Skip to main content

Sources for Leads: Natural Products and Libraries

  • Chapter
New Approaches to Drug Discovery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 232))

Abstract

Natural products have traditionally been a major source of leads in the drug discovery process. However, the development of high-throughput screening led to an increased interest in synthetic methods that enabled the rapid construction of large libraries of molecules. This resulted in the termination or downscaling of many natural product research programs, but the chemical libraries did not necessarily produce a larger amount of drug leads. On one hand, this chapter explores the current state of natural product research within the drug discovery process. On the other hand it evaluates the efforts made to increase the amount of leads generated from chemical libraries and considers what role natural products could play here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicher TD, Buszek KR, Yoon SK et al (1992) Total synthesis of halichondrin B and norhalochondrin B. J Am Chem Soc 114(8):3162–3164

    Article  CAS  Google Scholar 

  • Alberts AW (1988) Discovery, biochemistry and biology of lovastatin. Am J Cardiol 62(15):10J–15J

    Article  CAS  PubMed  Google Scholar 

  • Arias CA, Panesso D, McGrath DM et al (2011) Genetic basis for in vivo daptomycin resistance in enterococci. N Eng J Med 365:892–900

    Article  CAS  Google Scholar 

  • Bai R, Paull KD, Hamel E (1991) Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubilin. J Biol Chem 266(24):15882–15889

    CAS  PubMed  Google Scholar 

  • Baker M (2013) Fragment-based lead discovery grows up. Nat Rev Drug Disc 12:5–7

    Article  CAS  Google Scholar 

  • Balog A, Meng D, Danishefsky SL et al (1996) Total synthesis of (−)-epothilone A. Angew Chem Int Ed 35(23–24):2801–2803

    Article  CAS  Google Scholar 

  • Bergmann S, Schuemann J, Hertweck C et al (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217

    Article  CAS  PubMed  Google Scholar 

  • Boitano A, Ellman JA, Opipari AW et al (2003) The proaptotic benzodiazephine bz-423 affects the growth and survival of malignant B cells. Cancer Res 63:6870–6876

    CAS  PubMed  Google Scholar 

  • Bok JW, Hoffmeister D, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Bollag DM, McQueney PA, Woods CM et al (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55(11):2325–2333

    CAS  PubMed  Google Scholar 

  • Breinbauer R, Vetter IR, Waldmann H (2002) From protein domains to drug candidates – natural products as guiding principles in the design and synthesis of compound libraries. Angew Chem Int Ed 41:2878–2890

    Article  CAS  Google Scholar 

  • Bunin BA, Plunkett MJ, Ellman JA (1994) The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. Proc Natl Acad Sci U S A 91:4704–4712

    Article  Google Scholar 

  • Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43:46–58

    Article  CAS  Google Scholar 

  • Butz D, Schmiederer T, Süssmuth RD (2008) Module extension of a non-ribosomal peptide synthetase of the glycopeptide antibiotic balhimycin produced by Amycolatopsis balhimycina. ChemBioChem 9(8):1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Caetano T, Krawczyk JM, Süssmuth RD, Mendo S et al (2011) Heterologous expression, biosynthesis, and mutagenesis of type II lantibiotics from Bacillus licheniformis in Escherichia coli. Chem Biol 18(1):90–100

    Article  CAS  PubMed  Google Scholar 

  • Cociancich S, Pesic D, Petras D et al (2015) The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine. Nat Chem Biol. doi:10.1038/nchembio.1734

    PubMed  Google Scholar 

  • Congreve M, Carr R, Jhoti H et al (2003) A “rule of three” for fragment-based lead discovery? Drug Disc Today 8:876–877

    Article  Google Scholar 

  • Corey EJ, Gin DY, Kania RS (1996) Enantioselective total synthesis of ecteinascidin-743. J Am Chem Soc 118(38):9202–9203

