Skip to main content

The B-Cell System in Inflammatory Bowel Disease

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 579))

Abstract

Secretory immunity is the best-defined part of the mucosal immune system. This adaptive humoral defense mechanism depends on a fine-tuned cooperation between secretory epithelia and local plasma cells. Such mucosal immunocytes produce preferentially dimers and larger polymers of immunoglobulin A (collectively called pIgA), which contain J chain and therefore can bind to the epithelial secretory component (SC). This transmembrane glycoprotein functions as pIg receptor (pIgR) that also translocates pentameric IgM to the epithelial surface. B cells with a high level of J-chain expression and pIg-pIgR interactions at mucosal effector sites are thus necessary for the generation of secretory antibodies (SIgA and SIgM).

Secretory antibodies perform immune exclusion in a first-line defense, thereby counteracting microbial colonization and mucosal penetration of soluble antigens. However, local production of pIgA is significantly down-regulated in inflammatory bowel disease (IBD), as revealed by strikingly decreased J-chain expression. Although the total increase of the immunocyte population in IBD lesions probably compensates for the relatively reduced pIgA production, decreased pIgR/SC expression in regenerating and dysplastic epithelium signifies that the SIgA system is topically deficient. There is, moreover, a significant shift from IgA2 to IgA1 production, the latter subclass being less resistant to proteolytic degradation. These changes—together with activation of mucosal macrophages and a dramatic increase of IgG-producing cells—may reflect local establishment of a second defense line which, however, is unsuccessful in its attempt to eliminate antigens derived from the indigenous microbial flora. Such a ‘frustrated’ local humoral immune system results in altered immunological homeostasis and jeopardized mucosal integrity.

Complement activation observed in relation to epithelium-bound IgG1 in ulcerative colitis indicates, moreover, that the surface epithelium is subjected to immunological attack by an autoimmune reaction. These luminal deposits regularly contain terminal cytotoxic complement, and often also C3b as a sign of persistent activation. Comparison of identical twins, discordant with regard to ulcerative colitis, suggests that the markedly skewed local IgG1 response seen in this IBD entity may be genetically determined.

The initial event(s) eliciting B-cell driven immunopathology in IBD remains unknown. Abrogation of oral tolerance to certain antigens from commensal bacteria has been suggested as a putative early mechanism, and lymphoid neogenesis and hyperplasia in the lesions most likely signify massive microbial overstimulation of the local B-cell system. Such ectopic lymphoid microcompartments may contribute substantially to the proinflammatory systemic-type of B-cell responses occurring in established IBD lesions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandtzaeg P, Halstensen TS, Kett K et al. Immunobiology and immunopathology of human gut mucosa: Humoral immunity and intraepithelial lymphocytes. Gastroenterology 1989; 97:1562–1584.

    PubMed  CAS  Google Scholar 

  2. Brandtzaeg, Farstad IN, Johansen F-E et al. The B-cell system of human mucosae and exocrine glands. Immunol Rev 1999; 171:45–87.

    PubMed  CAS  Google Scholar 

  3. Brandtzaeg P, Baekkevold ES, Farstad IN et al. Regional specialization in the mucosal immune system: What happens in the microcompartments? Immunol Today 1999; 20:141–151.

    PubMed  CAS  Google Scholar 

  4. Brandtzaeg P, Farstad IN, Haraldsen G. Regional specialization in the mucosal immune system: Primed cells do not always home along the same track. Immunol Today 1999; 20:267–277.

    PubMed  CAS  Google Scholar 

  5. Kunkel EJ, Butcher EC. Chemokines and the tissue-specific migration of lymphocytes. Immunity 2002; 16:1–4.

    PubMed  CAS  Google Scholar 

  6. Brandtzaeg P, Prydz H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 1984; 311:71–73.

    PubMed  CAS  Google Scholar 

  7. Johansen F-E, Braathen R, Brandtzaeg P. The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J Immunol 2001; 167:5185–5192.

    PubMed  CAS  Google Scholar 

  8. Brandtzaeg P, Baklien K. Immunohistochemical studies of the formation and epithelial transport of immunoglobulins in normal and diseased human intestinal mucosa. Scand J Gastroenterol 1976; 11(Suppl 36):1–45.

