Skip to main content

Attenuation Correction Strategies in Emission Tomography

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger M. J. and Hubbell, J. H., XCOM: Photon cross sections on a personal computer. National Bureau of Standards (US); Report No. NBSIR 87-3597, 1987.

    Google Scholar 

  2. ICRU, Tissue substitutes in radiation dosimetry and measurement. International Commission on Radiological Units and Measurements; Report No. 44, 1989.

    Google Scholar 

  3. Wackers F. J. T., Should SPET attenuation correction be more widely employed in routine clinical practice? Eur J Nucl Med 29: 412–415 (2002).

    Article  Google Scholar 

  4. Ficaro E. P., Should SPET attenuation correction be more widely employed in routine clinical practice? Eur J Nucl Med 29: 409–412 (2002).

    Article  Google Scholar 

  5. Hendel R. C., Corbett, J. R., Cullom, S. J. et al., The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 9: 135–143 (2002).

    Article  Google Scholar 

  6. Bengel F. M., Ziegler, S. I., Avril, N. et al., Whole-body positron emission tomography in clinical oncology: comparison between attenuation-corrected and uncorrected images. Eur J Nucl Med 24: 1091–1098 (1997).

    Google Scholar 

  7. Wahl R. L., To AC or not to AC: that is the question. J Nucl Med 40: 2025–2028 (1999).

    Google Scholar 

  8. Bedigian M. P., Benard, F., Smith, R. J. et al., Whole-body positron emission tomography for oncology imaging using singles transmission scanning with segmentation and ordered subsets-expectation maximization (OS-EM) reconstruction. Eur J Nucl Med 25: 659–661 (1998).

    Google Scholar 

  9. Larsson S. A., Gamma camera emission tomography: development and properties of a multi-sectional emission computed tomography system. Acta Radiol Suppl 363: 1–75 (1980).

    Google Scholar 

  10. Ben Younes R., Mas, J. and Bidet, R., A fully automated contour detection algorithm the preliminary step for scatter and attenuation compensation in SPECT. Eur J Nucl Med 14: 586–589 (1988).

    Article  Google Scholar 

  11. Wallis J. W., Miller, T. R. and Koppel, P., Attenuation correction in cardiac SPECT without a transmission measurement. J Nucl Med 36: 506–512 (1995).

    Google Scholar 

  12. Macey D. J., DeNardo, G. L. and DeNardo, S. J., Comparison of three boundary detection methods for SPECT using Compton scattered photons. J Nucl Med 29: 203–207 (1988).

    Google Scholar 

  13. Bergstrom M., Litton, J., Eriksson, L. et al., Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J Comput Assist Tomogr 6: 365–372 (1982).

    Article  Google Scholar 

  14. Hosoba M., Wani, H., Toyama, H. et al., Automated body contour detection in SPECT: effects on quantitative studies. J Nucl Med 27: 1184–1191 (1986).

    Google Scholar 

  15. Tomitani T., An edge detection algorithm for attenuation correction in emission CT. IEEE Trans Nucl Sci 34: 309–312 (1987).

    ADS  Google Scholar 

  16. Herbert T. J., Gopal, S. S. and Murphy, P., Fully automated optimization algorithm for determining the 3-D patient contour from photopeak projection data in SPECT. IEEE Trans Med Imaging 14: 122–131 (1995).

    Article  Google Scholar 

  17. Madsen M. T., Kirchner, P. T., Edlin, J. P. et al., An emission-based technique for obtaining attenuation correction data for myocardial SPECT studies. Nucl Med Commun 14: 689–695 (1993).

    Google Scholar 

  18. Pan T. S., King, M. A., Luo, D. S. et al., Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol 4: 42–51 (1997).

    Article  Google Scholar 

  19. Fleming J. S., Technique for the use of standard outlines for attenuation correction and quantification in SPECT. Nucl Med Commun 11: 685–696 (1990).

    Google Scholar 

  20. Weinzapfel B. T. and Hutchins, G. D., Automated PET attenuation correction model for functional brain imaging. J Nucl Med 42: 483–491 (2001).

