Skip to main content

Fate of Intravenously Injected Mesenchymal Stem Cells and Significance for Clinical Application

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 130))

Abstract

Mesenchymal stromal cells (MSCs) have initially been characterized as a fibroblastlike cell population that can be expanded readily in vitro, and is able to support hematopoiesis in vitro and in vivo. By serendipity it was discovered that MSCs can also be administered into the bloodstream. This mode of application formed a major breakthrough in the clinical use of MSCs, because MSC transplantation was found to cure severe immune hyperactivation states such as graft-versus-host disease after allogeneic bone marrow transplantation, or bacterial sepsis. However, MSCs were found difficult to trace and consensus to date is lacking in the scientific community as to where transplanted MSCs end up in the body and which major principles are responsible for the therapeutic effects of MSCs. This chapter gives an overview of the current knowledge on interactions of freshly transplanted MSCs with the cells in the blood stream and the vessel wall, with major organs such as lung, liver, gut, and spleen, and discusses the limitations of the methodologies used to trace transplanted MSCs. The findings will be put into perspective on how therapeutically applied, culture-expanded MSCs may exert beneficial effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alieva M, Bagó JR, Aguilar E, Soler-Botija C, Vila OF, Molet J, Gambhir SS, Rubio N, Blanco J (2012) Glioblastoma therapy with cytotoxic mesenchymal stromal cells optimized by bioluminescence imaging of tumor and therapeutic cell response. PLoS One 7(4):e35148 (Epub 2012 Apr 17)

    Google Scholar 

  2. Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen W, Sun L, Shi S (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10(5):544–555 (Epub 2012 Apr 26)

    Google Scholar 

  3. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868

    Article  Google Scholar 

  4. Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, Salnikov AV, Moldenhauer G, Wagner W, Diehlmann A, Saffrich R, Schubert M, Ho AD, Giese N, Büchler MW, Friess H, Büchler P, Herr I (2008) VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 99(4):622–631 (Epub 2008 July 29)

    Google Scholar 

  5. Beggs KJ, Lyubimov A, Borneman JN, Bartholomew A, Moseley A, Dodds R, Archambault MP, Smith AK, McIntosh KR (2006) Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons. Cell Transplant 15(8–9):711–721

    Article  Google Scholar 

  6. Belema-Bedada F, Uchida S, Martire A, Kostin S, Braun T (2008) Efficient homing of multipotent adult MSCs depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell 2:566–575

    Article  CAS  Google Scholar 

  7. Bensidhoum M, Chapel A, Francois S, Demarquay C, Mazurier C, Fouil- lard L, Bouchet S, Bertho JM, Gourmelon P, Aigueperse J, et al (2004) Homing of in vitro expanded Stro-1- or Stro-1 + human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103:3313–3319

    Google Scholar 

  8. Breitbach M, Bostoni T, Roell W, et al (2007) Potential risk of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369

    Google Scholar 

  9. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  Google Scholar 

  10. Caplan AI (2009) Why are MSCs therapeutic? new data: new insight. J Pathol 217:318–324

    Article  CAS  Google Scholar 

  11. Caplan A, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

    Google Scholar 

  12. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  Google Scholar 

  13. Chen Y, Jacamo R, Shi YX, Wang RY, Battula VL, Konoplev S, Strunk D, Hofmann NA, Reinisch A, Konopleva M, Andreeff M (2012) Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment. Blood 119(21):4971–4980 (Epub 2012 Apr 5)

    Google Scholar 

  14. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011

    Article  CAS  Google Scholar 

  15. Chiesa S, Morbelli S, Morando S, et al (2011) Mesenchymal stem cells impair in vivo T-cell priming by dentritic cells. Proc Natl Acad Sci USA 108:17384–17389

    Google Scholar 

  16. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan- induced mouse peritonitis by decreasing TLR2/NF-ΚB signaling in resident macrophages. Blood 118:330–338

    Article  CAS  Google Scholar 

  17. Cilloni D et al (2000) Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 96:3637–3643

    CAS  Google Scholar 

  18. Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, Gini B, Bach SD, Martinello M, Bifari F, Galiè M, Turano E, Budui S, Sbarbati A, Krampera M, Bonetti B (2009) Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 27(10):2624–2635

