Skip to main content

Physiological Aspects of UV-Excitation of DNA

  • Chapter
  • First Online:
Photoinduced Phenomena in Nucleic Acids II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 356))

Abstract

Solar ultraviolet (UV) radiation, mainly UV-B (280–315 nm), is one of the most potent genotoxic agents that adversely affects living organisms by altering their genomic stability. DNA through its nucleobases has absorption maxima in the UV region and is therefore the main target of the deleterious radiation. The main biological relevance of UV radiation lies in the formation of several cytotoxic and mutagenic DNA lesions such as cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers (DEWs), as well as DNA strand breaks. However, to counteract these DNA lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, excision repair, and mismatch repair (MMR). Photoreactivation involving the enzyme photolyase is the most frequently used repair mechanism in a number of organisms. Excision repair can be classified as base excision repair (BER) and nucleotide excision repair (NER) involving a number of glycosylases and polymerases, respectively. In addition to this, double-strand break repair, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms to ensure genomic stability. This review concentrates on the UV-induced DNA damage and the associated repair mechanisms as well as various damage detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-4PPs:

Pyrimidine (6-4) pyrimidone photoproducts

8-AIA:

8-(5-Aminoimidazol-4-yl)adenine

8-HDF:

8-Hydroxy-5-deaza-riboflavin

8-oxo-Ade:

8-Oxo-7,8-dihydroadenine

8-oxoGua:

8-Oxo-7,8-dihydroguanine

ATM protein:

Ataxia telangiectasia mutated protein

BER:

Base excision repair

CAT:

Catalase

CCs:

Chlorocarbons

CFCs:

Chlorofluorocarbons

CPDs:

Cyclobutane pyrimidine dimers

DEWs:

Dewar valence isomers

DGPY:

4,6-Diamino-5-guanidinopyrimidine

DP:

DNA polymerase

dRPase:

Deoxyribophosphodiesterase

DSB:

Double strand break

FAD:

Flavin-adenine dinucleotide

FADU:

Fluorometric analysis of DNA unwinding

FapyGua:

2,6-Diamino-4-hydroxy-5-formamidopurine

FEN:

1-Flap endonuclease-1

FISH:

Fluorescence in situ hybridization

GG-NER:

Global genome NER

HR:

Homologous recombination

IC-PCR:

Immunocoupled polymerase chain reaction

LP-BER:

Long-patch BER

MMR:

Mismatch repair

MTHF:

5,10-Methenyltetrahydrofolate

NADPH:

Nicotinamide adenine dinucleotide phosphate

NER:

Nucleotide excision repair

NHEJ:

Non-homologous end joining

OBs:

Organobromides

PIKKs:

Phosphatidylinositol-3 (PI3)-kinase related kinases

POD:

Peroxidase

RAPD:

Random amplified polymorphic DNA

RIA:

Radio-immunoassay

ROS:

Reactive oxygen species

RPA:

Replication protein A

SINE:

Short interspersed DNA element

SOD:

Superoxide dismutase

SP-BER:

Short-patch BER

SSB:

Single strand break

TBP:

TATA-box binding protein

TC-NER:

Transcription-coupled NER

TD-PCR:

Terminal transferase-dependent PCR

TFIIH:

Transcription factor-IIH

Top1:

Topoisomerase I

TRCF:

Transcription-repair coupling factor

UV-DDB:

UV-damaged DNA binding protein

UVR:

Ultraviolet radiation

XPV:

Xeroderma pigmentosum variant

References

  1. Kramlich JC, Linak WP (1994) Nitrous oxide behavior in the atmosphere, and in combustion and industrial systems. Prog Energy Combust Sci 20:149–202

    CAS  Google Scholar 

  2. Llabrés M, Agustί S, Alonso-Laita P, Herndl GJ (2010) Synechococcus and Prochlorococcus cell death induced by UV radiation and the penetration of lethal UVR in the Mediterranean Sea. Mar Ecol Prog Ser 399:27–37

    Google Scholar 

  3. Zeeshan M, Prasad SM (2009) Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. South Afr J Bot 75:466–474

    CAS  Google Scholar 

  4. Chalker-Scott L (1995) Survival and sex ratios of the intertidal copepod, Tigriopus californicus, following ultraviolet-B (290–320 nm) radiation exposure. Mar Biol 123:799–804

    Google Scholar 

  5. Rastogi RP, Singh SP, Häder D-P, Sinha RP (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397:603–607

    Google Scholar 

  6. Vincent WF, Neale PJ (2000) Mechanisms of UV damage to aquatic organisms. In: de Mora SJ, Demers S, Vernet M (eds) The effects of UV radiation on marine ecosystems. Cambridge University Press, Cambridge, pp 149–176

    Google Scholar 

  7. Peak MJ, Peak JG (1982) Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: action spectrum and properties. Photochem Photobiol 35:675–680

    CAS  Google Scholar 

  8. Sinha RP, Dautz M, Häder D-P (2001) A simple and efficient method for the quantitative analysis of thymine dimers in cyanobacteria, phytoplankton and macroalgae. Acta Protozool 40:187–195

    CAS  Google Scholar 

  9. Buma AGJ, De Boer MK, Boelen P (2001) Depth distributions of DNA damage in antarctic marine phyto and bacterioplankton exposed to summertime UV radiation. J Phycol 37:200–208

    CAS  Google Scholar 

  10. Pakker H, Beekman CAC, Breeman AM (2000) Efficient photoreactivation of UVBR-induced DNA damage in the sublittoral macroalga Rhodymenia pseudopalmata (Rhodophyta). Eur J Phycol 35:109–114

    Google Scholar 

  11. Quaite FE, Sutherland BM, Sutherland JC (1992) Quantitation of pyrimidine dimers in DNA from UVB irradiated alfalfa (Medicago sativa L.) seedlings. Appl Theor Electrophor 2:171–175

    CAS  Google Scholar 

  12. Hargreaves A, Taiwo FA, Duggan O, Kirk SH, Ahmad SI (2007) Near-ultraviolet photolysis of β-phenylpyruvic acid generates free radicals and results in DNA damage. J Photochem Photobiol B Biol 89:110–116

    CAS  Google Scholar 

  13. Rastogi RP, Richa, Sinha RP, Singh SP, Häder D-P (2010) Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 37:537–558

    Google Scholar 

  14. Richa, Sinha RP (2013) Biomedical applications of mycosporine-like amino acids. In: Kim SE (ed) Marine microbiology, bioactive compounds and biotechnological applications. Wiley, Germany, pp 509–534

    Google Scholar 

  15. Sinha RP, Singh SP, Häder D-P (2007) Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J Photochem Photobiol B 89:29–35

    CAS  Google Scholar 

  16. Xie Z, Wang Y, Liu Y, Liu Y (2009) Ultraviolet-B exposure induces photo-oxidative damage and subsequent repair strategies in a desert cyanobacterium Microcoleus vaginatus Gom. Eur J Soil Biol 45:377–382

    CAS  Google Scholar 

  17. Rastogi RP, Richa, Singh SP, Häder D-P, Sinha RP (2010) Mycosporine-like amino acids profile and their activity under PAR and UVR in a hot-spring cyanobacterium Scytonema sp.HKAR-3. Aus J Bot 58:286–293

    Google Scholar 

  18. Britt AB (2004) Repair of DNA damage induced by solar UV. Photosynth Res 81:105–112

    CAS  Google Scholar 

  19. Häder D-P, Sinha RP (2005) Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact. Mutat Res 571:221–233

    Google Scholar 

  20. Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    CAS  Google Scholar 

  21. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    CAS  Google Scholar 

  22. Cooke MS, Loft S, Olinski R, Evans MD, Bialkowski K, Wagner JR, Dedon PC, Maller P, Greenberg MM, Cadet J (2010) Recommendations for standardized description of and nomenclature concerning oxidatively damaged nucleobases in DNA. Chem Res Toxicol 23:705–707