    Google Scholar 

  9. Norderhaug IN, Johansen F-E, Schjerven H et al. Regulation of the formation and external transport of secretory immunoglobulins. Crit Rev Immunol 1999; 19:481–508.

    PubMed  CAS  Google Scholar 

  10. Persson CG, Erjefalt JS, Greiff L et al. Contribution of plasma-derived molecules to mucosal immune defence, disease and repair in the airways. Scand J Immunol 1998; 47:302–313.

    PubMed  CAS  Google Scholar 

  11. Bouvet JP, Pires R, Iscaki S et al. Nonimmune macromolecular complexes of Ig in human gut lumen. Probable enhancement of antibody functions. J Immunol 1993; 151:2562–2571.

    PubMed  CAS  Google Scholar 

  12. Russell MW, Reinholdt J, Kilian M. Anti-inflammatory activity of human IgA antibodies and their Fab α fragments: Inhibition of IgG-mediated complement activation. Eur J Immunol 1989; 19:2243–2249.

    PubMed  CAS  Google Scholar 

  13. Brandtzaeg P, Baklien K, Bjerke K et al. Nature and properties of the human gastrointestinal immune system. In: Miller K, Nicklin S, eds. Immunology of the Gastrointestinal Tract. Boca Raton, Florida: CRC Press, 1987:1:1–85.

    Google Scholar 

  14. Brandtzaeg P. Mechanisms of gastrointestinal reactions to food. Environ. Toxicol Pharmacol 1997; 4:9–24.

    PubMed  CAS  Google Scholar 

  15. Mazanec MB, Nedrud JG, Kaetzel CS et al. A three-tiered view of the role of IgA in mucosal defense. Immunol Today 1993; 14:430–435.

    PubMed  CAS  Google Scholar 

  16. Robinson JK, Blanchard TG, Levine AD et al. A mucosal IgA-mediated excretory immune system in vivo. J Immunol 2001; 166:3688–3692.

    PubMed  CAS  Google Scholar 

  17. Burns JW, Siadat-Pajouh M, Krishnaney AA et al. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science 1996; 272:104–107.

    PubMed  CAS  Google Scholar 

  18. Wolf HM, Fischer MB, Puhringer H et al. Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor-α, interleukin-6) in human monocytes. Blood 1994; 83:1278–1288.

    PubMed  CAS  Google Scholar 

  19. Smith PD, Smythies LE, Mosteller-Barnum M et al. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS-and IgA-mediated activities. J Immunol 2001; 167:2651–2656.

    PubMed  CAS  Google Scholar 

  20. Hamre R, Farstad IN, Brandtzaeg P et al. Expression and modulation of the human immunoglobulin A Fc receptor (CD89) and the FcR γ chain on myeloid cells in blood and tissue. Scand J Immunol 2003; 57:506–16.

    PubMed  CAS  Google Scholar 

  21. Wolf HM, Vogel E, Fischer MB et al. Inhibition of receptor-dependent and receptor-independent generation of the respiratory burst in human neutrophils and monocytes by human serum IgA. Pediatr Res 1994; 36:235–243.

    PubMed  CAS  Google Scholar 

  22. Deviere J, Vaerman JP, Content J et al. IgA triggers tumor necrosis factor α secretion by monocytes: A study in normal subjects and patients with alcoholic cirrhosis. Hepatology 1991; 13:670–675.

    PubMed  CAS  Google Scholar 

  23. Lamkhioued B, Gounni AS, Gruart V et al. Human eosinophils express a receptor for secretory component. Role in secretory IgA-dependent activation. Eur J Immunol 1995; 25:117–125.

    PubMed  CAS  Google Scholar 

  24. Motegi Y, Kita H. Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils. J Immunol 1998; 161:4340–4346.

    PubMed  CAS  Google Scholar 

  25. Rugtveit J, Bakka A, Brandtzaeg P. Differential distribution of B7.1 (CD80) and B7.2 (CD86) costimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clin Exp Immunol 1997; 110:104–113.