    Article  CAS  Google Scholar 

  • Coronelli C, White RJ, Parenti F et al (1975) Lipiarmycin, a new antibiotic from Actinoplanes. II: isolation, chemical, biological and biochemical characterization. J Antibiotics 28(4):253–259

    Article  CAS  Google Scholar 

  • Cuevas C, Pérez M, Manzanares I et al (2000) Synthesis of ecteinascidin ET-743 and Phthalascidin Pt-650 from cyanosafracin B. Org Lett 2(16):2545–2548

    Article  CAS  PubMed  Google Scholar 

  • Dandapani S, Comer E, Munoz B et al (2012) Hits, leads and drugs against malaria through diversity-oriented synthesis. Future Med Chem 4:2279–2294

    Article  CAS  PubMed  Google Scholar 

  • Dandapani S, Germain AR, Munoz B et al (2014) Diversity-oriented synthesis yields a new drug lead for treatment of Chagas disease. ACS Med Chem Lett 5:149–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Li M, Wen M et al (2010) Naphthospironone A: an unprecedented and highly functionalized polycyclic metabolite from an alkaline mine waste extremophile. Chem Eur J 16(13):3902–3905

    Article  CAS  PubMed  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  CAS  PubMed  Google Scholar 

  • Endo A (2004) The origin of the statins. Atheroscler Suppl 5:125–130

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Monacolin K (1979) A new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32(8):852–854

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Kuroda M, Tsujita Y (1976) ML-236-A, ML-236-B, and ML-236-C, new inhibitors of cholesterogenesis produced by Penicillium citrinum. J Antibiot 29:1346–1348

    Article  CAS  PubMed  Google Scholar 

  • Erb W, Zhu J (2013) From natural product to marketed drug: the tiacumicin odyssey. Nat Prod Rep 30(1):161–174

    Article  CAS  PubMed  Google Scholar 

  • Evans BE, Rittle KE, Chang RSL et al (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:3593–3608

    Article  Google Scholar 

  • Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227

    Article  CAS  PubMed  Google Scholar 

  • Feifel SC, Schmiederer T, Süssmuth RD, Zocher R et al (2007) In vitro synthesis of new enniatins: probing the α-d-hydroxy carboxylic acid binding pocket of the multienzyme enniatin synthetase. Chembiochem 8(15):1767–1770

    Article  CAS  PubMed  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics; logic, machinery, and mechanisms. Chem Rev 106(8):3468–3496

    Article  CAS  PubMed  Google Scholar 

  • Golebiowski A, Klopfenstein SR, Portlock DE (2001) Lead compounds discovered from libraries. Curr Opin Chem Biol 5:273–284

    Article  CAS  PubMed  Google Scholar 

  • Hajduk PJ, Bures M, Fesik SW et al (2000) Privileged molecules for protein binding identified from NMR-based screening. J Med Chem 43:3443–3447

    Article  CAS  PubMed  Google Scholar 

  • Hajduk PJ, Galloway WRJD, Springs DJ (2011) A question of library design. Nature 470:42–43

    Article  CAS  PubMed  Google Scholar 

  • Halford B (2012) Carfilzomib: from discovery to drug. Chem Eng News 35:34–35

    Google Scholar 

  • Hanada M, Suguwara K, Oki T et al (1992) Epoxomicin, a new antitumor agent of microbial origin. J Antibiotics 45(11):1746–1752

    Article  CAS  Google Scholar 

  • Hirata Y, Uemura D (1986) Halichondrins – antitumor polyether macrolides from a marine sponge. Pure Appl Chem 58(5):701–710

    Article  CAS  Google Scholar 

  • Höfle G, Bedorf N, Reichenbach H et al (1996) Epothilone A and B – novel 16-membered macrolides with cytotoxic activity: isolation, crystal structure, and conformation in solution. Angew Chem Int Ed 35(13–14):1567–1569