    Google Scholar 

  21. Watabe H., Sato, N., Deloar, H. M. et al., “Acquisition of attenuation map for brain PET study using optical tracking system” Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference., San Diego, CA, Vol. 3; pp 1458–1461 (2001).

    Google Scholar 

  22. Zaidi H., Montandon, M.-L. and Slosman, D. O., Attenuation compensation in cerebral 3D PET: effect of the attenuation map on absolute and relative quantitation. Eur J Nucl Med Mol Imaging 31: 52–63 (2004).

    Article  Google Scholar 

  23. Hooper P. K., Meikle, S. R., Eberl, S. et al., Validation of post-injection transmission measurements for attenuation correction in neurological FDG-PET studies. J Nucl Med 37: 128–136 (1996).

    Google Scholar 

  24. Licho R., Glick, S. J., Xia, W. et al., Attenuation compensation in 99mTc SPECT brain imaging: a comparison of the use of attenuation maps derived from transmission versus emission data in normal scans. J Nucl Med 40: 456–463 (1999).

    Google Scholar 

  25. Van Laere K., Koole, M., Versijpt, J. et al., Non-uniform versus uniform attenuation correction in brain perfusion SPET of healthy volunteers. Eur J Nucl Med 28: 90–98 (2001).

    Article  Google Scholar 

  26. Zaidi H. and Montandon, M.-L., Which attenuation coefficient to use in combined attenuation and scatter corrections for quantitative brain SPECT? Eur J Nucl Med 29: 967–969 (2002).

    Article  Google Scholar 

  27. Kemp B. J., Prato, F. S., Dean, G. W. et al., Correction for attenuation in technetium-99m-HMPAO SPECT brain imaging. J Nucl Med 33: 1875–1880 (1992).

    Google Scholar 

  28. Stodilka R. Z., Kemp, B. J., Prato, F. S. et al., Importance of bone attenuation in brain SPECT quantification. J Nucl Med 39: 190–197 (1998).

    Google Scholar 

  29. Arlig A., Gustafsson, A., Jacobsson, L. et al., Attenuation correction in quantitative SPECT of cerebral blood flow: a Monte Carlo study. Phys Med Biol 45: 3847–3859 (2000).

    Article  Google Scholar 

  30. Van Laere K., Koole, M., Kauppinen, T. et al., Non-uniform transmission in brain SPECT using 201Tl, 153Gd, and 99mTc static line sources: anthropomorphic dosimetry studies and influence on brain quantification. J Nucl Med 41: 2051–2062 (2000).

    Google Scholar 

  31. Montandon M.-L., Slosman, D. O. and Zaidi, H., Assessment of the impact of model-based scatter correction on 18F-[FDG] 3D brain PET in healthy subjects using statistical parametric mapping. Neuroimage 20: 1848–1856 (2003).

    Article  Google Scholar 

  32. Censor Y., Gustafson, D., Lent, A. et al., A new approach to the emission computerized tomography problem: simultaneous calculation of attenuation and activity coefficients. IEEE Trans Nucl Sci 26: 2275–2279 (1979).

    Google Scholar 

  33. Nuyts J., Dupont, P., Stroobants, S. et al., Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging 18: 393–403 (1999).

    Article  Google Scholar 

  34. Krol A., Bowsher, J. E., Manglos, S. H. et al., An EM algorithm for estimating SPECT emission and transmission parameters from emissions data only. IEEE Trans Med Imaging 20: 218–232 (2001).

    Article  Google Scholar 

  35. Kaplan M. S., Haynor, D. R. and Vija, H., A differential attenuation method for simultaneous estimation of SPECT activity and attenuation distributions. IEEE Trans Nucl Sci 46: 535–541 (1999).

    Article  ADS  Google Scholar 

  36. Dicken V., A new approach towards simultaneous activity and attenuation reconstruction in emission tomography. Inverse Problems 15: 931–960 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Madsen M. T. and Lee, J. R., “Emission based attenuation correction of PET images of the thorax.” Proc. 1999 IEEE Nuclear Science Symposium, Seattle, WA, Vol. 2; pp 967–971 (1999).