    PubMed  CAS  Google Scholar 

  26. Hausmann M, Kiessling S, Mestermann S et al. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 2002; 122:1987–2000.

    PubMed  CAS  Google Scholar 

  27. Brandtzaeg P, Halstensen TS, Kett K. Immunopathology of inflammatory bowel disease. In: MacDermott RP, Stenson WF, eds. Inflammatory Bowel Disease. Current Topics in Gastroenterology (Series: Zakim D, ed.). London: Elsevier, 1992:95–136.

    Google Scholar 

  28. Kleessen B, Kroesen AJ, Buhr HJ et al. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 2002; 37:1034–1041.

    PubMed  CAS  Google Scholar 

  29. Kett K, Rognum TO, Brandtzaeg P. Mucosal subclass distribution of immunoglobulin G-producing cells is different in ulcerative colitis and Crohn’s disease of the colon. Gastroenterology 1987; 93:919–924.

    PubMed  CAS  Google Scholar 

  30. Helgeland L, Tysk C, Järnerot G et al. The IgG subclass distribution in serum and rectal mucosa of monozygotic twins with or without inflammatory bowel disease. Gut 1992; 33:1358–1364.

    PubMed  CAS  Google Scholar 

  31. Brandtzaeg P, Korsrud FR. Significance of different J-chain profiles in human tissues: Generation of IgA and IgM with binding site for secretory component is related to the J-chain expressing capacity of the total local immunocyte population, including IgG-and IgD-producing cells, and depends on the clinical state of the tissue. Clin Exp Immunol 1984; 58:709–718.

    PubMed  CAS  Google Scholar 

  32. Kett K, Brandtzaeg P. Local IgA subclass alterations in ulcerative colitis and Crohn’s disease of the colon. Gut 1987; 28:1013–1021.

    PubMed  CAS  Google Scholar 

  33. Kett K, Brandtzaeg P, Fausa O. J-chain expression is more prominent in immunoglobulin A2 than in immunoglobulin A1 colonic immunocytes and is decreased in both subclasses associated with inflammatory bowel disease. Gastroenterology 1988; 94:1419–1425.

    PubMed  CAS  Google Scholar 

  34. Rognum TO, Elgjo K, Fausa O et al. Immunohistochemical evaluation of carcinoembryonic antigen, secretory component, and epithelial IgA in ulcerative colitis with dysplasia. Gut 1982; 23:123–133.

    PubMed  CAS  Google Scholar 

  35. Van Den Bogaerde J, Cahill J, Emmanuel AV et al. Gut mucosal response to food antigens in Crohn’s disease. Aliment Pharmacol Ther 2002; 16:1903–1915.

    Google Scholar 

  36. Johansen F-E, Pekna M, Norderhaug IN et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 1999; 190:915–921.

    PubMed  CAS  Google Scholar 

  37. Monteiro E, Fossey J, Shiner M et al. Antibacterial antibodies in rectal and colonic mucosa in ulcerative colitis. Lancet 1971; 1:249–250.

    PubMed  CAS  Google Scholar 

  38. Folkersen J, Sofeldt S, Svehag SE. Application of electroblotting technique to studies of the intestinal antibody response to extractable fecal antigens. Scand J Gastroenterol 1985; 20:247–253.

    PubMed  CAS  Google Scholar 

  39. Heddle RJ, La Brooy JT, Shearman DJ. Escherichia coli antibody-secreting cells in the human intestine. Clin Exp Immunol 1982; 48:469–476.

    PubMed  CAS  Google Scholar 

  40. Auer IO, Röder A, Wensinck F et al. Selected bacterial antibodies in Crohn’s disease and ulcerative colitis. Scand J Gastroenterol 1984; 18:217–223.

    Google Scholar 

  41. Howells B, Matthews N, Mayberry JF et al. Agglutinins to anaerobic bacteria in Crohn’s disease and in Indian patients with diarrhoea. J Med Microbiol 1984; 17:207–209.