    Article  Google Scholar 

  • Hopwood DA, Malpartida F, Ömura S et al (1985) Production of ‘hybrid’ antibiotics by genetic engineering. Nature 314:642–644

    Article  CAS  PubMed  Google Scholar 

  • Hornung A, Bertazzo M, Dziarnowski A et al (2007) A genomic screening to the structure-guided identification of drug candidates from natural sources. ChemBioChem 8:757–766

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Helm JS, Walker S et al (2003) Ramoplanin inhibits bacterial transglycosylases by binding as a dimer to lipid II. J Am Chem Soc 125(9):8736–8737

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phytogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huigens RW III, Morrison KC, Hergenrother PJ et al (2013) A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nat Chem 5:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt JT (2009) Discovery of ixabepilone. Mol Cancer Ther 8(2):275–281

    Article  CAS  PubMed  Google Scholar 

  • Ivanov VN, Bhoumik A, Ronai Z (2003) Death receptors and melanoma resistance to apoptosis. Oncogene 22(20):3152–3161

    Article  CAS  PubMed  Google Scholar 

  • Jencks WP (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci U S A 78:4046–4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhoti H, Williams G, Murray CW et al (2013) The “rule of three” for fragment-based drug discovery: where are we now? Nat Rev Drug Disc 12:644–645

    Article  CAS  Google Scholar 

  • Jordan DC (1961) Effects of vancomycin on the synthesis of the cell wall mucopeptide of Staphylococcus aureus. Biochem Biophys Res Commun 6:167–170

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Kamath K, Wilson L (2005) The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Ther 4:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Jung D, Rozek A, Okon M, Hancock REW (2004) Structural transitions as determinants of the action of the calcium-dependant antibiotic daptomycin. Chem Biol 11(7):949–957

    Article  CAS  PubMed  Google Scholar 

  • Jung G, Beck-Sickinger AG (1992) Multiple peptide synthesis methods and their applications. Angew Chem Int Ed 31:367–486

    Article  Google Scholar 

  • Kalyon B, Helaly SE, Süssmuth RD et al (2011) Plantazolicin A and B: structure elucidation of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org Lett 13(12):2996–2999

    Article  CAS  PubMed  Google Scholar 

  • Kedei N, Lundberg DJ, Blumberg PM et al (2004) Characterization of the interaction of ingenol-3-angelate with protein kinase C. Cancer Res 64(9):3243–3255

    Article  CAS  PubMed  Google Scholar 

  • Koch MA, Schuffenhauer A, Waldmann H et al (2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci U S A 102:17272–17277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause KM, Renelli M, Benton BM et al (2008) In vitro activity of telavancin against resistant gram-positive bacteria. Antimicrob Agents Chemother 52(7):2647–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krawczyk B, Völler GH, Süssmuth RD et al (2012) Curvopeptin: a new lanthionine-containing class III lantibiotic and its co-substrate promiscuous synthetase. ChemBioChem 13(14):2065–2071

    Article  CAS  PubMed  Google Scholar 

  • Kretz J, Kerwat D, Schubert V et al (2014) Total synthesis of albicidin: a lead structure from Xanthomonas albilineans for potent antibacterial gyrase inhibitors. Angew Chem Int Ed. doi:10.1002/anie.201409584

    Google Scholar 

  • Kwon O, Park SB, Schreiber SL (2002) Skeletal diversity via a branched pathway: efficient synthesis of 29400 discrete, polycyclic compounds and their arraying into stock solutions. J Am Chem Soc 124:13402–13404

    Article  CAS  PubMed  Google Scholar 

  • Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269

    Article  CAS  PubMed  Google Scholar 

  • Law MR, Wald NJ, Rudnicka AR (2003) Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. Br Med J 326:1423–1429

    Article  CAS  Google Scholar 

  • Levine DP (2006) Vancomycin: a history. Clin Infect Dis 42:S5–S12

    Article  CAS  PubMed  Google Scholar 

  • Lewington S, Whitlock G, Clark R et al (2007) Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55.000 vascular deaths. Lancet 370:1829–1839