    Article  CAS  Google Scholar 

  19. Deak E, Rüster B, Keller L, Eckert K, Fichtner I, Seifried E, Henschler R (2010) Suspension medium influences interaction of mesenchymal stromal cells with endothelium and pulmonary toxicity after transplantation in mice. Cytotherapy 12(2):260–264

    Article  CAS  Google Scholar 

  20. Devine SM, Bartholomew A, Mahmud N, Nelson M, Patil S, Hardy W, Cord S, Terry H, Chung T, Stock W et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29:244–255

    Article  CAS  Google Scholar 

  21. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101:2999–3001

    Article  CAS  Google Scholar 

  22. Duan X, Guan H, Cao Y, Kleinerman ES (2009) Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors. Cancer 115(1):13–22

    Article  CAS  Google Scholar 

  23. Ferrand J, Noël D, Lehours P, Prochazkova-Carlotti M, Chambonnier L, Ménard A, Mégraud F, Varon C (2011) Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One 6(5):e19569

    Article  CAS  Google Scholar 

  24. Fakhrejahani E, Toi M (2012) Tumor angiogenesis: pericytes and maturation are not to be ignored. J Oncol 2012:261750 (Epub 2011 Oct 9)

    Google Scholar 

  25. Follenzi A, Raut S, Merlin S, Sarkar R, Gupta S (2012) Role of bone marrow transplantation for correcting hemophilia A in mice. Blood 119(23):5532–5542 (Epub 2012 Feb 24)

    Google Scholar 

  26. Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A, Frick J, Sache A, Bouchet S, Thierry D et al (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24:1020–1029

    Article  Google Scholar 

  27. Francois M, Romieu-Mourez R, Li M, Galipeau J (2011) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20:187–195

    Article  Google Scholar 

  28. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the micro- environment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340

    Article  CAS  Google Scholar 

  29. Furlani D, Ugurlucan M, Ong L, Bieback K, Pittermann E, Westien I, Wang W, Yerebakan C, Li W, Gaebel R, Li RK, Vollmar B, Steinhoff G, Ma N (2009) Is the intravascular administration of mesenchymal stem cells safe? mesenchymal stem cells and intravital microscopy. Microvasc Res 77(3):370–376 (Epub 2009 Feb 26)

    Google Scholar 

  30. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20

    Article  CAS  Google Scholar 

  31. Gonzalez-Rey E, Anderson P, González MA, Rico L, Büscher D, Delgado M (2009) Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58:929–939

    Google Scholar 

  32. Grisendi G, Bussolari R, Veronesi E, Piccinno S, Burns JS, De Santis G, Loschi P, Pignatti M, Di Benedetto F, Ballarin R, Di Gregorio C, Guarneri V, Piccinini L, Horwitz EM, Paolucci P, Conte P, Dominici M (2011) Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the mesenkillers. Am J Cancer Res 1(6):787–805 (Epub 2011 May 28)

    Google Scholar 

  33. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Google Scholar 

  34. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002 Jun 25) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99(13):8932–8937

    Google Scholar 

  35. Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ (2007) Mesen- chymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 18:2873–2882

    Article  CAS  Google Scholar 

  36. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Google Scholar 

  37. Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A, Andreeff M, Marini FC (2012) Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One 7(2):e30563 (Epub 2012 Feb 20)

    Google Scholar 

  38. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453

    Article  CAS  Google Scholar 

  39. Koç ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture- expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    Google Scholar 

  40. Koç ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachro- matic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222

    Google Scholar 

  41. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, Segars WP, Chen HH, Fritzges D, Izbudak I et al (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461

    Article  Google Scholar 

  42. Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, Eggert K, Gehling UM, Rudolph C, Schlegelberger B, Cornils K, Zustin J, Spiess AN, Zander AR (2011) Radiation rescue: mesenchymal stromal cells protect from letal irradiation. PLoS One 6(1):e14486