    PubMed  CAS  Google Scholar 

  42. Macpherson A, Khoo UY, Forgacs I et al. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 1996; 38:365–375.

    PubMed  CAS  Google Scholar 

  43. Foo MC, Lee A. Immunological response of mice to members of the autochthonous intestinal microflora. Infect Immun 1972; 6:525–532.

    PubMed  CAS  Google Scholar 

  44. Berg RD, Savage DC. Immune responses of specific pathogen-free and gnotobiotic mice to antigens of indigenous and nonindigenous microorganisms. Infect Immun 1975; 11:320–329.

    PubMed  CAS  Google Scholar 

  45. Shroff KE, Meslin K, Cebra JJ. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun 1995; 63:3904–3913.

    PubMed  CAS  Google Scholar 

  46. MacDonald TT. Breakdown of tolerance to the intestinal bacterial flora in inflammatory bowel disease (IBD). Clin Exp Immunol 1995; 102:445–447.

    PubMed  CAS  Google Scholar 

  47. Duchmann R, Kaiser I, Hermann E et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol 1995; 102:448–455.

    PubMed  CAS  Google Scholar 

  48. Duchmann R, Neurath MF, Meyer zum Buschenfelde KH. Responses to self and nonself intestinal microflora in health and inflammatory bowel disease. Res Immunol 1997; 148:589–594.

    PubMed  CAS  Google Scholar 

  49. van der Waaij LA, Limburg PC, Mesander G et al. In vivo IgA coating of anaerobic bacteria in human faeces. Gut 1996; 38:348–354.

    PubMed  Google Scholar 

  50. van der Waaij LA, Kroese FGM, Jansen PLM et al. IBD patients have a very high percentage of colonic anaerobic bacteria that are in vivo coated with IgA, IgG or IgM, irrespective of clinical activity. Gut 1997; 41(Suppl 3):A117.

    Google Scholar 

  51. Landers CJ, Cohavy O, Misra R et al. Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto-and microbial antigens. Gastroenterology 2002; 123:689–699.

    PubMed  CAS  Google Scholar 

  52. Chao LP, Steele J, Rodrigues C et al. Specificity of antibodies secreted by hybridomas generated from activated B cells in the mesenteric lymph nodes of patients with inflammatory bowel disease. Gut 1988; 29:35–40.

    PubMed  CAS  Google Scholar 

  53. Hibi T, Ohara M, Toda K et al. In vitro anticolon antibody production by mucosal or peripheral blood lymphocytes from patients with ulcerative colitis. Gut 1990; 31:1371–1376.

    PubMed  CAS  Google Scholar 

  54. Sadlack B, Merz H, Schorle H et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75:253–261.

    PubMed  CAS  Google Scholar 

  55. Brandtzaeg P. Autoimmunity and ulcerative colitis: Can two enigmas make sense together? (Editorial). Gastroenterology 1995; 109:307–312.

    PubMed  CAS  Google Scholar 

  56. Biancone L, Mandal A, Yang H et al. Production of immunoglobulin G and G1 antibodies to cytoskeletal protein by lamina propria cells in ulcerative colitis. Gastroenterology 1995; 109:3–12.

    PubMed  CAS  Google Scholar 

  57. Geng X, Biancone L, Dai HH et al. Tropomyosin isoforms in intestinal mucosa: Production of autoantibodies to tropomyosin isoforms in ulcerative colitis. Gastroenterology 1998; 114:912–922.

    PubMed  CAS  Google Scholar 

  58. Onuma EK, Amenta PS, Ramaswamy K et al. Autoimmunity in ulcerative colitis (UC): A predominant colonic mucosal B cell response against human tropomyosin isoform 5. Clin Exp Immunol 2000; 121:466–471.

    PubMed  CAS  Google Scholar 

  59. Das KM. Relationship of extraintestinal involvements in inflammatory bowel disease: New insights into autoimmune pathogenesis. Dig Dis Sci 1999; 44:1–13.

    PubMed  CAS  Google Scholar 

  60. Das KM, Dasgupta A, Mandal A et al. Autoimmunity to cytoskeletal protein tropomyosin. A clue to the pathogenetic mechanism for ulcerative colitis. J Immunol 1993; 150:2487–2493.