    CAS  Google Scholar 

  23. Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  24. Dizdaroglu M (1992) Oxidative damage to DNA in mammalian chromatin. Mutat Res 275:331–342

    CAS  Google Scholar 

  25. Ley RD, Fourtanier A (1997) Sunscreen protection against ultraviolet radiation-induced pyrimidine dimers in mouse epidermal DNA. Photochem Photobiol 65:1007–1011

    CAS  Google Scholar 

  26. Regan JD, Setlow RB (1974) Two forms of repair in the DNA of human cells damaged by the chemical carcinogens and mutagens. Cancer Res 34:3318–3325

    CAS  Google Scholar 

  27. Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17

    CAS  Google Scholar 

  28. Ravanat J-L, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63:88–102

    CAS  Google Scholar 

  29. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. ASM Press, Washington

    Google Scholar 

  30. Taylor JS, Lu HF, Kotyk JJ (1990) Quantitative conversion of the (6-4) photoproduct of TpdC to its Dewar valence isomer upon exposure to simulated sunlight. Photochem Photobiol 51:161–167

    CAS  Google Scholar 

  31. Cadet J, Mouret S, Ravanat JL, Douki T (2012) Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 88:1048–1065

    CAS  Google Scholar 

  32. Courdavault S, Baudouin C, Charveron M, Canguilhem B, Favier A, Cadet J, Douki T (2005) Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations. DNA Repair (Amst) 4:836–844

    CAS  Google Scholar 

  33. Bastien N, Therrien J-P, Drouin R (2013) Cytosine containing dipyrimidine sites can be hotspots of cyclobutane pyrimidine dimer formation after UV-B exposure. Photochem Photobiol Sci 12:1544–1554

    CAS  Google Scholar 

  34. Hariharan M, Lewis FD (2008) Context-dependent photodimerization in isolated thymine-thymine steps in DNA. J Am Chem Soc 130:11870–11871

    CAS  Google Scholar 

  35. Mitchell DL, Jen J, Cleaver JE (1992) Sequence specificity of cyclobutane pyrimidine dimers in DNA treated with solar (ultraviolet B) radiation. Nucleic Acids Res 20:225–229

    CAS  Google Scholar 

  36. Matallana-Surget S, Meador JA, Joux F, Douki T (2008) Effect of the GC content of DNA on the distribution of UVB-induced bipyrimidine photoproducts. Photochem Photobiol Sci 7:794–801

    CAS  Google Scholar 

  37. Douki T, Cadet J (2001) Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry 40:2495–2501

    CAS  Google Scholar 

  38. Desnous C, Guillaume D, Clivio P (2010) Spore photoproduct: a key to bacterial eternal life. Chem Rev 110:1213–1232

    CAS  Google Scholar 

  39. Kim JK, Patel D, Choi BS (1995) Contrasting structural impacts induced by cis-syn cyclobutane dimer and (6-4) adduct in DNA duplex decamers: implication in mutagenesis and repair activity. Photochem Photobiol 62:44–50

    CAS  Google Scholar 

  40. Wang CI, Taylor JS (1991) Site-specific effect of thymine dimer formation on dAn.dTn tract bending and its biological implications. Proc Natl Acad Sci USA 88:9072–9076

    CAS  Google Scholar 

  41. Becker MM, Wang Z (1989) Origin of ultraviolet damage in DNA. J Mol Biol 210:429–438

    CAS  Google Scholar 

  42. Lyamichev V (1991) Unusual conformation of (dA)n.(dT)n-tracts as revealed by cyclobutane thymine-thymine dimer formation. Nucleic Acids Res 19:4491–4496

    CAS  Google Scholar 

  43. Pehrson JR, Cohen LH (1992) Effects of DNA looping on pyrimidine dimer formation. Nucleic Acid Res 20:1321–1324

    CAS  Google Scholar 

  44. Aboussekhra A, Thoma F (1999) TATA-binding protein promotes the selective formation of UV-induced (6-4)-photoproducts and modulates DNA repair in the TATA box. EMBO J 18:433–443

    CAS  Google Scholar 

  45. You HY, Szabo PE, Pfeifer GP (2000) Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in UVB-induced mouse skin tumors. Carcinogenesis 21:2113–2117

    CAS  Google Scholar 

  46. Kvam E, Tyrrell RM (1997) Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 18:2379–2384

    CAS  Google Scholar 

  47. Perdiz D, Grόf P, Mezzina M, Nikaido O, Moustacchi E, Sage E (2000) Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells: possible role of Dewar photoproducts in solar mutagenesis. J Biol Chem 275:26732–26742

    CAS  Google Scholar 

  48. Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA 103:13765–13770

    CAS  Google Scholar 

  49. Mouret S, Charveron M, Favier A, Cadet J, Douki T (2008) Differential repair of UVB-induced cyclobutane pyrimidine dimers in cultured human skin cells and whole human skin. DNA Repair (Amst) 7:704–712

    CAS  Google Scholar 

  50. Tewari A, Sarkany RP, Young AR (2012) UVA1 induces cyclobutane pyrimidine dimers but not 6-4 photoproducts in human skin in vivo. J Invest Dermatol 132:394–400

    CAS  Google Scholar 

  51. Courdavault S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2004) Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UV-A irradiated human skin cells. Mutat Res 556:135–142

    CAS  Google Scholar 

  52. Douki T, Reynaud-Angelin A, Cadet J, Sage E (2003) Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 42:9221–9226

    CAS  Google Scholar 

  53. Wierzchowski KL, Shugar D (1961) Photochemistry of cytosine nucleosides and nucleotides, II. Acta Biochim Pol 8:219–234

    CAS  Google Scholar 

  54. Douki T, Vadesne-Bauer G, Cadet J (2002) Formation of 2′-deoxyuridine hydrates upon exposure of nucleosides to gamma radiation and UVC-irradiation of isolated and cellular DNA. Photochem Photobiol Sci 1:565–569

    CAS  Google Scholar 

  55. Boorstein RJ, Hilbert TP, Cunningham RP, Teebor GW (1990) Formation and stability of repairable pyrimidine photohydrates in DNA. Biochemistry 29:10455–10460

    CAS  Google Scholar 

  56. Mitchell DL, Vaughan JE, Nairn RS (1989) Inhibition of transient gene expression in Chinese hamster ovary cells by cyclobutane dimers and (6-4) photoproducts in transfected ultraviolet-irradiated plasmid DNA. Plasmid 21:21–30

    CAS  Google Scholar 

  57. Protic-Sabljic M, Kraemer KH (1986) One pyrimidine dimer inactivates expression of a transfected gene in Xeroderma pigmentosum cells. Proc Natl Acad Sci USA 82:6622–6626

    Google Scholar 

  58. Britt AB (1995) Repair of DNA damage induced by ultraviolet radiation. Plant Physiol 108:891–896

    CAS  Google Scholar 

  59. Cadet J, Douki T, Ravanat JL, Di Mascio P (2009) Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation. Photochem Photobiol Sci 8:903–911

    CAS  Google Scholar 

  60. Swalwell H, Latimer J, Haywood RM, Birch-Machin MA (2012) Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells. Free Radic Biol Med 52:626–634

    CAS  Google Scholar 

  61. Wischermann K, Popp S, Moshir S, Kochanek KS, Wlaschek M, de Gruijl F, Hartschuh W, Greinert R, Volkmer B, Faust A, Rapp A, Schmezer P, Boukamp P (2008) UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic transformation in HaCaT skin keratinocytes. Oncogene 27:4269–4280