    Article  CAS  Google Scholar 

  43. Laurila JP, Laatikainen L, Castellone MD, Trivedi P, Heikkila J, Hinkkanen A, Hematti P, Laukkanen MO (2009) Human embryonic stem cell-derived mesenchymal stromal cell transplantation in a rat hind limb injury model. Cytotherapy 11(6):726–737

    Article  CAS  Google Scholar 

  44. Le Blanc K, Mougiakanos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12:383–396

    Google Scholar 

  45. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA (2009) Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA 106(38):16357–16362 (Epub 2009 Aug 31. (a))

    Google Scholar 

  46. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63 (b)

    Google Scholar 

  47. Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzón IM, Nepomnaschy I, Costa H, Cañones C, Raiden S, Vermeulen M, Geffner JR (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5(2):e9252

    Article  Google Scholar 

  48. Moll G, Jitschin R, von Bahr L, Rasmusson-Duprez I, Sundberg B, Lönnies L, Elgue G, Nilsson-Ekdahl K, Mougiakakos D, Lambris JD, Ringdén O, Le Blanc K, Nilsson B (2011) Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses. PLoS One 6(7):e21703 (Epub 2011 Jul 1)

    Google Scholar 

  49. Moll G, Rasmusson-Duprez I, von Bahr L, Connolly-Andersen AM, Elgue G, Funke L, Hamad OA, Lönnies H, Magnusson PU, Sanchez J, Teramura Y, Nilsson-Ekdahl K, Ringdén O, Korsgren O, Nilsson B, Le Blanc K (2012) Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells 30(7):1565–1574

    Google Scholar 

  50. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  CAS  Google Scholar 

  51. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100:8407–8411

    Article  CAS  Google Scholar 

  52. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104(26):11002–11007 (Epub 2007 Jun 14)

    Google Scholar 

  53. Parekkadan B, Upadhyay R, Dunham J, Iwamoto Y, Mizoguchi E, Mizoguchi A, Weissleder R, Yarmush ML (2011) Bone marrow stromal cell transplants prevent experimental enterocolitis and require host CD11b + splenocytes. Gastroenterology 140(3):966–975 (Epub 2010 Oct 16)

    Google Scholar 

  54. Pessina A, Bonomi A, Coccè V, Invernici G, Navone S, Cavicchini L, Sisto F, Ferrari M, Viganò L, Locatelli A, Ciusani E, Cappelletti G, Cartelli D, Arnaldo C, Parati E, Marfia G, Pallini R, Falchetti ML, Alessandri G (2011) Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy. PLoS One 6(12):e28321 (Epub 2011 Dec 20)

    Google Scholar 

  55. Pittenger MF, Mackay AM, Beck SC, et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Google Scholar 

  56. Potapova IA, Brink PR, Cohen IS, Doronin SV (2008) Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. J Biol Chem 283:13100–13107

    Article  CAS  Google Scholar 

  57. Ren C, Kumar S, Chanda D, et al (2008) Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 26:2332–2338

    Google Scholar 

  58. Rieger K et al (2005) Mesenchymal stem cells remain of host origin even a long time after allogeneic peripheral blood stem cell or bone marrow transplantation. Exp Hematol 33:605–611

    Article  CAS  Google Scholar 

  59. Rombouts WJ, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17(1):160–170

    Article  CAS  Google Scholar 

  60. Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, Gille J, Henschler R (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108:3938–3944

    Article  Google Scholar 

  61. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  CAS  Google Scholar 

  62. Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, Wohlgemuth R (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14:181–187

    Article  CAS  Google Scholar 

  63. Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, Wohlgemuth R (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14:181–187

    Article  CAS  Google Scholar 

  64. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587

    CAS  Google Scholar 

  65. Schenk S, Mal N, Finan A, Zhang M, Kiedrowski M, Popovic Z, McCarthy PM, Penn MS (2007) Monocyte chemotactic protein-3 is a myocar-dial MSC homing factor. Stem Cells 25:245–251

