ECGgated SPECT: comparison with three-dimensional magnetic resonance imaging. J Am Coll Cardiol 33: 991–997 (1999).

    Google Scholar 

  40. J. Vansant, R. Pettigrew, T. Faber, J. Galt, U. Bilkay, M. Blais, G. Chatzimavroudis, L. Kimble, N. Chronos, and E. Garcia, Comparison and accuracy of two gated-SPECT techniques for assessing left ventricular function defined by cardiac MRI. (abstract) J Nucl Med 40: 166P (1999).

    Google Scholar 

  41. E. Tadamura, T. Kudoh, M. Motooka, et al., Use of technetium-99m sestamibi ECG-gated single-photon emission tomography for the evaluation of left ventricular function following coronary artery bypass graft: comparison with three-dimensional magnetic resonance imaging. Eur J Nucl Med 26: 705–712 (1999).

    Google Scholar 

  42. D. Daou, B. Helal, P. Colin, et al., Are LV ejection fraction (EF), end diastolic (EDV) and end systolic volumes (ESV) measured with rest Tl-201 gated SPECT accurate? (abstract) J Nucl Cardiol 6: S31 (1999).

    Google Scholar 

  43. J. Yoshioka, S. Hasegawa, H. Yamaguchi, et al., Left ventricular volumes and ejection fraction calculated from quantitative electrocardiographic-gated 99mTc-tetrofosmin myocardial SPECT. J Nucl Med 40: 1693–1698 (1999).

    Google Scholar 

  44. T. Chua, L. C. Yin, T. H. Thiang, et al., Accuracy of the automated assessment of left ventricular function with gated perfusion SPECT in the presence of perfusion defects and left ventricular dysfunction: correlation with equilibrium radionuclide ventriculography and echocardiography. J Nucl Cardiol 7: 301–311 (2000).

    Google Scholar 

  45. K. Nichols, J. Tamis, E. G. DePuey, et al., Relationship of gated SPECT ventricular function parameters to angiographic measurements. J Nucl Cardiol 5: 295–303 (1998).

    Google Scholar 

  46. P. Vera, A. Manrique, V. Pontvianne, et al., Thallium-gated SPECT in patients with major myocardial infarction: effect of filtering and zooming in comparison with equilibrium radionuclide imaging and left ventriculography. J Nucl Med 40: 513–521 (1999).

    Google Scholar 

  47. P. Adiseshan, and J. Corbett, Quantification of left ventricular function from gated tomographic perfusion imaging: development and testing of a new algorithm. (abstract) Circulation 90: I–365 (1994).

    Google Scholar 

  48. O. Akinboboye, L. El-Khoury Coffin, R. Sciacca, et al., Accuracy of gated SPECT thallium left ventricular volumes and ejection fractions: comparison with three-dimensional echocardiography. J Am Coll Cardiol 31: 85A (abstract) (1998).

    Google Scholar 

  49. C. Cittanti, D. Mele, P. Colamussi, et al., Determination of left ventricular volume and ejection fraction by g-SPECT myocardial perfusion scintigraphy. A comparison with quantitative 3-D echocardiography. (abstract) J Nucl Cardiol 6: S34 (1999).

    Google Scholar 

  50. R. Schwartz, C. Thompson, L. Mixon, et al., Gated SPECT analysis with 3-D wall parametrization method: accurate and reproducible evaluation of left ventricular volumes and ejection fraction. (abstract) Circulation 92: I–449 (1995).

    Google Scholar 

  51. G. Germano, W. VanDecker, R. Mintz, et al., Validation of left ventricular volumes automatically measured with gated myocardial perfusion SPECT. (abstract) J Am Coll Cardiol 31: 43A (1998).

    Google Scholar 

  52. A. E. Iskandrian, G. Germano, W. VanDecker, et al., Validation of left ventricular volume measurements by gated SPECT 99mTc-labeled sestamibi imaging. J Nucl Cardiol 5: 574–578 (1998).

    Google Scholar 

  53. K. Imai, Y. Azuma, S. Nakajima, et al., Frames a cardiac cycle in quantitative gated SPECT (QGS) for clinical use: 8 versus 16. (abstract) 6: S17 (1999).

    Google Scholar 

  54. C. Cohade, R. Taillefer, A. Gagnon, et al., Effect of the number of frames per cardiac cycle and the amount of injected dose of radionuclide on the determination of left ventricular ejection fraction (LVEF) with gated SPECT myocardial perfusion imaging (GS). (abstract) J Nucl Med 41: 154P (2000).