    Google Scholar 

  38. Bronnikov A. V., Numerical solution of the identification problem for the attenuated Radon transform. Inverse Problems 15: 1315–1324 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Bailey D. L., Transmission scanning in emission tomography. Eur J Nucl Med 25: 774–787 (1998).

    Article  Google Scholar 

  40. Rowell N. P., Glaholm, J., Flower, M. A. et al., Anatomically derived attenuation coefficients for use in quantitative single photon emission tomography studies of the thorax. Eur J Nucl Med 19: 36–40 (1992).

    Article  Google Scholar 

  41. Zaidi H., Montandon, M.-L. and Slosman, D. O., Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 30: 937–948 (2003).

    Article  Google Scholar 

  42. Koral K. F., Zasadny, K. R., Kessler, M. L. et al., CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients. J Nucl Med 35: 1714–1720 (1994).

    Google Scholar 

  43. Fleming J. S., A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 10: 83–97 (1989).

    Google Scholar 

  44. Kinahan P. E., Townsend, D. W., Beyer, T. et al., Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25: 2046–2053 (1998).

    Article  Google Scholar 

  45. Nickoloff E. L., Perman, W. H., Esser, P. D. et al., Left ventricular volume: physical basis for attenuation corrections in radionuclide determinations. Radiology 152: 511–515 (1984).

    Google Scholar 

  46. Bocher M., Balan, A., Krausz, Y. et al., Gamma camera-mounted anatomical X-ray tomography: technology, system characteristics and first images. Eur J Nucl Med 27: 619–627 (2000).

    Article  Google Scholar 

  47. Patton J. A., Delbeke, D. and Sandler, M. P., Image fusion using an integrated, dual-head coincidence camera with X-ray tube-based attenuation maps. J Nucl Med 41: 1364–1368 (2000).

    Google Scholar 

  48. Kalki K., Blankespoor, S. C., Brown, J. K. et al., Myocardial perfusion imaging with a combined x-ray CT and SPECT system. J Nucl Med 38: 1535–1540 (1997).

    Google Scholar 

  49. Beyer T., Townsend, D. W., Brun, T. et al., A combined PET/CT scanner for clinical oncology. J Nucl Med 41: 1369–1379 (2000).

    Google Scholar 

  50. Mayneord W. V., The Radiography of the human body with radioactive isotopes. Br J Radiol 25: 517–525 (1952).

    Article  Google Scholar 

  51. Kuhl D. E., Hale, J. and Eaton, W. L., Transmission scanning: a useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology 87: 278–284 (1966).

    Google Scholar 

  52. Watson C. C., Schaefer, A., Luk, W. K. et al., Clinical evaluation of single-photon attenuation correction for 3D whole-body PET. IEEE Trans Nucl Sci 46: 1024–1031 (1999).

    Article  ADS  Google Scholar 

  53. Zaidi H., Laemmli, C., Allaoua, M. et al., Optimizing attenuation correction in clinical cerebral 3D PET: which method to use? [abstract]. J Nucl Med 42: P195–196 (2001).

    Google Scholar 

  54. Tung C.-H., Gullberg, G. T., Zeng, G. L. et al., Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 39: 1134–1143 (1992).

    Article  ADS  Google Scholar 

  55. Watson C. C., Eriksson, L., Casey, M. E. et al., Design and performance of collimated coincidence point sources for simultaneous transmission measurements in 3-D PET. IEEE Trans Nucl Sci 48: 673–679 (2001).

    Article  ADS  Google Scholar 

  56. Smith R. J., Karp, J. S., Muehllehner, G. et al., Singles transmission scans performed post-injection for quantitative whole body PET imaging. IEEE Trans Nucl Sci 44: 1329–1335 (1997).

    Article  ADS  Google Scholar 

  57. Ficaro E. P., Fessler, J. A., Rogers, W. L. et al., Comparison of americium-241 and technetium-99m as transmission sources for attenuation correction of thallium-201 SPECT imaging of the heart. J Nucl Med 35: 652–663 (1994).