    CAS  Google Scholar 

  62. Cadet J, Douki T (2011) Oxidatively generated damage to DNA by UVA radiation in cells and human skin. J Invest Dermatol 131:1005–1007

    CAS  Google Scholar 

  63. Cleaver JE (2011) γH2Ax: biomarker of damage or functional participant in DNA repair “All that glitters is not gold!”. Photochem Photobiol 87:1230–1239

    CAS  Google Scholar 

  64. Rizzo JL, Dunn J, Rees A, Runger TM (2011) No formation of DNA double-strand breaks and no activation of recombination repair with UVA. J Invest Dermatol 131:1139–1148

    CAS  Google Scholar 

  65. Revet I, Feeney L, Bruguera S, Wilson W, Dong TK, Oh DH, Dankort D, Cleave JE (2011) Functional relevance of the histone γH2Ax in the response to DNA damaging agents. Proc Natl Acad Sci USA 108:8663–8667

    CAS  Google Scholar 

  66. Greinert R, Volkmer B, Henning S, Breitbart EW, Greulich KO, Cardoso MC, Rapp A (2012) UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Res 40:10263–10273

    CAS  Google Scholar 

  67. Runger TM, Farahvash B, Hatvani Z, Rees A (2012) Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: a less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones. Photochem Photobiol Sci 11:207–215

    Google Scholar 

  68. Duker NJ, Gallagher PE (1988) Purine photoproducts. Photochem Photobiol 48:35–39

    CAS  Google Scholar 

  69. Koning TMG, Davies RJH, Kaptein R (1990) The solution structure of the intramolecular photoproduct of d(TpA) derived with the use of NMR and a combination of distance geometry and molecular dynamics. Nucleic Acids Res 18:277–284

    CAS  Google Scholar 

  70. Kumar S, Sharma ND, Davies RJ, Phillipson DW, McCloskey JA (1987) The isolation and characterisation of a new type of dimeric adenine photoproduct in UV-irradiated deoxyadenylates. Nucleic Acids Res 15:1199–1216

    CAS  Google Scholar 

  71. Bose SN, Davies RJ (1984) The photoreactivity of T-A sequences in oligodeoxyribonucleotides and DNA. Nucleic Acids Res 12:7903–7914

    CAS  Google Scholar 

  72. Porschke D (1973) A specific photoreaction in polydeoxyadenylic acid. Proc Natl Acad Sci USA 70:2683–2686

    CAS  Google Scholar 

  73. Davies RJH (1997) Purines as targets for DNA photodamage. Biochem Soc Trans 25:323–326

    CAS  Google Scholar 

  74. Sharma ND, Davies RJH (1989) Extent of formation of a dimeric adenine photoproduct in polynucleotides and DNA. J Photochem Photobiol B 3:247–258

    CAS  Google Scholar 

  75. Bowden GM, Davies RJ (1997) Thymine-adenine photoadduct formation in UV-irradiated human cells. Biochem Soc Trans 25:130S

    CAS  Google Scholar 

  76. Davies RJH, Malone JF, Gan Y, Cardin CJ, Lee MPH, Neidle S (2007) High-resolution crystal structure of the intramolecular d(TpA) thymine–adenine photoadduct and its mechanistic implications. Nucleic Acids Res 35:1048–1053

    CAS  Google Scholar 

  77. Zhao X, Nadji S, Kao JLF, Taylor JS (1996) The structure of d(TpA)*, the major photoproduct of thymidylyl-(3′-5′)-deoxyadenosine. Nucleic Acids Res 24:1554–1560

    CAS  Google Scholar 

  78. Su DGT, Taylor JSA, Gross ML (2010) A new photoproduct of 5-methylcytosine and adenine characterized by high-performance liquid chromatography and mass spectrometry. Chem Res Toxicol 23:474–479

    CAS  Google Scholar 

  79. Pouget JP, Douki T, Richard MJ, Cadet J (2000) DNA damage induced in cells by γ and UVA radiation as measured by HPLC/GC–MS and HPLC–EC and comet assay. Chem Res Toxicol 13:541–549

    CAS  Google Scholar 

  80. Hall DB, Holmlin RE, Barton JK (1996) Oxidative DNA damage through long-range electron transfer. Nature 382:731–735

    CAS  Google Scholar 

  81. Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5:a012559

    Google Scholar 

  82. Cortat B, Garcia CCM, Quinet A, Schuch AP, de Lima-Bessa KM, Menck CFM (2013) The relative roles of DNA damage induced by UVA irradiation in human cells. Photochem Photobiol Sci 12:1483–1495

    CAS  Google Scholar 

  83. Schuch AP, Yagura T, Makita K, Yamamoto H, Schuch NJ, Agnez-Lima LF, MacMahon RM, Menck CFM (2012) DNA damage profiles induced by sunlight at different latitudes. Environ Mol Mutagen 53:198–206

    CAS  Google Scholar 

  84. Wang TV, Smith KC (1986) Post replication repair in ultraviolet-irradiated human fibroblasts: formation and repair of DNA double-strand breaks. Carcinogenesis 7:389–392

    CAS  Google Scholar 

  85. Batista LFZ, Kaina B, Meneghini R, Menck CFM (2009) How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis. Mutat Res 681:197–208

    CAS  Google Scholar 

  86. Dunkern TR, Kaina B (2002) Cell proliferation and DNA breaks are involved in ultraviolet light-induced apoptosis in nucleotide excision repair-deficient Chinese hamster cells. Mol Biol Cell 13:348–361

    CAS  Google Scholar 

  87. Takahashi A, Ohnishi T (2005) Does γH2AX foci formation depend on the presence of DNA double strand breaks? Cancer Lett 229:171–179

    CAS  Google Scholar 

  88. Mahaney BL, Meek K, Lees-Miller SP (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417:639–650

    Google Scholar 

  89. Povirk LF (2006) Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair (Amst) 5:1199–1212

    CAS  Google Scholar 

  90. Lottner S, Shehata M, Hickel R, Reichl F-X, Durner J (2013) Effects of antioxidants on DNA-double strandbreaks in human gingival fibroblasts exposed to methacrylate based monomers. Dent Mater 29:991–998

    Google Scholar 

  91. Ohnishi T, Mori E, Takahashi A (2009) DNA doublestrand breaks: their production, recognition, and repair in eukaryotes. Mutat Res 669:8–12

    CAS  Google Scholar 

  92. Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′- phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20:3977–3987

    CAS  Google Scholar 

  93. Box HC, Dawidzik JB, Budzinski EE (2001) Free radical induced double lesions in DNA. Free Radical Biol Med 31:856–868

    CAS  Google Scholar 

  94. Harper JV, Anderson JA, O’Neill P (2010) Radiation induced DNA DSBs: contribution from stalled replication forks? DNA Repair (Amst) 9:907–913

    CAS  Google Scholar 

  95. Zhou BBS, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    CAS  Google Scholar 

  96. Essers J, Vermeulen W, Houtsmuller AB (2006) DNA damage repair: anytime, anywhere? Curr Opin Cell Biol 18:240–246

    CAS  Google Scholar 

  97. Kelner A (1949) Effects of visible light on the recovery of Streptomyces griseus conidia from ultraviolet irradiation injury. Proc Natl Acad Sci USA 35:73–79

    CAS  Google Scholar 

  98. Dulbecco R (1949) Reactivation of ultra-violet-inactivated bacteriophage by visible light. Nature 163:949–950

    CAS  Google Scholar 

  99. Essen LO, Klar T (2006) Light-driven DNA repair by photolyases. Cell Mol Life Sci 63:1266–1277

    CAS  Google Scholar 

  100. Kim S-T, Heelis PF, Sancar A (1992) Energy transfer (deazaflavin  FADH2) and electron transfer (FADH2 T<>T) kinetics in Anacystis nidulans photolyase. Biochemistry 31:11244–11248