    Google Scholar 

  55. A. Manrique, P. Vera, A. Hitzel, et al., 16-interval gating improves thallium-201 gated SPECT LVEF measurement in patients with large myocardial infarction. (abstract) J Am Coll Cardiol 33: 436A–437A (1999).

    Google Scholar 

  56. A. Manrique, R. Koning, A. Cribier, and P. Véra, Effect of temporal sampling on evaluation of left ventricular ejection fraction by means of thallium-201 gated SPET: comparison of 16-and 8-interval gating, with reference to equilibrium radionuclide angiography. Eur J Nucl Med 27: 694–699 (2000).

    Google Scholar 

  57. J. Case, S. Cullom, T. Bateman, et al., Overestimation of LVEF by gated MIBI myocardial perfusion SPECT in patients with small hearts. J Am Coll Cardiol 31: 43A (abstract) (1998).

    Google Scholar 

  58. M. Santos, H. Lewin, S. Hayes, et al., A potential cause for underestimation of LVEF by QGS. (abstract) J Nucl Cardiol 8: S130 (2001).

    Google Scholar 

  59. R. Schwartz, J. Eckdahl, and C. Thompson, 3-D wall parametrization method for quantitative LVEF of gated SPECT sestamibi with LV dysfunction and severe perfusion defects. (abstract) J Nucl Cardiol 2: S114 (1995).

    Google Scholar 

  60. H. Everaert, A. Bossuyt, and P. R. Franken, Left ventricular ejection fraction and volumes from gated single photon emission tomographic myocardial perfusion images: comparison between two algorithms working in three-dimensional space. J Nucl Cardiol 4: 472–476 (1997).

    Google Scholar 

  61. J. C. Stollfuss, F. Haas, I. Matsunari, et al., Regional myocardial wall thickening and global ejection fraction in patients with low angiographic left ventricular ejection fraction assessed by visual and quantitative resting ECG-gated 99mTc-tetrofosmin single-photon emission tomography and magnetic resonance imaging. Eur J Nucl Med 25: 522–530 (1998).

    Google Scholar 

  62. F. Al-Khori, P. McNelis, and W. Van Decker, Reliability of gated SPECT in assessing left ventricular ejection fraction in ventricles with scarred myocardium. (abstract) J Nucl Cardiol 6: S26 (1999).

    Google Scholar 

  63. R. Giubbini, A. Terzi, P. Rossini, and E. Milan, Gated myocardial perfusion single photon emission tomography (GSPECT) in the evaluation of left ventricular ejection fraction in CAD patients with previous myocardial infarction. (abstract) J Nucl Cardiol 6: S58 (1999).

    Google Scholar 

  64. J. Bax, H. Lamb, P. Dibbets, et al., Comparison between LV volumes and LVEF assessed by MRI and gated SPECT in patients with severe ischemic LV dysfunction. (abstract) J Nucl Med 40: 45P (1999).

    Google Scholar 

  65. M. Moriel, G. Germano, H. Kiat, et al., Automatic measurement of left ventricular ejection fraction by gated SPECT Tc-99m sestamibi: a comparison with radionuclide ventriculography. (abstract) Circulation 88: I–486 (1993).

    Google Scholar 

  66. T. Bateman, J. Case, M. Saunders, et al., Gated SPECT LVEF measurements using a dual-detector camera and a weight-adjusted dosage of thallium-201. (abstract) J Am Coll Cardiol 29: 263A (1997).

    Google Scholar 

  67. P. Carpentier, H. Benticha, P. Gautier, and C. Sulman, Thallium 201 gated SPECT for simultaneous assessment of myocardial perfusion, left ventricular ejection fraction and qualitative regional function. (abstract) J Nucl Cardiol 6: S39 (1999).

    Google Scholar 

  68. K. Nichols, E. G. DePuey, and A. Rozanski, Automation of gated tomographic left ventricular ejection fraction. J Nucl Cardiol 3: 475–482 (1996).

    Google Scholar 

  69. H. Everaert, P. R. Franken, P. Flamen, et al., Left ventricular ejection fraction from gated SPET myocardial perfusion studies: a method based on the radial distribution of count rate density across the myocardial wall. Eur J Nucl Med 23: 1628–1633 (1996).

    Google Scholar 

  70. D. A. Calnon, R. J. Kastner, W. H. Smith, et al., Validation of a new counts-based gated single photon emission computed tomography method for quantifying left ventricular systolic function: comparison with equilibrium radionuclide angiography. J Nucl Cardiol 4: 464–471 (1997).