    Google Scholar 

  58. Bailey D. L., Hutton, B. F. and Walker, P. J., Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 28: 844–851 (1987).

    Google Scholar 

  59. Gilland D. R., Jaszczak, R. J., Greer, K. L. et al., Transmission imaging for non-uniform attenuation correction using a three-headed SPECT camera. J Nucl Med 39: 1105–1110 (1998).

    Google Scholar 

  60. King M. A., Tsui, B. M. and Pan, T. S., Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 2: 513–524 (1995).

    Article  Google Scholar 

  61. Turkington T. G., Attenuation correction in hybrid positron emission tomography. Semin Nucl Med 30: 255–267 (2000).

    Article  Google Scholar 

  62. Karp J. S., Muehllehner, G., Qu, H. et al., Singles transmission in volume-imaging PET with a 137Cs source. Phys Med Biol 40: 929–944 (1995).

    Article  Google Scholar 

  63. Zaidi H. and Hasegawa, B. H., Determination of the attenuation map in emission tomography. J Nucl Med 44: 291–315 (2003).

    Google Scholar 

  64. Cao Z. and Tsui, B. M., Performance characteristics of transmission imaging using a uniform sheet source with parallel-hole collimation. Med Phys 19: 1205–1212 (1992).

    Article  Google Scholar 

  65. Ichihara T., Motomura, N., Ogawa, K. et al., Evaluation of SPET quantification of simultaneous emission and transmission imaging of the brain using a multi-detector SPET system with the TEW scatter compensation method and fan-beam collimation. Eur J Nucl Med 23: 1292–1299 (1996).

    Article  Google Scholar 

  66. Tan P., Bailey, D. L., Meikle, S. R. et al., A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 34: 1752–1760 (1993).

    Google Scholar 

  67. Celler A., Sitek, A., Stoub, E. et al., Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies. J Nucl Med 39: 2183–2189 (1998).

    Google Scholar 

  68. Beekman F. J., Kamphuis, C., Hutton, B. F. et al., Half-fanbeam collimators combined with scanning point sources for simultaneous emission-transmission imaging. J Nucl Med 39: 1996–2003 (1998).

    Google Scholar 

  69. Zeng G. L., Gullberg, G. T., Christian, P. E. et al., Asymmetric cone-beam transmission tomography. IEEE Trans Nucl Sci 48: 117–124 (2001).

    Article  ADS  Google Scholar 

  70. Laymon C. M., Turkington, T. G., Gilland, D. R. et al., Transmission scanning system for a gamma camera coincidence scanner. J Nucl Med 41: 692–699 (2000).

    Google Scholar 

  71. Bailey D. L., Jones, W. F., Brun, T. et al., A spiral CT approach to recording accurate single photon transmission data in PET [abstract]. J Nucl Med 38: 113P (1997).

    Google Scholar 

  72. Meikle S. R., Dahlbom, M. and Cherry, S. R., Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med 34: 143–150 (1993).

    Google Scholar 

  73. Xu M., Cutler, P. and Luk, W., An adaptive local threshold segmented attenuation correction method for whole-body PET imaging. IEEE Trans Nucl Sci 43: 331–336 (1996).

    Article  ADS  Google Scholar 

  74. Bettinardi V., Pagani, E., Gilardi, M. et al., An automatic classification technique for attenuation correction in positron emission tomography. Eur J Nucl Med 26: 447–458 (1999).

    Article  Google Scholar 

  75. Zaidi H., Diaz-Gomez, M., Boudraa, A. E. et al., Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging. Phys Med Biol 47: 1143–1160 (2002).

    Article  Google Scholar 

  76. Pal N. R. and Bezdek, J. C., On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3: 370–379 (1995).

    Article  Google Scholar 

  77. Tai Y.-C., Lin, K.-P., Dahlbom, M. et al., A hybrid attenuation correction technique to compensate for lung density in 3-D total body PET. IEEE Trans Nucl Sci 43: 323–330 (1996).

    Article  ADS  Google Scholar 

  78. Yu S. K. and Nahmias, C., Segmented attenuation correction using artificial neural networks in positron tomography. Phys Med Biol 41: 2189–2206 (1996).