    Google Scholar 

  101. Britt AB (1996) DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol 47:75–100

    CAS  Google Scholar 

  102. Johnson JL, Hamm-Alvarez S, Payne G, Sancar GB, Rajagopalan KV, Sancar A (1988) Identification of the second chromophore of Escherichia coli and yeast DNA photolyases as 5,10-methenyltetrahydrofolate. Proc Natl Acad Sci 85:2046–2050

    CAS  Google Scholar 

  103. Eker APM, Kooiman P, Hessels JKC, Yasui A (1990) DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J Biol Chem 265:8009–8015

    CAS  Google Scholar 

  104. Ueda T, Kato A, Kuramitsu S, Terasawa H, Shimada I (2005) Identification and characterization of a second chromophore of DNA photolyase from Thermus thermophilus HB27. J Biol Chem 280:36237–36243

    CAS  Google Scholar 

  105. Morita R, Nakane S, Shimada A, Inoue M, Iino H, Wakamatsu T, Fukui K, Nakagawa N, Masui R, Kuramitsu S (2010) Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids, Article ID 179594. doi:10.4061/2010/179594

    Google Scholar 

  106. Saxena C, Sancar A, Zhong D (2004) Femtosecond dynamics of DNA photolyase: energy transfer of antenna initiation and electron transfer of cofactor reduction. J Phys Chem B 108:18026–18033

    CAS  Google Scholar 

  107. Kao Y-T, Saxena C, Wang L, Sancar A, Zhong D (2005) Direct observation of thymine dimer repair in DNA by photolyase. Proc Natl Acad Sci USA 102:16128–16132

    CAS  Google Scholar 

  108. Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010:32. doi:10.4061/2010/592980

    Google Scholar 

  109. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    CAS  Google Scholar 

  110. Jeggo PA, Löbrich M (2006) Contribution of DNA repair and cell cycle checkpoint arrest to the maintenance of genomic stability. DNA Repair (Amst) 5:1192–1198

    CAS  Google Scholar 

  111. Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer SJ (2005) A role for proapoptotic BID in the DNA damage response. Cell 122:579–591

    CAS  Google Scholar 

  112. Riballo E, Kühne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Lobrich M (2004) A pathway of double strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol Cell 16:715–724

    CAS  Google Scholar 

  113. Lloyd J, Chapman JR, Clapperton JA, Haire LF, Hartsuiker E, Li J, Carr AM, Jackson SP, Smerdon SJ (2009) A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell 139:100–111

    CAS  Google Scholar 

  114. Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS, Guenther G, Classen S, Glover JN, Iwasaki H, Russell P, Tainer JA (2009) Nbs1 is an extended flexible arm binding to Ctp1 and Mre11-Rad50 to coordinate dsDNA break processing. Cell 139:87–99

    CAS  Google Scholar 

  115. Chen L, Trujillo K, Ramos W, Sung P, Tomkinson AE (2001) Promotion of Dnl4-Catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell 8:1105–1115

    CAS  Google Scholar 

  116. Petersen JL, Lang DW, Small GD (1999) Cloning and characterization of a class II DNA photolyase from Chlamydomonas. Plant Mol Biol 40:1063–1071

    CAS  Google Scholar 

  117. Takahashi S, Nakajima N, Saji H, Kondo N (2002) Diurnal changes of cucumber CPD photolyase gene (CsPHR) expression and its physiological role in growth under UV-B irradiation. Plant Cell Physiol 43:342–349

    CAS  Google Scholar 

  118. Aravind L, Dixit VM, Koonin EV (2001) Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291:1279–1284

    CAS  Google Scholar 

  119. Doutriaux M-P, Couteau F, Bergounioux C, White C (1998) Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Mol Gen Genet 257:283–291

    CAS  Google Scholar 

  120. Vergunst AC, Hooykaas PJJ (1999) Recombination in the plant genome and its application in biotechnology. Crit Rev Plant Sci 18:1–31

    CAS  Google Scholar 

  121. Majchrzak M, Bowater RP, Staczek P, Parniewski P (2006) SOS repair and supercoiling influence the genetic stability of DNA triplet repeats in Escherichia coli. J Mol Biol 364:612–624

    CAS  Google Scholar 

  122. Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 58:41–64

    Google Scholar 

  123. Martins-Pinheiro M, Marques RCP, Menck CFM (2007) Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus. BMC Microbiol 7:17

    Google Scholar 

  124. Eker APM, Yajima H, Yasui A (1994) DNA photolyase from the fungus Neurospora crassa. Purification, characterization and comparison with other photolyases. Photochem Photobiol 60:125–133

    CAS  Google Scholar 

  125. Van Houten B, Eisen JA, Hanawalt PC (2002) A cut above: discovery of an alternative excision repair pathway in bacteria. Proc Natl Acad Sci USA 99:2581–2583

    Google Scholar 

  126. Fuchs RP, Fujii S, Wagner J (2004) Properties and functions of Escherichia coli Pol IV and Pol V. Adv Protein Chem 69:229–264

    CAS  Google Scholar 

  127. Goodman MF (2000) Coping with replication ‘train wrecks’ in Escherichia coli using Pol V, Pol II and RecA proteins. Trends Biochem Sci 25:189–195

    CAS  Google Scholar 

  128. Strauss BS, Roberts R, Francis L, Pouryazdanparast P (2000) Role of the dinB gene product in spontaneous mutation in Escherichia coli with an impaired replicative polymerase. J Bacteriol 182:6742–6750

    CAS  Google Scholar 

  129. Galhardo RS, Rocha RP, Marques MV, Menck CFM (2005) An SOS-regulated operon involved in damage inducible mutagenesis in Caulobacter crescentus. Nucleic Acids Res 33:2603–2614

    CAS  Google Scholar 

  130. Lo H-L, Nakajima S, Ma L, Walter B, Yasui A, Ethell DW, Owen LB (2005) Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest. BMC Cancer 5:135

    Google Scholar 

  131. Mercer J, Mahmoudi M, Bennett M (2007) DNA damage, p53, apoptosis and vascular disease. Mutat Res 621:75–86

    CAS  Google Scholar 

  132. Lukas J, Lukas C, Bartek J (2004) Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 3:997–1007

    CAS  Google Scholar 

  133. Sancar A (1996) No end of history for photolyases. Science 272:48–49

    CAS  Google Scholar 

  134. Todo T (1999) Functional diversity of the DNA photolyase/blue light receptor family. Mutat Res 434:89–97

    CAS  Google Scholar 

  135. Sutherland BM (1974) Photoreactivating enzyme from human leukocytes. Nature 248:109–112

    CAS  Google Scholar 

  136. Harm H (1980) Damage and repair in mammalian cells after exposure to non-ionizing radiations. III. Ultraviolet and visible light irradiation of cells of placental mammals, including humans, and determination of photorepairable damage in vitro. Mutat Res 69:167–176

    CAS  Google Scholar 

  137. Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang R-P, Todo T, Wei Y-F, Sancar A (1996) Putative human bluelight photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35:13871–13877

    CAS  Google Scholar 

  138. Carell T, Epple R (1998) Repair of UV light induced DNA lesions: a comparative study with model compounds. Eur J Org Chem 1998(7):1245–1258

    Google Scholar 

  139. Sancar A, Rupert CS (1978) Cloning of the phr gene and amplification of photolyase in Escherichia coli. Gene 4:295–308