    PubMed  CAS  Google Scholar 

  61. Hassan T, Kanisawa Y, Meyers S et al. Expression of a unique protein on colon cancer cells that reacts with a novel monoclonal antibody and ulcerative colitis serum. Clin Exp Immunol 1995; 100:457–462.

    PubMed  CAS  Google Scholar 

  62. Dunn-Walters DK, Boursier L, Hackett M et al. Biased JH usage in plasma cell immunoglobulin gene sequences from colonic mucosa in ulcerative colitis but not in Crohn’s disease. Gut 1999; 44:382–386.

    PubMed  CAS  Google Scholar 

  63. Inoue N, Watanabe M, Sato T et al. Restricted V(H) gene usage in lamina propria B cells producting anticolon antibody from patients with ulcerative colitis. Gastroenterology 2001; 121:15–23.

    PubMed  CAS  Google Scholar 

  64. Halstensen TS, Mollnes TE, Garred P et al. Epithelial deposition of immunoglobulin G1 and activated complement (C3b and terminal complement complex) in ulcerative colitis. Gastroenterology 1990; 98:1264–1271.

    PubMed  CAS  Google Scholar 

  65. Halstensen TS, Mollnes TE, Garred P et al. Surface epithelium related activation of complement differs in Crohn’s disease and ulcerative colitis. Gut 1992; 33:902–908.

    PubMed  CAS  Google Scholar 

  66. Halstensen TS, Das K, Brandtzaeg P. Epithelial deposits of immunoglobulin G1 and activated complement colocalise with the Mr 40 kD putative autoantigen in ulcerative colitis. Gut 1993; 34:650–657.

    PubMed  CAS  Google Scholar 

  67. Berstad AE, Brandtzaeg P. Expression of cell membrane complement regulatory glycoproteins along the normal and diseased human gastrointestinal tract. Gut 1998; 42:522–529.

    PubMed  CAS  Google Scholar 

  68. Ueki T, Mizuno M, Uesu T et al. Distribution of activated complement, C3b, and its degraded fragments, iC3b/C3dg, in the colonic mucosa of ulcerative colitis (UC). Clin Exp Immunol 1996; 104:286–292.

    PubMed  CAS  Google Scholar 

  69. Contractor NV, Bassiri H, Reya T et al. Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol 1998; 160:385–394.

    PubMed  CAS  Google Scholar 

  70. Linskens RK, Mallant-Hent RC, Groothuismink ZM et al. Evaluation of serological markers to differentiate between ulcerative colitis and Crohn’s disease: PANCA, ASCA and agglutinating antibodies to anaerobic coccoid rods. Eur J Gastroenterol Hepatol 2002; 14:1013–1018.

    PubMed  CAS  Google Scholar 

  71. Bartunkova J, Kolarova I, Sediva A et al. Antineutrophil cytoplasmic antibodies, anti-Saccharomyces cerevisiae antibodies, and specific IgE to food allergens in children with inflammatory bowel diseases. Clin Immunol 2002; 102:162–168.

    PubMed  CAS  Google Scholar 

  72. Seibold F, Slametschka D, Gregor M et al. Neutrophil autoantibodies: A genetic marker in primary sclerosing cholangitis and ulcerative colitis. Gastroenterology 1994; 107:532–536.

    PubMed  CAS  Google Scholar 

  73. Joossens S, Reinisch W, Vermeire S et al. The value of serologic markers in indeterminate colitis: A prospective follow-up study. Gastroenterology 2002; 122:1242–1247.

    PubMed  Google Scholar 

  74. Targan SR, Landers CJ, Cobb L et al. Perinuclear anti-neutrophil cytoplasmic antibodies are spontaneously produced by mucosal B cells of ulcerative colitis patients. J Immunol 1995; 155:3262–3267.

    PubMed  CAS  Google Scholar 

  75. Gilat T, Hacohen D, Lilos P et al. Childhood factors in ulcerative colitis and Crohn’s disease. An international cooperative study. Scand J Gastroenterol 1987; 22:1009–1024.