    Article  Google Scholar 

  79. Riddell C., Brigger, P., Carson, R. E. et al., The watershed algorithm: a method to segment noisy PET transmission images. IEEE Trans Nucl Sci 46: 713–719 (1999).

    Article  ADS  Google Scholar 

  80. Anderson J. M. M., Srinivasan, R., Mair, B. A. et al., Hidden Markov model based attenuation correction for positron emission tomography. IEEE Trans Nucl Sci 49: 2103–2111 (2002).

    Article  ADS  Google Scholar 

  81. Mumcuoglu E. U., Leahy, R., Cherry, S. R. et al., Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images. IEEE Trans Med Imaging 13: 687–701 (1994).

    Article  Google Scholar 

  82. Fessler J. A., Ficaro, E. P., Clinthorne, N. H. et al., Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction. IEEE Trans Med Imaging 16: 166–175 (1997).

    Article  Google Scholar 

  83. Alenius S., Ruotsalainen, U. and Astola, J., Attenuation correction for PET using count-limited transmission images reconstructed with median root prior. IEEE Trans Nucl Sci 46: 646–651 (1999).

    Article  ADS  Google Scholar 

  84. Kitamura K., Iida, H., Shidahara, M. et al., Noise reduction in PET attenuation correction using non-linear Gaussian filters. IEEE Trans Nucl Sci 47: 994–999 (2000).

    Article  ADS  Google Scholar 

  85. Demirkaya O., Anisotropic diffusion filtering of PET attenuation data to improve emission images. Phys Med Biol 47: N271–N278 (2002).

    Article  Google Scholar 

  86. Blankespoor S. C., Xu, X., Kaiki, K. et al., Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci 43: 2263–2274 (1996).

    Article  ADS  Google Scholar 

  87. Kinahan P. E., Hasegawa, B. H. and Beyer, T., X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33: 166–179 (2003).

    Article  Google Scholar 

  88. Damen E. M., Muller, S. H., Boersma, L. J. et al., Quantifying local lung perfusion and ventilation using correlated SPECT and CT data. J Nucl Med 35: 784–792 (1994).

    Google Scholar 

  89. Liu A., Williams, L. E. and Raubitschek, A. A., A CT assisted method for absolute quantitation of internal radioactivity. Med Phys 23: 1919–1928 (1996).

    Article  Google Scholar 

  90. McCullough E. C. and Payne, J. T., X-ray-transmission computed tomography. Med Phys 4: 85–98 (1977).

    Article  Google Scholar 

  91. Robinson P. J. and Kreel, L., Pulmonary tissue attenuation with computed tomography: comparison of inspiration and expiration scans. J Comput Assist Tomogr 3: 740–748 (1979).

    Google Scholar 

  92. Da Silva A., Tang, H., Wong, K. et al., Absolute quantification of regional myocardial uptake of 99mTc-sestamibi with SPECT: experimental validation in a porcine model. J Nucl Med 42: 772–779 (2001).

    Google Scholar 

  93. Tang T. R., “A combined X-ray CT-scintillation camera imaging system for measuring radionuclide uptake in tumors.,” PhD Thesis, University of California, Berkeley and University of California, San Francisco, 1998.

    Google Scholar 

  94. Wong K. H., “Multi-modality imaging for improved staging of prostate cancer.,” Ph.D Thesis, University of California, 2002.

    Google Scholar 

  95. Burger C., Goerres, G., Schoenes, S. et al., PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29: 922–927 (2002).

    Article  Google Scholar 

  96. Osman M. M., Cohade, C., Nakamoto, Y. et al., Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 30: 603–606 (2003).

    Article  Google Scholar 

  97. Goerres G. W., Burger, C., Kamel, E. et al., Respiration-induced attenuation artifact at PET/CT: Technical considerations. Radiology 226: 906–910 (2003).

    Google Scholar 

  98. Cohade C., Osman, M., Nakamoto, Y. et al., Initial experience with oral contrast in PET/CT: Phantom and clinical studies. J Nucl Med 44: 412–416 (2003).