    CAS  Google Scholar 

  140. Eker APM, Hessels JKC, Dekker RH (1986) Photoreactivating enzyme from Streptomyces griseus - VI. Action spectrum and kinetics of photoreactivation. Photochem Photobiol 44:197–205

    CAS  Google Scholar 

  141. Li YF, Sancar A (1991) Cloning, sequencing, expression and characterization of DNA photolyase from Salmonella typhimurium. Nucleic Acids Res 19:4885–4890

    CAS  Google Scholar 

  142. Tamada T, Kitadokoro K, Higuchi Y, Inaka K, Yasui A, de Ruiter PE, Eker AP, Miki K (1997) Crystal structure of DNA photolyase from Anacystis nidulans. Nat Struct Biol 4:887–891

    CAS  Google Scholar 

  143. Sancar GB, Smith FW, Reid R, Payne G, Levy M, Sancar A (1987) Action mechanism of Escherichia coli DNA photolyase. I. Formation of the enzyme-substrate complex. J Biol Chem 262:478–485

    CAS  Google Scholar 

  144. Kato R, Hasegawa K, Hidaka Y, Kuramitsu S, Hoshino T (1997) Characterization of a thermostable DNA photolyase from an extremely thermophilic bacterium, Thermus thermophilus HB27. J Bacteriol 179:6499–6503

    CAS  Google Scholar 

  145. Yajima H, Inoue H, Oikawa A, Yasui A (1991) Cloning and functional characterization of a eukaryotic DNA photolyase gene from Neurospora crassa. Nucleic Acids Res 19:5359–5362

    CAS  Google Scholar 

  146. Ng W-O, Zentella R, Wang Y, Taylor JSA, Pakrasi HB (2000) phrA, the major photoreactivating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobutanepyrimidine-dimer-specific DNA photolyase. Arch Microbiol 173:412–417

    CAS  Google Scholar 

  147. Todo T, Takemori H, Ryo H, Ihara M, Matsunaga T, Nikaido O, Sato K, Nomura T (1993) A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4) photoproducts. Nature 361:371–374

    CAS  Google Scholar 

  148. Kim S-T, Malhotra K, Smith CA, Taylor J-S, Sancar A (1994) Characterization of (6-4) photoproduct DNA photolyase. J Biol Chem 269:8535–8540

    CAS  Google Scholar 

  149. Müller M, Carell T (2009) Structural biology of DNA photolyases and cryptochromes. Curr Opin Struct Biol 19:277–285

    Google Scholar 

  150. Hoerner RS, Weissenböck G (2003) Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry 64:243–255

    Google Scholar 

  151. Kaiser G, Kleiner O, Beisswenger C, Batschauer A (2009) Increased DNA repair in Arabidopsis plants overexpressing CPD photolyase. Planta 230:505–515

    CAS  Google Scholar 

  152. Kimura S, Tahira Y, Ishibashi T, Mori Y, Mori T, Hashimoto J, Sakaguchi K (2004) DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non-proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells. Nucleic Acids Res 32:2760–2767

    CAS  Google Scholar 

  153. Kang H-S, Hidema J, Kumagai T (1998) Effects of light environment during culture on UV-induced cyclobutyl pyrimidine dimers and their photorepair in rice (Oryza sativa L.). Photochem Photobiol 68:71–77

    CAS  Google Scholar 

  154. Ahmad M, Cashmore AR (1993) The HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light receptor. Nature 366:162–166

    CAS  Google Scholar 

  155. Batschauer A (1993) A plant gene for photolyase: an enzyme catalyzing the repair of UV-light induced DNA damage. Plant J 4:705–709

    CAS  Google Scholar 

  156. Todo T, Ryo H, Yamamoto K, Toh H, Inui T, Ayaki H, Nomura T, Ikenaga M (1996) Similarity among the Drosophila (6-4) photolyase, a human photolyase homology, and the DNA photolyase-blue-light photoreceptor family. Science 272:109–112

    CAS  Google Scholar 

  157. Mees A, Klar T, Gnau P, Hennecke U, Eker AP, Carell T, Essen LO (2004) Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306:1789–1793

    CAS  Google Scholar 

  158. Torizawa T, Ueda T, Kuramitsu S, Hitomi K, Todo T, Iwai S, Morikawa K, Shimada I (2004) Investigation of the cyclobutane pyrimidine dimer (CPD) photolyase DNA recognition mechanism by NMR analyses. J Biol Chem 279:32950–32956

    CAS  Google Scholar 

  159. Heelis PF, Hartman RF, Rose SD (1995) Photoenzymic repair of UV-damaged DNA - a chemist’s perspective. Chem Soc Rev 24:289–297

    CAS  Google Scholar 

  160. MacFarlane AW, Stanley RJ (2003) cis-syn Thymidine dimer repair by DNA photolyase in real time. Biochemistry 42:8558–8568

    CAS  Google Scholar 

  161. Kavakli IH, Sancar A (2004) Analysis of the role of intraprotein electron transfer in photoreactivation by DNA photolyase in vivo. Biochemistry 43:15103–15110

    CAS  Google Scholar 

  162. Sancar GB, Smith FW (1989) Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. Mol Cell Biol 9:4767–4776

    CAS  Google Scholar 

  163. Prakash S, Sung P, Prakash L (1993) DNA repair genes and proteins of Saccharomyces cerevisiae. Annu Rev Genet 27:33–70

    CAS  Google Scholar 

  164. Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 6:695–711

    CAS  Google Scholar 

  165. Houtgraaf JH, Versmissen J, van der Giessen WJ (2006) A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 7:165–172

    Google Scholar 

  166. Robertson AB, Klungland A, Rognes T, Leiros I (2009) Base excision repair: the long and short of it. Cell Mol Life Sci 66:981–993

    CAS  Google Scholar 

  167. Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    CAS  Google Scholar 

  168. Parsons JL, Tait PS, Finch D, Dianova II, Allinson SL, Dianov GL (2008) CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol Cell 29:477–487

    CAS  Google Scholar 

  169. Fromme JC, Banerjee A, Verdine GL (2004) DNA glycosylase recognition and catalysis. Curr Opin Str Biol 14:43–49

    CAS  Google Scholar 

  170. Motta ES, Souza-Santos PT, Cassiano TR, Dantas FJS, Caldeira-De-Araujo A, De Mattos JCP (2010) Endonuclease IV is the main base excision repair enzyme involved in DNA damage induced by UVA radiation and stannous chloride. J Biomed Biotechnol, Article ID 376218, 9 p

    Google Scholar 

  171. Mundle ST, Delaney JC, Essigmann JM, Strauss PR (2009) Enzymatic mechanism of human apurinic/apyrimidinic endonuclease against a THF AP site model substrate. Biochemistry 48:19–26

    CAS  Google Scholar 

  172. Piersen CE, McCullough AK, Lloyd RS (2000) AP lyases and dRPases: commonality of mechanism. Mutat Res 459:43–53

    CAS  Google Scholar 

  173. Prasad R, Batra VK, Yang X-P, Krahn JM, Pedersen LC, Beard WA, Wilson SH (2005) Structural insight into the DNA polymerase β deoxyribose phosphate lyase mechanism. DNA Repair (Amst) 4:1347–1357

    CAS  Google Scholar 

  174. McCullough AK, Sanchez A, Dodson ML, Marapaka P, Taylor J-S, Lloyd RS (2001) The reaction mechanism of DNA glycosylase/AP lyases at abasic sites. Biochemistry 40:561–568

    CAS  Google Scholar 

  175. Fortini P, Dogliotti E (2007) Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst) 6:398–409

    CAS  Google Scholar 

  176. Gary R, Kim K, Cornelius HL, Park MS, Matsumoto Y (1999) Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J Biol Chem 274:4354–4363