    PubMed  CAS  Google Scholar 

  76. Rutgeerts P, D’Haens G, Hiele M et al. Appendectomy protects against ulcerative colitis. Gastroenterology 1994; 106:1251–1253.

    PubMed  CAS  Google Scholar 

  77. Smithson JE, Radford-Smith G, Jewell GP. Appendectomy and tonsillectomy in patients with inflammatory bowel disease. J Clin Gastroenterol 1995; 21:283–286.

    PubMed  CAS  Google Scholar 

  78. Mitchell SA, Thyssen M, Orchard TR et al. Cigarette smoking, appendectomy, and tonsillectomy as risk factors for the development of primary sclerosing cholangitis: A case control study. Gut 2002; 51:567–573.

    PubMed  CAS  Google Scholar 

  79. Logan R. Appendectomy and ulcerative colitis: What connection? Gastroenterology 1994; 106:1382–1384.

    PubMed  CAS  Google Scholar 

  80. Andersson RE, Olaison G, Tysk C et al. Appendectomy and protection against ulcerative colitis. N Engl J Med 2001; 344:808–814.

    PubMed  CAS  Google Scholar 

  81. Campbell DJ, Butcher EC. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 2002; 195:135–141.

    PubMed  CAS  Google Scholar 

  82. Bjerke K, Brandtzaeg P, Rognum TO. Distribution of immunoglobulin producing cells is different in normal human appendix and colon mucosa. Gut 1986; 27:667–674.

    PubMed  CAS  Google Scholar 

  83. Bjerke K, Brandtzaeg P. Terminally differentiated human intestinal B cells. J chain expression of IgA and IgG subclass-producing immunocytes in the distal ileum compared with mesenteric and peripheral lymph nodes. Clin Exp Immunol 1990; 82:411–415.

    PubMed  CAS  Google Scholar 

  84. Bjerke K, Brandtzaeg P. Immunoglobulin-and J chain-producing cells associated with lymphoid follicles in the human appendix, colon and ileum, including Peyer’s patches. Clin Exp Immunol 1986; 64:432–441.

    PubMed  CAS  Google Scholar 

  85. Mizoguchi A, Mizoguchi E, Chiba C et al. Role of appendix in the development of inflammatory bowel disease in TCR-α mutant mice. J Exp Med 1996; 184:707–715.

    PubMed  CAS  Google Scholar 

  86. Krieglstein CF, Cerwinka WH, Laroux FS et al. Role of appendix and spleen in experimental colitis. J Surg Res 2001; 101:166–175.

    PubMed  CAS  Google Scholar 

  87. Moghaddami M, Cummins A, Mayrhofer G. Lymphocyte-filled villi: Comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 1998; 115:1414–1425.

    PubMed  CAS  Google Scholar 

  88. O’Leary AD, Sweeney EC. Lymphoglandular complexes of the colon: Structure and distribution. Histopathology 1986; 10:267–283.

    PubMed  Google Scholar 

  89. Langman JM, Rowland R. The number and distribution of lymphoid follicles in the human large intestine. J Anat 1986; 149:189–194.

    PubMed  CAS  Google Scholar 

  90. Yeung MM-W, Melgar S, Baranov V et al. Characterisation of mucosal lymphoid aggregates in ulcerative colitis: Immune cell phenotype and TcR-γδ expression. Gut 2000; 47:215–227.

    PubMed  CAS  Google Scholar 

  91. Surawicz CM, Belic L. Rectal biopsy helps to distinguish acute self-limited colitis from idiopathic inflammatory bowel disease. Gastroenterology 1984; 86:104–113.

    PubMed  CAS  Google Scholar 

  92. Mackay CR. Chemokines: Immunology’s high impact factors. Nature Immunol 2001; 2:95–101.

    CAS  Google Scholar 

  93. Zlotnik A, Yoshie O. Chemokines: A new classification system and their role in immunity. Immunity 2000; 12:121–127.

    PubMed  CAS  Google Scholar 

  94. Cyster JG. Chemokines and cell migration in secondary lymphoid organs. Science 1999; 286:2098–2102.

    PubMed  CAS  Google Scholar 

  95. Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nature Immunol 2001; 2:123–128.