    Google Scholar 

  99. Goerres G. W., Hany, T. F., Kamel, E. et al., Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med Mol Imaging 29: 367–370 (2002).

    Article  Google Scholar 

  100. Goerres G. W., Ziegler, S. I., Burger, C. et al., Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 226: 577–584 (2003).

    Google Scholar 

  101. Nakamoto Y., Chin, B. B., Kraitchman, D. L. et al., Effects of nonionic intravenous contrast agents in PET/CT imaging: phantom and canine studies. Radiology 227: 817–824 (2003).

    Google Scholar 

  102. Hutton B. F., Braun, M., Thurfjell, L. et al., Image registration: an essential tool for nuclear medicine. Eur J Nucl Med 29: 559–577 (2002).

    Article  Google Scholar 

  103. Zubal I. G., Harrell, C. R., Smith, E. O. et al., Computerized 3-dimensional segmented human anatomy. Med Phys 21: 299–302 (1994).

    Article  Google Scholar 

  104. Stodilka R. Z., Kemp, B. J., Prato, F. S. et al., Scatter and attenuation correction for brain SPECT using attenuation distributions inferred from a head atlas. J Nucl Med 41: 1569–1578 (2000).

    Google Scholar 

  105. Montandon M.-L., and Zaidi, H., Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage 25: 278–286 (2005).

    Article  Google Scholar 

  106. Shao Y., Cherry, S. R., Farahani, K. et al., Simultaneous PET and MR imaging. Phys Med Biol 10: 1965–1970 (1997).

    Article  Google Scholar 

  107. Slates R., Cherry, S., Boutefnouchet, A. et al., Design of a small animal MR compatible PET scanner. IEEE Trans Nucl Sci 46: 565–570 (1999).

    Article  ADS  Google Scholar 

  108. Michel C., Sibomana, M., Boi, A. et al., “Preserving Poisson characteristics of PET data with weighted OSEM reconstruction” Conf. Rec. of IEEE Nuclear Science Symposium and Medical Imaging Conference, Totonto, ON, Vol. 2; pp 1323–1329 (1998).

    Article  Google Scholar 

  109. Rosenthal M. S., Cullom, J., Hawkins, W. et al., Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 36: 1489–513 (1995).

    Google Scholar 

  110. Zaidi H., Quantitative SPECT: Recent developments in detector response, attenuation and scatter correction techniques. Phys Medica 12: 101–117 (1996).

    Google Scholar 

  111. Chang L. T., A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 25: 638–643 (1978).

    ADS  Google Scholar 

  112. Hoffman E. J., Huang, S. C. and Phelps, M. E., Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3: 299–308 (1979).

    Google Scholar 

  113. Huang S. C., Hoffman, E. J., Phelps, M. E. et al., Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr 3: 804–814 (1979).

    Article  Google Scholar 

  114. Zeng G. L., Gullberg, G. T., Tsui, B. M. W. et al., Three-dimensional iterative reconstruction algorithms with attenuation and geometric point response correction. IEEE Trans Nucl Sci 38: 693–701 (1991).

    Article  ADS  Google Scholar 

  115. Galt J. R., Cullom, S. J. and Garcia, E. V., SPECT quantification: a simplified method of attenuation and scatter correction for cardiac imaging. J Nucl Med 33: 2232–2237 (1992).

    Google Scholar 

  116. Tsui B. M. W., Zhao, X., Frey, E. et al., Quantitative single-photon emission computed tomography: Basics and clinical considerations. Semin Nucl Med 24: 38–65 (1994).

    Google Scholar 

  117. Chinn G. and Huang, S. C., A general class of preconditioners for statistical iterative reconstruction of emission computed tomography. IEEE Trans Med Imaging 16: 1–10 (1997).

    Article  Google Scholar 

  118. Shepp L. A. and Vardi, Y., Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1: 113–122 (1982).

    Article  Google Scholar 

  119. Lange K. and Carson, R., EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomog 8: 306–316 (1984).

    Google Scholar 

  120. Gullberg G. T., Huesman, R. H., Malko, J. A. et al., An attenuated projector-backprojector for iterative SPECT reconstruction. Phys Med Biol 30: 799–816 (1985).