    CAS  Google Scholar 

  177. Dodson ML, Michaels ML, Lloyd RS (1994) Unified catalytic mechanism for DNA glycosylases. J Biol Chem 269:32709–32712

    CAS  Google Scholar 

  178. Hamilton KK, Kim PMH, Doetsch PW (1992) A eukaryotic DNA glycosylase/lyase recognizing ultraviolet light-induced pyrimidine dimers. Nature 356:725–728

    CAS  Google Scholar 

  179. Bowman KK, Sidik K, Smith CA, Taylor J-S, Doetsch PW, Freyer GA (1994) A new ATP-dependent DNA endonuclease from S. pombe that recognizes cyclobutane pyrimidine dimers and 6-4 photoproducts. Nucleic Acids Res 22:3026–3032

    CAS  Google Scholar 

  180. Sukhanova M, Khodyreva S, Lavrik O (2009) Poly(ADPribose) polymerase 1 regulates activity of DNA polymerase β in long patch base excision repair. Mutat Res 685:80–89

    Google Scholar 

  181. Cuneo MJ, London RE (2010) Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase β binding affinity. Proc Natl Acad Sci USA 107:6805–6810

    CAS  Google Scholar 

  182. Sancar A (1996) DNA excision repair. Annu Rev Biochem 65:43–81

    CAS  Google Scholar 

  183. Van Houten B (1990) Nucleotide excision repair in Escherichia coli. Microbiol Rev 54:18–51

    Google Scholar 

  184. Costa RMA, Chigancas V, Galhardo RDS, Carvalho H, Menck CFM (2003) The eukaryotic nucleotide excision repair pathway. Biochimie 85:1083–1099

    CAS  Google Scholar 

  185. van Hoffen A, Venema J, Meschini R, van Zeeland AA, Mullenders LHF (1995) Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J 14:360–367

    Google Scholar 

  186. Orren DK, Selby P, Hearst JE, Sancar A (1992) Postincision steps of nucleotide excision repair in Escherichia coli. Disassembly of the UvrBC-DNA complex by helicase II and DNA polymerase I. J Biol Chem 267:780–788

    Google Scholar 

  187. Selby CP, Sancar A (1993) Molecular mechanism of transcription-repair coupling. Science 259:53–58

    Google Scholar 

  188. Matson SW, Bean DW, George JW (1994) DNA helicases: enzymes with essential roles in all aspects of DNA metabolism. BioEssays 16:13–22

    CAS  Google Scholar 

  189. Ratner JN, Balasubramanian B, Corden J, Warren SL, Bregman DB (1998) Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II: implications for transcription-coupled DNA repair. J Biol Chem 273:5184–5189

    CAS  Google Scholar 

  190. Sarasin A, Stary A (2007) New insights for understanding the transcription-coupled repair pathway. DNA Repair (Amst) 6:265–269

    CAS  Google Scholar 

  191. Fousteri M, Vermeulen W, van Zeeland AA, Mullenders LHF (2006) Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodelling and repair factors to stalled RNA polymerase II in vivo. Mol Cell 23(4):471–482

    CAS  Google Scholar 

  192. Proietti-De-Santis L, Drańe P, Egly J-M (2006) Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J 25:1915–1923

    CAS  Google Scholar 

  193. Balajee AS, Bohr VA (2000) Genomic heterogeneity of nucleotide excision repair. Gene 250:15–30

    CAS  Google Scholar 

  194. Orren DK, Sancar A (1989) The (A)BC excinuclease of Escherichia coli has only the UvrB and UvrC subunits in the incision complex. Proc Natl Acad Sci USA 86:5237–5241

    CAS  Google Scholar 

  195. Moolenaar GF, Herron MF, Monaco V, Van der Marel GA, van Boom JH, Visse R, Goosen N (2000) The role of ATP binding and hydrolysis by UvrB during nucleotide excision repair. J Biol Chem 275:8044–8050

    CAS  Google Scholar 

  196. Caron PR, Grossman L (1988) Involvement of a cryptic ATPase activity of UvrB and its proteolysis product, UvrB* in DNA repair. Nucleic Acids Res 16:9651–9662

    CAS  Google Scholar 

  197. Kato R, Yamamoto N, Kito K, Kuramitsu S (1996) ATPase activity of UvrB protein from Thermus thermophilus HB8 and its interaction with DNA. J Biol Chem 271:9612–9618

    CAS  Google Scholar 

  198. Lin J-J, Sancar A (1992) Active site of (A)BC excinuclease. I. Evidence for 5_ incision by UvrC through a catalytic site involving Asp399, Asp438, Asp466, and His538 residues. J Biol Chem 267:17688–17692

    CAS  Google Scholar 

  199. Maillard O, Solyom S, Naegeli H (2007) An aromatic sensor with aversion to damaged strands confers versatility to DNA repair. PLoS Biol 5:e79

    Google Scholar 

  200. Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Tanaka K, Hanaoka F (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121:387–400

    CAS  Google Scholar 

  201. Nouspikel T (2009) Nucleotide excision repair: variations on versatility. Cell Mol Life Sci 66:994–1009

    CAS  Google Scholar 

  202. Sugasawa K, Ng JMY, Masutani C, Iwai S, van der Spek PJ, Eker APM, Hanaoka F, Bootsma D, Hoeijmakers JHJ (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2:223–232

    CAS  Google Scholar 

  203. van der Spek PJ, Eker A, Rademakers S, Visser C, Sugasawa K, Masutani C, Hanaoka F, Bootsma D, Hoeijmakers JHJ (1996) XPC and human homologs of RAD23: intracellular localization and relationship to other nucleotide excision repair complexes. Nucleic Acids 24:2551–2559

    Google Scholar 

  204. Sugasawa K, Masutani C, Uchida A, Maekawa T, van der Spek PJ, Bootsma D, Hoeijmakers JHJ, Hanaoka F (1996) HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol Cell Biol 16:4852–4861

    CAS  Google Scholar 

  205. Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly JM (2000) Molecular structure of human TFIIH. Cell 102:599–607

    CAS  Google Scholar 

  206. Hitomi K, Iwai S, Tainer JA (2007) The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair. DNA Repair (Amst) 6:410–428

    Google Scholar 

  207. Lieber MR (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. BioEssays 19:233–240

    CAS  Google Scholar 

  208. Constantinou A, Gunz D, Evans E, Lalle P, Bates PA, Wood RD, Clarkson SG (1999) Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem 274:5637–5648

    CAS  Google Scholar 

  209. Dubest S, Gallego ME, White CI (2004) Roles of the AtErcc1 protein in recombination. Plant J 39:334–342

    CAS  Google Scholar 

  210. Kimura S, Sakaguchi K (2006) DNA repair in plants. Chem Rev 106:753–766

    CAS  Google Scholar 

  211. Kunz BA, Anderson HJ, Osmond MJ, Vonarx EJ (2005) Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana. Environ Mol Mutagen 45:115–127

    Google Scholar 

  212. Hefner E, Preuss SB, Britt AB (2003) Arabidopsis mutants sensitive to gamma radiation include the homologue of the human repair gene ERCC1. J Exp Bot 54:669–680

    CAS  Google Scholar 

  213. Liu Z, Hall JD, Mount DW (2001) Arabidopsis UVH3 gene is a homolog of the Saccharomyces cerevisiae RAD2 and human XPG DNA repair genes. Plant J 26:329–338

    CAS  Google Scholar 

  214. Hidema J, Kumagai T, Sutherland JC, Sutherland BM (1997) Ultraviolet B-sensitive rice cultivar deficient in cyclobutyl pyrimidine dimer repair. Plant Physiol 113:39–44