    CAS  Google Scholar 

  96. Legler DF, Loetscher M, Roos RS et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 1998; 187:655–660.

    PubMed  CAS  Google Scholar 

  97. Gunn MD, Ngo VN, Ansel KM et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature 1998; 391:799–803.

    PubMed  CAS  Google Scholar 

  98. Luther SA, Lopez T, Bai W et al. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 2000; 12:471–481.

    PubMed  CAS  Google Scholar 

  99. Forster R, Mattis AE, Kremmer E et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996; 87:1037–1047.

    PubMed  CAS  Google Scholar 

  100. Ansel KM, Ngo VN, Hyman PL et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000; 406:309–314.

    PubMed  CAS  Google Scholar 

  101. Carlsen HS, Baekkevold ES, Johansen FE et al. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue. Gut 2002; 51:364–371.

    PubMed  CAS  Google Scholar 

  102. Schaerli P, Willimann K, Lang AB et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 2000; 192:1553–1562.

    PubMed  CAS  Google Scholar 

  103. Breitfeld D, Ohl L, Kremmer E et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000; 192:1545–152.

    PubMed  CAS  Google Scholar 

  104. Moser B, Schaerli P, Loetscher P. CXCR5+ T cells: Follicular homing takes center stage in T-helper-cell responses. Trends Immunol 2002; 23:250–254.

    PubMed  CAS  Google Scholar 

  105. Kim CH, Rott LS, Clark-Lewis I et al. Subspecialization of CXCR5+ T Cells. B helper activity is focused in a germinal center-localized subset of cxcr5+ T cells. J Exp Med 2001; 193:1373–1382.

    PubMed  CAS  Google Scholar 

  106. Gretz JE, Kaldjian EP, Anderson AO et al. Sophisticated strategies for information encounter in the lymph node: The reticular network as a conduit of soluble information and a highway for cell traffic. J Immunol 1996; 157:495–499.

    PubMed  CAS  Google Scholar 

  107. Cyster JG, Ansel KM, Reif K et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev 2000; 176:181–193.

    PubMed  CAS  Google Scholar 

  108. Carlsen HS, Baekkevold ES, Morton HC et al. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood 2004; 104:3021–7.

    PubMed  CAS  Google Scholar 

  109. Grouard G, Durand I, Filgueira L et al. Dendritic cells capable of stimulating T cells in germinal centres. Nature 1996; 384:364–367.

    PubMed  CAS  Google Scholar 

  110. Fu Y-X, Huang G, Wang Y et al. B lymphocytes induce the formation of follicular dendritic cell clusters in a lymphotoxin α-dependent fashion. J Exp Med 1998; 187:1009–1018.

    PubMed  CAS  Google Scholar 

  111. Gonzalez M, Mackay F, Browning JL et al. The sequential role of lymphotoxin and B cells in the development of splenic follicles. J Exp Med 1998; 187:997–1007.

    PubMed  CAS  Google Scholar 

  112. Endres R, Alimzhanov MB, Plitz T et al. Mature follicular dendritic cell networks depend on expression of lymphotoxin β receptor by radioresistant stromal cells and of lymphotoxin β and tumor necrosis factor by B cells. J Exp Med 1999; 189:159–168.

    PubMed  CAS  Google Scholar 

  113. Tumanov A, Kuprash D, Lagarkova M et al. Distinct role of surface lymphotoxin expressed by B cells in the organization of secondary lymphoid tissues. Immunity 2002; 17:239–250.

    PubMed  CAS  Google Scholar 

  114. Shi K, Hayashida K, Kaneko M et al. Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol 2001; 166:650–655.

    PubMed  CAS  Google Scholar 

  115. Takemura S, Braun A, Crowson C et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol 2001; 167:1072–1080.

    PubMed  CAS  Google Scholar 

  116. Xanthou G, Polihronis M, Tzioufas AG et al. “Lymphoid” chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjogren’s syndrome patients: Possible participation in lymphoid structure formation. Arthritis Rheum 2001; 44:408–418.