    Google Scholar 

  71. Z. He, J. Mahmarian, J. Preslar, and M. Verani, Correlations of left ventricular ejection fractions determined by gated SPECT with thallium and sestamibi and by first-pass radionuclide angiography. (abstract) J Nucl Med 38: 27P (1997).

    Google Scholar 

  72. M. Inubushi, E. Tadamura, T. Kudoh, et al., Simultaneous assessment of myocardial fatty acid utilization and LV function using I-123 BMIPP gated SPECT (GSPECT). (abstract) J Nucl Cardiol 6: S66 (1999).

    Google Scholar 

  73. M. Inubushi, E. Tadamura, T. Kudoh, et al., Simultaneous assessment of myocardial free fatty acid utilization and left ventricular function using 123I-BMIPPgated SPECT. J Nucl Med 40: 1840–1847 (1999).

    Google Scholar 

  74. Z. X. He, E. Cwajg, J. S. Preslar, et al., Accuracy of left ventricular ejection fraction determined by gated myocardial perfusion SPECT with Tl-201 and Tc-99m sestamibi: comparison with first-pass radionuclide angiography. J Nucl Cardiol 6: 412–417 (1999).

    Google Scholar 

  75. K. Nichols, E. G. DePuey, A. Rozanski, et al., Image enhancement of severely hypoperfused myocardia for computation of tomographic ejection fraction. J Nucl Med 38: 1411–1417 (1997).

    Google Scholar 

  76. K. A. Williams, and L. A. Taillon, Left ventricular function in patients with coronary artery disease assessed by gated tomographic myocardial perfusion images. Comparison with assessment by contrast ventriculography and first-pass radionuclide angiography. J Am Coll Cardiol 27: 173–181 (1996).

    Google Scholar 

  77. C. Bacher-Stier, S. Müller, O. Pachinger, et al., Thallium-201 gated single-photon emission tomography for the assessment of left ventricular ejection fraction and regional wall motion abnormalities in comparison with two-dimensional echocardiography. Eur J Nucl Med 26: 1533–1540 (1999).

    Google Scholar 

  78. C. Di Leo, A. Bestetti, L. Tagliabue, et al., 99mTc-tetrofosmin gated-SPECT LVEF: correlation with echocardiography and contrastographic ventriculography. (abstract) 4: S56 (1997).

    Google Scholar 

  79. J. C. Stollfuss, F. Haas, I. Matsunari, et al., 99mTc-tetrofosmin SPECT for prediction of functional recovery defined by MRI in patients with severe left ventricular dysfunction: additional value of gated SPECT. J Nucl Med 40: 1824–1831 (1999).

    Google Scholar 

  80. D. Atsma, C. Croon, P. Dibbets-Schneider, et al., Good correlation between left ventricular ejection fraction and wall motion score assessed by gated SPECT as compared to left ventricular angiography. (abstract) J Am Coll Cardiol 33: 409A (1999).

    Google Scholar 

  81. A. Paul, S. Hasegawa, J. Yoshioka, et al., Left ventricular volume and ejection fraction from quantitative gated SPECT: comparison with gated pool SPECT and contrast ventriculography. J Nucl Med 40: 178P (abstract) (1999).

    Google Scholar 

  82. E. Ficaro, R. Quaife, J. Kritzman, and J. Corbett, Accuracy and reproducibility of 3D-MSPECT for estimating left ventricular ejection fraction in patients with severe perfusion abnormalities. (abstract) Circulation 100: I–26 (1999).

    Google Scholar 

  83. M. Toba, Y. Ishida, K. Fukuchi, et al., Application of ECG-gated Tc-99m sestamibi cardiac imaging to patients with arrhythmogenic right ventricular dysplasia (ARVD). (abstract) J Nucl Cardiol 6: S41 (1999).

    Google Scholar 

  84. K. Nichols, R. Folks, D. Cooke, et al., Comparisons between “ECTb” and “QGS” software to compute left ventricular function from myocardial perfusion gated SPECT data. (abstract) J Nucl Cardiol 7: S20 (2000).

    Google Scholar 

  85. P. Véra, R. Koning, A. Cribier, and A. Manrique, Comparison of two three-dimensional gated SPECT methods with thallium in patients with large myocardial infarction. J Nucl Cardiol 7: 312–319 (2000).