    Article  Google Scholar 

  121. Almeida P., Bendriem, B., de Dreuille, O. et al., Dosimetry of transmission measurements in nuclear medicine: a study using anthropomorphic phantoms and thermoluminescent dosimeters. Eur J Nucl Med 25: 1435–1441 (1998).

    Article  Google Scholar 

  122. Schaefer A., Seifert, H., Donsch, P. et al., Radiation exposure to patients caused by single-photon transmission measurement in PET. [German] Nuklearmedizin 39: 204–208 (2000).

    Google Scholar 

  123. Wu T.-H., Huang, Y.-H., Lee, J. S. et al., Radiation exposure during transmission measurements: comparison between CT-and germanium-based techniques with a current PET scanner. Eur J Nucl Med Mol Imaging 31: 38–43 (2004).

    Article  Google Scholar 

  124. Meikle S. R., Bailey, D. L., Hooper, P. K. et al., Simultaneous emission and transmission measurements for attenuation correction in whole-body PET. J Nucl Med 36: 1680–1688 (1995).

    Google Scholar 

  125. Bronnikov A. V., Reconstruction of attenuation map using discrete consistency conditions. IEEE Trans Med Imaging 19: 451–462 (2000).

    Article  Google Scholar 

  126. Da Silva A. J., Tang, H. R., Wong, K. H. et al., Absolute in vivo quantitation of myocardial activity. IEEE Trans Nucl Sci 47: 1093–1098 (2000).

    Article  ADS  Google Scholar 

  127. Weber W. A., Neverve, J., Sklarek, J. et al., Imaging of lung cancer with fluorine-18 fluorodeoxyglucose: comparison of a dual-head gamma camera in coincidence mode with a full-ring positron emission tomography system. Eur J Nucl Med 26: 388–395 (1999).

    Article  Google Scholar 

  128. Mesina C. T., Boellaard, R., van den Heuvel, O. A. et al., Effects of attenuation correction and reconstruction method on PET activation studies. Neuroimage 20: 898–908 (2003).

    Article  Google Scholar 

  129. Farquhar T. H., Llacer, J., Hoh, C. K. et al., ROC and localization ROC analyses of lesion detection in whole-body FDG PET: effects of acquisition mode, attenuation correction and reconstruction algorithm. J Nucl Med 40: 2043–2052 (1999).

    Google Scholar 

  130. Natterer F., Determination of tissue attenuation in emission tomography of optically dense media. Inverse Problems 9: 731–736 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  131. Welch A., Clack, R., Natterer, F. et al., Toward accurate attenuation correction in SPECT without transmission measurements. IEEE Trans Med Imaging 16: 532–541 (1997).

    Article  Google Scholar 

  132. Welch A., Campbell, C., Clackdoyle, R. et al., Attenuation correction in PET using consistency information. IEEE Trans Nucl Sci 45: 3134–3141 (1998).

    Article  ADS  Google Scholar 

  133. Bromiley A., Welch, A., Chilcott, F. et al., Attenuation correction in PET using consistency conditions and a three-dimensional template. IEEE Trans Nucl Sci 48: 1371–1377 (2001).

    Article  ADS  Google Scholar 

  134. Welch A., Hallett, W., Marsden, P. et al., Accurate attenuation correction in PET using short transmission scans and consistency information. IEEE Trans Nucl Sci 50: 427–432 (2003).

    Article  ADS  Google Scholar 

  135. Panin V. Y., Kehren, F., Hamill, J. et al., Application of discrete data consistency conditions for selecting regularization parameters in PET attenuation map reconstruction. Phys Med Biol 49: 2425–2436 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Zaidi, H., Hasegawa, B.H. (2006). Attenuation Correction Strategies in Emission Tomography. In: Zaidi, H. (eds) Quantitative Analysis in Nuclear Medicine Imaging. Springer, Boston, MA. https://doi.org/10.1007/0-387-25444-7_6

Download citation

Publish with us

Policies and ethics