    PubMed  CAS  Google Scholar 

  117. Amft N, Curnow SJ, Scheel-Toellner D et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjogren’s syndrome. Arthritis Rheum 2001; 44:2633–2641.

    PubMed  CAS  Google Scholar 

  118. Ansel KM, Cyster JG. Chemokines in lymphopoiesis and lymphoid organ development. Curr Opin Immunol 2001; 13:172–179.

    PubMed  CAS  Google Scholar 

  119. Fiocchi C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology 1998; 115:182–205.

    PubMed  CAS  Google Scholar 

  120. Brandtzaeg P, Haraldsen G, Helgeland L et al. New insights into the immunopathology of human inflammatory bowel disease. Drugs Today 1999; 35(Suppl A):33–70.

    CAS  Google Scholar 

  121. Mitchell SA, Thyssen M, Orchard TR et al. Cigarette smoking, appendectomy, and tonsillectomy as risk factors for the development of primary sclerosing cholangitis: A case control study. Gut 2002; 51:567–573.

    PubMed  CAS  Google Scholar 

  122. Blumberg RS, Saubermann LJ, Strober W. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol 1999; 11:648–656.

    PubMed  CAS  Google Scholar 

  123. MacDonald TT, Monteleone G, Pender SL. Recent developments in the immunology of inflammatory bowel disease. Scand J Immunol 2000; 51:2–9.

    PubMed  CAS  Google Scholar 

  124. Tsuji RF, Szczepanik M, Kawikova I et al. B cell-dependent T cell responses: IgM antibodies are required to elicit contact sensitivity. J Exp Med 2002; 196:1277–1290.

    PubMed  CAS  Google Scholar 

  125. Dombrowicz D, Nutten S, Desreumaux P et al. Role of the high affinity immunoglobulin E receptor in bacterial translocation and intestinal inflammation. J Exp Med 2001; 193:25–34.

    PubMed  CAS  Google Scholar 

  126. Fagarasan S, Muramatsu M, Suzuki K et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 2002; 298:1424–1427.

    PubMed  CAS  Google Scholar 

  127. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411:599–603.

    PubMed  CAS  Google Scholar 

  128. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411:603–606.

    PubMed  CAS  Google Scholar 

  129. Hampe J, Grebe J, Nikolaus S et al. Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: A cohort study. Lancet 2002; 359:1661–1665.

    PubMed  CAS  Google Scholar 

  130. Ahmad T, Armuzzi A, Bunce M et al. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology 2002; 122:854–866.

    PubMed  CAS  Google Scholar 

  131. Cuthbert AP, Fisher SA, Mirza MM et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 2002; 122:867–874.

    PubMed  CAS  Google Scholar 

  132. Abreu MT, Taylor KD, Lin YC et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 2002; 123:679–688.

    PubMed  CAS  Google Scholar 

  133. Judge T, Lichtenstein GR. The NOD2 gene and Crohn’s disease: Another triumph for molecular genetics. Gastroenterology 2002; 122:826–828.

    PubMed  Google Scholar 

  134. Di Girolamo N, Visvanathan K, Lloyd A et al. Expression of TNF-α by human plasma cells in chronic inflammation. J Leukoc Biol 1997; 61:667–678.

    PubMed  Google Scholar 

  135. Gonnella PA, Waldner HP, Weiner HL. B cell-deficient (mu MT) mice have alterations in the cytokine microenvironment of the gut-associated lymphoid tissue (GALT) and a defect in the low dose mechanism of oral tolerance. J Immunol 2001; 166:4456–4464.

    PubMed  CAS  Google Scholar 

  136. Harris DP, Haynes L, Sayles PC et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunol 2000; 1:475–482.

    CAS  Google Scholar 

  137. Mizoguchi A, Mizoguchi E, Takedatsu H et al. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002; 16:219–230.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Brandtzaeg, P., Carlsen, H.S., Halstensen, T.S. (2006). The B-Cell System in Inflammatory Bowel Disease. In: Blumberg, R.S., Neurath, M.F. (eds) Immune Mechanisms in Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, vol 579. Springer, New York, NY. https://doi.org/10.1007/0-387-33778-4_10

Download citation

Publish with us

Policies and ethics