    Google Scholar 

  86. J. Krasnow, I. Trask, S. Dahlberg, G. Margulis, and J. Leppo, Automatic determination of left ventricular function (LVEF) by gated SPECT; comparison of four quantitative software programs. (abstract) J Nucl Cardiol 8: S138 (2001).

    Google Scholar 

  87. T. Lewis, K. Grewal, and D. Calnon, Discrepancies in estimating left-ventricular volumes and ejection fraction by two commercially available gated SPECT algorithms: comparison to echocardiography. (abstract) J Nucl Cardiol 8: S18 (2001).

    Google Scholar 

  88. P. R. Franken, H. Everaert, A. Momen, and C. Vanhove, Comparison of three automatic software to measure left ventricular cavity volume and ejection fraction from perfusion gated tomograms. (abstract) Eur J Nucl Med 26: 1076 (1999).

    Google Scholar 

  89. M. R. Boussaha, G. Storto, C. Antonescu, and A. B. Delaloye, Ejection fraction evaluation by gated myocardial perfusion SPECT: Comparison between gated spect quantification (GSQ) and emory cardiac tool box (ECTB). (abstract) Eur J Nucl Med 28: OS240 (2001).

    Google Scholar 

  90. T. Sharir, G. Germano, P. B. Kavanagh, et al., Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 100: 1035–1042 (1999).

    Google Scholar 

  91. A. Rozanski, K. Nichols, S. S. Yao, et al., Development and application of normal limits for left ventricular ejection fraction and volume measurements from 99mTc-sestamibi myocardial perfusion gates SPECT. J Nucl Med 41: 1445–1450 (2000).

    Google Scholar 

  92. A. A. Ababneh, R. R. Sciacca, B. Kim, and S. R. Bergmann, Normal limits for left ventricular ejection fraction and volumes estimated with gated myocardial perfusion imaging in patients with normal exercise test results: influence of tracer, gender, and acquisition camera. J Nucl Cardiol 7: 661–668 (2000).

    Google Scholar 

  93. T. Sharir, G. Germano, J. Friedman, et al., Prognostic value of gated myocardial perfusion single photon emission computed tomography in women versus men. (abstract) Circulation 102: II–544 (2000).

    Google Scholar 

  94. P. De Bondt, C. Van de Wiele, J. De Sutter, et al., Age-and gender-specific differences in left ventricular cardiac function and volumes determined by gated SPET. Eur J Nucl Med 28: 620–624 (2001).

    Google Scholar 

  95. C. A. Santana, E. V. Garcia, R. Folks, et al., Comparison of normal values of left ventricular function between two programs: QGS and emory cardiac toolbox (ECTB). (abstract) J Nucl Med 42: 166P (2001).

    Google Scholar 

  96. F._H. Sheehan, H. T. Dodge, D. Mathey, et al., Application of the centerline method: analysis of change in regional left ventricular wall motion in serial studies. In Computers in Cardiology. Ninth Meeting of Computers in Cardiology. Seattle, WA, USA: IEEE Computer Society Press, pp 97–100 (1983).

    Google Scholar 

  97. T. L. Faber, M. S. Akers, R. M. Peshock, and J. R. Corbett, Three-dimensional motion and perfusion quantification in gated single-photon emission computed tomograms. J Nucl Med 32: 2311–2317 (1991).

    Google Scholar 

  98. G. Germano, J. Erel, H. Lewin, et al., Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 30: 1360–1367 (1997).

    Google Scholar 

  99. W. H. Smith, R. J. Kastner, D. A. Calnon, et al., Quantitative gated single photon emission computed tomography imaging: a counts-based method for display and measurement of regional and global ventricular systolic function. J Nucl Cardiol 4: 451–463 (1997).

    Google Scholar 

  100. D. De Nardo, Q. Caretta, C. Mercanti, et al., Effects of uncomplicated coronary artery bypass graft surgery on global and regional left ventricular function at rest. Study by equilibrium radionuclide angiocardiography. Cardiology 76: 285–292 (1989).

    Google Scholar 

  101. S. Canclini, P. Rossini, A. Terzi, et al., Gated SPECT (GSPECT) evaluation of septal wall motion after cardiac surgery. (abstract) J Nucl Med 41: 125P (2000).

    Google Scholar 

  102. I. Adachi, K. Morita, M. B. Imran, et al., Heterogeneity of myocardial wall motion and thickening in the left ventricle evaluated with quantitative gated SPECT. J Nucl Cardiol 7: 296–300 (2000).