    Google Scholar 

  66. Schofield R (1983) The stem cell system. Biomed Pharmacother 37:375–380

    CAS  Google Scholar 

  67. Schraufstatter IU, Discipio RG, Zhao M, Khaldoyanidi SK (2009) C3a and C5a are chemotactic factors for human mesenchymal stem cells, which cause prolonged ERK1/2 phosphorylation. J Immunol 182:3827–3836

    Article  CAS  Google Scholar 

  68. Segers VFM, Van Riet I, Andries LJ, Lemmens K, Demolder MJ, De Becker AJML, Kockx MM, De Keulenaer GW (2006) Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. Am J Physiol Heart Circ Physiol 290:H1370–H1377

    Article  CAS  Google Scholar 

  69. Sémont A, Mouiseddine M, François A, Demarquay C, Mathieu N, Chapel A, Saché A, Thierry D, Laloi P, Gourmelon P (2010) Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ 17(6):952–961 (Epub 2009 Dec 18)

    Google Scholar 

  70. Shi M, Li J, Liao L, Chen B, Li B, Chen L, Jia H, Zhao RC (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cyto-kine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92:897–904

    Article  Google Scholar 

  71. Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, Leiner I, Li MO, Frenette PS, Pamer EG (2011) Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34:590–601

    Article  CAS  Google Scholar 

  72. Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328:429–432

    Article  CAS  Google Scholar 

  73. Steingen C, Brenig F, Baumgartner L, Schmidt J, Schmidt A, Bloch W (2008). Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J Mol Cell Cardiol 44(6):1072–1084 (Epub 2008 Mar 19)

    Google Scholar 

  74. Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, Umezawa A, Kijima H, Fukuda S, Saijo Y (2011) Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med 17(7–8):579–587 10.2119/molmed.2010.00157. Epub 2011 Mar 11

    CAS  Google Scholar 

  75. Thankamony SP, Sackstein R (2011) Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc Natl Acad Sci USA 108(6):2258–2263 (Epub 2011 Jan 21)

    Google Scholar 

  76. Toma C, Wagner WR, Bowry S, Schwartz A, Villanueva F (2009) Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circ Res 104(3):398–402 (Epub 2008 Dec 18)

    Google Scholar 

  77. von Bahr L, Batasis I, Moll G, et al (2012) Analysis of tissues following mesenchymal stromal cell therapy in human indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30:1575–1578

    Google Scholar 

  78. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PCM, Huang J, Bulte JWM (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39:1569–1574

    Article  CAS  Google Scholar 

  79. Wang Y, Zhang D, Ashraf M, Zhao T, Huang W, Ashraf A, Balasubramaniam A (2010) Combining neuropeptide Y and mesenchymal stem cells reverses remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol 298(1):H275–H286 (Epub 2009 Nov 6)

    Google Scholar 

  80. Wei L, Fraser JL, Lu ZY, Hu X, Yu SP (2012) Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis 46(3):635–645 (Epub 2012 Mar 9)

    Google Scholar 

  81. Wu J, Sun Z, Sun H-S, Wu J, Weisel RD, Keating A, Li Z-H, Feng Z-P, Li R-K (2008) Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural fnction in ichemic rats. Cell Transplant 16:993–1005

    Google Scholar 

  82. Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K, Van Riet I (2012) Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 30(2):266–279

    Article  CAS  Google Scholar 

  83. Yilmaz G, Vital S, Yilmaz CE, Stokes KY, Alexander JS, Granger DN (2011) Selectin-mediated recruitment of bone marrow stromal cells in the postischemic cerebral microvasculature. Stroke 42(3):806–811 (Epub 2011 Jan 21)

    Google Scholar 

  84. Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, Koc ON, Penn MS (2007) SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J 21:3197–3207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Henschler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 2013

About this chapter

Cite this chapter

Wagner, B., Henschler, R. (2012). Fate of Intravenously Injected Mesenchymal Stem Cells and Significance for Clinical Application. In: Weyand, B., Dominici, M., Hass, R., Jacobs, R., Kasper, C. (eds) Mesenchymal Stem Cells - Basics and Clinical Application II. Advances in Biochemical Engineering/Biotechnology, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_155

Download citation

Publish with us

Policies and ethics