    CAS  Google Scholar 

  215. Vonarx EJ, Mitchell HL, Karthikeyan R, Chatterjee I, Kunz BA (1998) DNA repair in higher plants. Mutat Res 400:187–200

    CAS  Google Scholar 

  216. Xu H, Swoboda I, Bhalla PL, Sijbers AM, Zhao C, Ong E, Hoeijmakers JHJ, Singh MB (1998) Plant homologue of human excision repair gene ERCC1 points to conservation of DNA repair mechanisms. Plant J 13:823–829

    CAS  Google Scholar 

  217. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    CAS  Google Scholar 

  218. Friedberg EC (2003) DNA damage and repair. Nature 421:436–440

    Google Scholar 

  219. Nowosielska A (2007) Bacterial DNA repair genes and their eukaryotic homologues: 5. The role of recombination in DNA repair and genome stability. Acta Biochim Pol 54:483–494

    CAS  Google Scholar 

  220. Rocha EPC, Cornet E, Michel B (2005) Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1:0247–0259

    CAS  Google Scholar 

  221. Cromie GA, Connelly JC, Leach DRF (2001) Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol Cell 8:1163–1174

    CAS  Google Scholar 

  222. Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett 219:125–135

    CAS  Google Scholar 

  223. McEntee K, Weinstock GM, Lehman IR (1980) recA protein-catalyzed strand assimilation: stimulation by Escherichia coli single-stranded DNA-binding protein. Proc Natl Acad Sci USA 77:857–861

    CAS  Google Scholar 

  224. Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456

    CAS  Google Scholar 

  225. Li W, Ma H (2006) Double-stranded DNA breaks and gene functions in recombination and meiosis. Cell Res 16:402–412

    CAS  Google Scholar 

  226. Aylon Y, Kupiec M (2004) New insights into the mechanism of homologous recombination in yeast. Mutat Res 566:231–248

    CAS  Google Scholar 

  227. Park MS (1995) Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells. J Biol Chem 270:15467–15470

    CAS  Google Scholar 

  228. Jeggo PA (1990) Studies on mammalian mutants defective in rejoining double-strand breaks in DNA. Mutat Res 239:1–16

    CAS  Google Scholar 

  229. Puchta H, Swoboda P, Hohn B (1995) Induction of intrachromosomal homologous recombination in whole plants. Plant J 7:203–210

    CAS  Google Scholar 

  230. Ira G, Pellicioll A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, Haber JE, Foiani M (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011–1017

    CAS  Google Scholar 

  231. Sung P (1997) Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11:1111–1121

    CAS  Google Scholar 

  232. Wolner B, Van Komen S, Sung P, Peterson CL (2003) Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol Cell 12:221–232

    CAS  Google Scholar 

  233. Sonoda E, Zhao GY, Kohzaki M, Dhar PK, Kikuchi K, Redon C, Pilch DR, Bonner WM, Nakano A, Watanabe M, Nakayama T, Takeda S, Takami Y (2007) Collaborative roles of γH2AX and the Rad51 paralog Xrcc3 in homologous recombinational repair. DNA Repair (Amst) 6:280–292

    CAS  Google Scholar 

  234. Hefferin ML, Tomkinson AE (2005) Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst) 4:639–648

    CAS  Google Scholar 

  235. Capp J-P, Boudsocq F, Bertrand P, Lopez BS, Cazaux C, Hoffman J-S, Canitrot Y (2006) The DNA polymerase λ is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells. Nucleic Acids Res 34:2998–3007

    CAS  Google Scholar 

  236. Thode S, Schäfer A, Pfeiffer P, Vielmetter W (1990) A novel pathway of DNA end-to-end joining. Cell 60:921–928

    CAS  Google Scholar 

  237. Cary RB, Peterson SR, Wang J, Bear DG, Bradbury EM, Chen DJ (1997) DNA looping by Ku and the DNA-dependent protein kinase. Proc Natl Acad Sci USA 94:4267–4272

    CAS  Google Scholar 

  238. Yajima H, Lee K-J, Zhang S, Kobayashi J, Chen BPC (2009) DNA double-strand break formation upon UV-induced replication stress activates ATM and DNA-PKcs kinases. J Mol Biol 385:800–810

    CAS  Google Scholar 

  239. Muller C, Calsou P, Frit P, Cayrol C, Carter T, Salles B (1998) UV sensitivity and impaired nucleotide excision repair in DNA-dependent protein kinase mutant cells. Nucleic Acids Res 26:1382–1389

    CAS  Google Scholar 

  240. Hentges P, Ahnesorg P, Pitcher RS, Bruce CK, Kysela B, Green AJ, Bianchi J, Wilson TE, Jackson SP, Doherty AJ (2006) Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos. J Biol Chem 281:37517–37526

    CAS  Google Scholar 

  241. Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124:301–313

    CAS  Google Scholar 

  242. Paull TT, Gellert M (2000) A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proc Natl Acad Sci USA 97:6409–6414

    CAS  Google Scholar 

  243. Michel B (2005) After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol 3:1174–1176

    CAS  Google Scholar 

  244. Woodgate R, Sedgwick S (1992) Mutagenesis induced by bacterial UmuDC proteins and their plamid homologues. Mol Microbiol 6:2213–2218

    CAS  Google Scholar 

  245. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    CAS  Google Scholar 

  246. Jin J, Shirogane T, Xu L, Nalepa G, Qin J (2003) SCFβ-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatise. Genes Dev 17:3062–3074

    CAS  Google Scholar 

  247. Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, Lukas J (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288:1425–1429

    CAS  Google Scholar 

  248. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J (2002) Regulation of G2/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J 21:5911–5920

    CAS  Google Scholar 

  249. Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19:238–245

    CAS  Google Scholar 

  250. Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H (2004) M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP. Proc Natl Acad Sci USA 101:4419–4424

    CAS  Google Scholar 

  251. Mailand N, Bekker-Jensen S, Bartek J, Lukas J (2006) Destruction of claspin by SCFβTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23:307–318

    CAS  Google Scholar 

  252. Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV, Hershko A, Pagano M, Draetta GF (2003) Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 426:87–91

    CAS  Google Scholar 

  253. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    CAS  Google Scholar 

  254. Kumari S, Rastogi RP, Singh KL, Singh SP, Sinha RP (2008) DNA damage: detection strategies. EXCLI Journal 7:44–62

    Google Scholar 

  255. Mitchell DL, Jen J, Cleaver JE (1991) Relative induction of cyclobutane dimers and cytosine photohydrates in DNA irradiated in vitro and in vivo with ultraviolet-C and ultraviolet-B light. Photochem Photobiol 54:741–746

    CAS  Google Scholar 

  256. Freeman SE, Blackett AD, Monteleone DC (1986) Quantitation of radiation-, chemical-, or enzyme-induced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers. Anal Biochem 158:119–129

    CAS  Google Scholar 

  257. Wang G, Hallberg LM, Saphier E, Englander EW (1999) Short interspersed DNA element-mediated detection of UVB-induced DNA damage and repair in the mouse genome, in vitro, and in vivo in skin. Mutat Res 433:147–157

    CAS  Google Scholar 

  258. Wang G, Hallberg LM, Saphier E, Englander EW (2006) Pyrimidine (6-4) pyrimidone photoproduct mapping after sub-lethal UVC doses: nucleotide resolution using terminal transferase-dependent PCR. Photochem Photobiol 82:1370–1376

    Google Scholar 

  259. Hercegová A, Ševčovičová A, Gálová E (2008) UV light-induced DNA damage detection in the unicellular green alga Chlamydomonas reinhardtii. Biologia 63:958–961