    Google Scholar 

  103. A. Katz, T. Force, E. Folland, et al., in: Marcus cardiac imaging: a companion to Braunwald’s Heart disease, edited by M. L. Marcus, and E. Braunwald (Saunders, Philadelphia), pp 297–324 (1996).

    Google Scholar 

  104. U. Sechtem, B. A. Sommerhoff, W. Markiewicz, et al., Regional left ventricular wall thickening by magnetic resonance imaging: evaluation in normal persons and patients with global and regional dysfunction. Am J Cardiol 59: 145–151 (1987).

    Google Scholar 

  105. C. Cooke, E. Garcia, R. Folks, and J. Ziffer, Myocardial thickening and phase analysis from Tc-99m sestamibi multiple gated SPECT: development of normal limits. (abstract) J Nucl Med 33: 926–927 (1992).

    Google Scholar 

  106. S. Shirakawa, N. Hattori, N. Tamaki, et al., [Assessment of left ventricular wall thickening with gated 99mTc-MIBI SPECT-value of normal file]. Kaku Igaku 32: 643–650 (1995).

    Google Scholar 

  107. Y. Itoh, I. Adachi, T. Kohya, et al., Heterogeneity in myocardial perfusion, wall motion and wall thickening with Tc-99m-sestamibi quantitative gated SPECT in normal subjects. 40: 165P (1999).

    Google Scholar 

  108. S. Fujino, K. Masuyama, S. Kanayama, et al., Early and delayed technetium-99m labeled sestamibi myocardial ECG-gated SPECT by QGS program in normal volunteers. J Nucl Med 40: 180P (1999).

    Google Scholar 

  109. H. Everaert, C. Vanhove, and P. R. Franken, Effects of low-dose dobutamine on left ventricular function in normal subjects as assessed by gated single-photon emission tomography myocardial perfusion studies. Eur J Nucl Med 26: 1298–1303 (1999).

    Google Scholar 

  110. T. Sharir, D. S. Berman, P. B. Waechter, et al., Quantitative analysis of regional motion and thickening by gated myocardial perfusion SPECT: Normal heterogeneity and criteria for abnormality. J Nucl Med 42: 1630–1638 (2001).

    Google Scholar 

  111. E. P. Ficaro, J. N. Kritzman, and J. R. Corbett, Automatic segmental scoring of myocardial wall thickening and motion: validation of a new semi-quantitative algorithm. J Nucl Med 42: 171P (2001).

    Google Scholar 

  112. D. Berman, and G. Germano, An approach to the interpretation and reporting of gated myocardial perfusion SPECT. In: Clinical gated cardiac SPECT, edited by G. Germano, and D. Berman (Futura Publishing Company, Armonk, NY), pp. 147–182 (1999).

    Google Scholar 

  113. Y. Damrongpipatkij, F. Mohammed, E. Brown, et al., Quantitative cardiac SPECT: measuring diastolic function. (abstract) J Nucl Med 41: 154P (2000).

    Google Scholar 

  114. T. Higuchi, J. Taki, T. Yoneyama, et al., Diastolic and systolic parameters obtained by myocardial ECG-gated perfusion study. (abstract) J Nucl Med 41: 160P (2000).

    Google Scholar 

  115. K. Nakajima, J. Taki, M. Kawano, et al., Diastolic dysfunction in patients with systemic sclerosis detected by gated myocardial perfusion SPECT: an early sign of cardiac involvement. J Nucl Med 42: 183–188 (2001).

    Google Scholar 

  116. M. Kikkawa, T. Nakamura, K. Sakamoto, et al., Assessment of left ventricular diastolic function from quantitative electrocardiographic-gated (99)mTc-tetrofosmin myocardial SPET (ERRATA 28: 1579; 2001). Eur J Nucl Med 28: 593–601 (2001).

    Google Scholar 

  117. S. Kumita, K. Cho, H. Nakajo, et al., Assessment of left ventricular diastolic function with electrocardiography-gated myocardial perfusion SPECT: Comparison with multigated equilibrium radionuclide angiography. J Nucl Cardiol 8: 568–574 (2001).

    Google Scholar 

  118. T. Higuchi, K. Nakajima, J. Taki, et al., The accuracy of left-ventricular time volume curve derived from ECG-gated myocardial perfusion SPECT. (abstract) 8: S18 (2001).

    Google Scholar 

  119. T. Higuchi, K. Nakajima, J. Taki, et al., Assessment of left ventricular systolic and diastolic function based on the edge detection method with myocardial ECG-gated SPET. Eur J Nucl Med 28: 1512–1516 (2001).