    Google Scholar 

  260. Small GD, Greimann CS (1977) Repair of pyrimidine dimers in ultraviolet-irradiated Chlamydomonas. Photochem Photobiol 25:183–187

    CAS  Google Scholar 

  261. Kumar A, Tyagi MB, Jha PN (2004) Evidences showing ultraviolet-B radiation-induced damage of DNA in cyanobacteria and its detection by PCR assay. Biochem Biophys Res Commun 318:1025–1030

    CAS  Google Scholar 

  262. Rastogi RP, Singh SP, Häder D-P, Sinha RP (2011) Ultraviolet-B-induced DNA damage and photorepair in the cyanobacterium Anabaena variabilis PCC7937. Env Exp Bot 74:280–288

    CAS  Google Scholar 

  263. Besaratinia A, Pfeifer GP (2012) Measuring the formation and repair of UV damage at the DNA sequence level by ligation-mediated PCR. Methods Mol Biol 920:189–202

    CAS  Google Scholar 

  264. Pfeifer GP, Dammann R (1999) Measuring the formation and repair of UV photoproducts by ligation-mediated PCR. Methods Mol Biol 113:213–226

    CAS  Google Scholar 

  265. Rochette PJ, Bastien N, Todo T, Drouin R (2006) Pyrimidine (6-4) pyrimidone photoproduct mapping after sublethal UVC doses: nucleotide resolution using terminal transferase-dependent PCR. Photochem Photobiol 82:1370–1376

    CAS  Google Scholar 

  266. Ye N, Bianchi MS, Bianchi NO, Holmquist GP (1999) Adaptive enhancement and kinetics of nucleotide excision repair in humans. Mutat Res 435:43–61

    CAS  Google Scholar 

  267. Olive PL, Banath JP, Durand RE (1990) Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the ‘comet’ assay. Radiat Res 122:86–94

    CAS  Google Scholar 

  268. Han P, Clingen PH, Lowe JE, Katsuya A, Arlett CF, Green MHL (1998) Repair of cyclobutane pyrimidine dimers in unstimulated human mononuclear cells is deficient at very low fluencies of ultraviolet B and is not enhanced by addition of deoxyribonucleosides. Mutagenesis 13:353–356

    CAS  Google Scholar 

  269. Kielbassa C, Roza L, Epe B (1997) Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18:811–816

    CAS  Google Scholar 

  270. Sauvaigo S, Serres C, Signorini N, Emonet N, Richard MJ, Cadet J (1998) Use of the single-cell gel electrophoresis assay for the immunofluorescent detection of specific DNA damage. Anal Biochem 259:1–7

    CAS  Google Scholar 

  271. Woollons A, Clingen PH, Price ML, Farlett C, Green MHL (1997) Induction of mutagenic DNA damage in human fibroblasts after exposure to artificial tanning lamps. Br J Dermatol 137:687–692

    CAS  Google Scholar 

  272. Morley N, Rapp A, Dittmar H, Salter L, Gould G, Ko G, Curnow A (2006) UVA-induced apoptosis studied by the new apo/necro-Comet-assay which distinguishes viable, apoptotic and necrotic cells. Mutagenesis 21:105–114

    CAS  Google Scholar 

  273. Koopman G, Reutelingsperger CP, Kuiiten GA, Keehnen RM, Pals ST (1994) Annexin V for flow cytometric detection of phosphotidylserine expression on B cells undergoing apoptosis. Blood 4:1415–1420

    Google Scholar 

  274. Douki T, Court M, Sauvaigo S, Odin F, Cadet J (2000) Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J Biol Chem 275:11678–11685

    CAS  Google Scholar 

  275. Bickham JW (1990) Flow cytometry as a technique to monitor the effects of environmental genotoxins on wild life populations. In: Sandhu SS, Lower WR, De Serres FJ, Suk WA, Tice RR (eds) In situ evaluation of biological hazards of environmental pollutants. Plenum Press, New York, pp 97–108

    Google Scholar 

  276. Thyagarajan B, Anderson KE, Lessard CJ et al (2007) Alkaline unwinding flow cytometry assay to measure nucleotide excision repair. Mutagenesis 22:147–153

    CAS  Google Scholar 

  277. Singh R, Farmer PB (2006) Liquid chromatography-electrospray ionization-mass spectrometry: the future of DNA adduct detection. Carcinogenesis 27:178–196

    CAS  Google Scholar 

  278. Roti JLR, Wright WD (1987) Visualization of DNA loops in nucleoids from HeLa cells: assays for DNA damage and repair. Cytometry 8:461–467

    Google Scholar 

  279. Rastogi RP, Sinha RP (2011) Solar ultraviolet radiation-induced DNA damage and protection/repair strategies in cyanobacteria. Int J Pharma Biosci 2:B271–288

    Google Scholar 

  280. Birnboim HC, Jevcak JJ (1981) Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation. Cancer Res 41:1889–1892

    CAS  Google Scholar 

  281. Murthy SK, Demetrick DJ (2006) New approaches to fluorescence in situ hybridization. Methods Mol Biol 319:237–259

    CAS  Google Scholar 

  282. Berton TR, Mitchell DL (2012) Quantification of DNA photoproducts in mammalian cell DNA using radioimmunoassay. Methods Mol Biol 920:177–187

    CAS  Google Scholar 

  283. Kobayashi N, Katsumi S, Imoto K, Nakagawa A, Miyagawa S, Furumura M, Mori T (2001) Quantitation and visualization of ultraviolet-induced DNA damage using specific antibodies: application to pigment cell biology. Pigment Cell Res 14:94–102

    CAS  Google Scholar 

  284. Mitchell D, Brooks B (2010) Antibodies and DNA photoproducts: applications, milestones and reference guide. Photochem Photobiol 86:2–17

    CAS  Google Scholar 

  285. Strickland PT (1985) Immunoassay of DNA modified by ultraviolet radiation: a review. Environ Mutagen 7:599–607

    CAS  Google Scholar 

  286. Yarosh DB, Boumakis S, Brown AB, Canning MT, Galvin JW, Both DM, Kraus E, O’Connor A, Brown DA (2002) Measurement of UVB-induced DNA damage and its consequences in models of immunosuppression. Methods 28:55–62

    CAS  Google Scholar 

  287. Klisch M, Sinha RP, Helbling EW, Häder D-P (2005) Induction of thymine dimers by solar radiation in natural freshwater phytoplankton assemblages in Patagonia, Argentina. Aqua Sci 67:72–78

    CAS  Google Scholar 

  288. Jeffrey WH, Aas P, Lyons MM, Coffin RB, Pledger RJ, Mitchell DL (1996) Ambient solar radiation-induced photodamage in marine bacterioplankton. Photochem Photobiol 64:419–427

    CAS  Google Scholar 

  289. Kara P, Daideviren K, Özsöz M (2007) An electrochemical DNA biosensor for the detection of DNA damage caused by radioactive iodine and technetium. Turkish J Chem 31:243–249

    CAS  Google Scholar 

  290. Rastogi RP, Richa, Sinha RP (2009) Apoptosis: molecular mechanisms and pathogenicity. EXCLI J 8:155–181

    Google Scholar 

Download references

Acknowledgment

The work outlined in this review was partially supported by Department of Science and Technology, Government of India under the project No. SR/WOS-A/LS-140/2011 granted to Richa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donat-P. Häder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richa, Sinha, R.P., Häder, DP. (2014). Physiological Aspects of UV-Excitation of DNA. In: Barbatti, M., Borin, A., Ullrich, S. (eds) Photoinduced Phenomena in Nucleic Acids II. Topics in Current Chemistry, vol 356. Springer, Cham. https://doi.org/10.1007/128_2014_531

Download citation

Publish with us

Policies and ethics