    Google Scholar 

  120. P. Chouraqui, E. A. Rodrigues, D. S. Berman, and J. Maddahi, Significance of dipyridamole-induced transient dilation of the left ventricle during thallium-201 scintigraphy in suspected coronary artery disease. Am J Cardiol 66: 689–694 (1990).

    Google Scholar 

  121. M. Mazzanti, G. Germano, H. Kiat, et al., Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 27: 1612–1620 (1996).

    Google Scholar 

  122. J. N. Kritzman, E. P. Ficaro, and J. R. Corbett, Post-stress LV dilation: The effect of imaging protocol, gender and attenuation correction. (abstract) J Nucl Med 42: 50P (2001).

    Google Scholar 

  123. K. Williams, C. Schnieder, and A. Jain, Transient ischemic dilatation (TID) with pharmacological stress dual isotope SPECT. (abstract) Circulation 102: II–546 (2000).

    Google Scholar 

  124. S. Madison, M. Dalipaj, and T. Ruddy, Effects of gender and stress on transient ischemic dilation ratios in normals. (abstract) J Nucl Cardiol 10: S85 (2003).

    Google Scholar 

  125. A. Bestetti, C. Di Leo, A. Alessi, et al., Transient left ventricular dilation during myocardial perfusion gated-SPECT in hypertensive patients. (abstract) Eur J Nucl Med 28: OS239 (2001).

    Google Scholar 

  126. P. Liu, M. Kiess, R. D. Okada, et al., Increased thallium lung uptake after exercise in isolated left anterior descending coronary artery disease. Am J Cardiol 55: 1469–1473 (1985).

    Google Scholar 

  127. E. E. Martinez, S. F. Horowitz, H. J. Castello, et al., Lung and myocardial thallium-201 kinetics in resting patients with congestive heart failure: correlation with pulmonary capillary wedge pressure. Am Heart J 123: 427–432 (1992).

    Google Scholar 

  128. G. Germano, P. B. Kavanagh, and D. S. Berman, An automatic approach to the analysis, quantitation and review of perfusion and function from myocardial perfusion SPECT images. Int J Card Imaging 13: 337–346 (1997).

    Google Scholar 

  129. S. V. Aksut, C. Mallavarapu, J. Russell, et al., Implications of increased lung thallium uptake during exercise single photon emission computed tomography imaging. Am Heart J 130: 367–373 (1995).

    Google Scholar 

  130. D. Jain, B. Thompson, F. J. Wackers, and B. L. Zaret, Relevance of increased lung thallium uptake on stress imaging in patients with unstable angina and non-Q wave myocardial infarction: results of the Thrombolysis in Myocardial Infarction (TIMI)-IIIB Study. J Am Coll Cardiol 30: 421–429 (1997).

    Google Scholar 

  131. R. A. Vaccarino, L. L. Johnson, M. L. Antunes, et al., Thallium-201 lung uptake and peak treadmill exercise first-pass ejection fraction. Am Heart J 129: 320–329 (1995).

    Google Scholar 

  132. C. Bacher-Stier, T. Sharir, P. B. Kavanagh, et al., Postexercise lung uptake of 99mTc-sestamibi determined by a new automatic technique: validation and application in detection of severe and extensive coronary artery disease and reduced left ventricular function. J Nucl Med 41: 1190–1197 (2000).

    Google Scholar 

  133. C. L. Hansen, R. Sangrigoli, E. Nkadi, and M. Kramer, Comparison of pulmonary uptake with transient cavity dilation after exercise thallium-201 perfusion imaging. J Am Coll Cardiol 33: 1323–1327 (1999).

    Google Scholar 

  134. C._B. Higgins, Which standard has the gold? [editorial; comment]. J Am Coll Cardiol 19: 1608–1609 (1992).

    Google Scholar 

  135. T. Mochizuki, K. Murase, H. Tanaka, et al., Assessment of left ventricular volume using ECG-gated SPECT with technetium-99m-MIBI and technetium-99m-tetrofosmin. J Nucl Med 38: 53–57 (1997).

    Google Scholar 

  136. M. Maytin, and W. Colucci, Molecular and cellular mechanisms of myocardial remodeling. J Nucl Cardiol 9: 319–327 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Germano, G. (2006). Quantitative Analysis in Myocardial SPECT Imaging. In: Zaidi, H. (eds) Quantitative Analysis in Nuclear Medicine Imaging. Springer, Boston, MA. https://doi.org/10.1007/0-387-25444-7_15

Download citation

Publish with us

Policies and ethics