    Article  CAS  PubMed  Google Scholar 

  • Lewis WG, Green LG, Sharpless KB et al (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed 41:1053–1057

    Article  CAS  Google Scholar 

  • Li X, Rao S, Wang Y, Gong B (2004) Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucl Acids Res 32(9):2685–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Feeney PJ et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Disc Rev 23:3–25

    Article  CAS  Google Scholar 

  • Mamidyala SK, Finn MG (2010) In situ click chemistry: probing the binding landscapes of biological molecules. Chem Soc Rev 39:1252–1261

    Article  CAS  PubMed  Google Scholar 

  • Mao V, Coëffet-LeGal M, Baltz RH et al (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 5:1507–1523

    Article  CAS  Google Scholar 

  • Martinez EJ, Corey EJ (2000) A new, more efficient, and effective process for the synthesis of a key pentacyclic intermediate for production of ecteinascidin and phthalascidin antitumor agents. Org Lett 2(7):993–996

    Article  CAS  PubMed  Google Scholar 

  • McClerren AL, Cooper LE, van der Donk WA et al (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci U S A 103(46):17243–17248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDaniel R, Thamchaipenet A, Betlach M et al (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc Natl Acad Sci U S A 96(5):1846–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire JM, Wolfe RN, Ziggler DW (1955) Vancomycin, a new antibiotic. II. In vitro antibacterial studies. Antibiot Annu 3:612–618

    PubMed  Google Scholar 

  • McIntosh M, Cruz LJ, Oliviera BM et al (1982) Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch Biochem Biophys 218(1):329–334

    Article  CAS  PubMed  Google Scholar 

  • McKerrall SJ, Jorgensen L, Baran PS et al (2014) Development of a concise synthesis of (+)-ingenol. J Am Chem Soc 136:5799–5810

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Mohan R, Crews CM et al (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo anti-inflammatory activity. Proc Natl Acad Sci U S A 96(18):10403–10408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  • Miesel L, Greene J, Black TA (2003) Genetic strategies for antibacterial drug discovery. Nat Rev Genet 4:442–456

    Article  CAS  PubMed  Google Scholar 

  • Mootz HD, Schwanzer D, Marahiel MA (2002) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3(6):490–504

    Article  CAS  PubMed  Google Scholar 

  • Müller S, Garcia-Gonzalez E, Mainz A et al (2014) Paenilamicin - structure and biosynthesis of a hybrid non-ribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae. Angew Chem Int Ed 53:10821–10825

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KT, Ritz D, Baltz RH et al (2006) Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc Natl Acad Sci U S A 103(46):17462–17467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols D, Cahoon N, Epstein SS et al (2010) Use of Ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76(8):2445–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolaou KC, Montagnon T (2008) Molecules that changed the world. Wiley, New York, p 243

    Google Scholar 

  • Nicolaou KC, Sarabia F, Yang Z et al (1997) Total synthesis of epothilone A: the macrolactonization approach. Angew Chem Int Ed 36(5):525–527

    Article  CAS  Google Scholar 

  • Nicolaou KC, Pfefferkorn JA, Mitchell HJ et al (2000) Natural product-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis of benzopyrans. J Am Chem Soc 122:9939–9953

    Article  CAS  Google Scholar 

  • Ogbourne SM, Suhrbier A, Parsons PG et al (2004) Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res 64(8):2833–2839

    Article  CAS  PubMed  Google Scholar 

  • Oldach F, Al Toma R, Budisa N, Süssmuth RD et al (2012) Congeneric lantibiotics from ribosomal in vivo peptide synthesis with noncanonical amino acids. Angew Chem Int Ed 51(2):415–418

    Article  CAS  Google Scholar 

  • Olivera BM, Cruz LJ (2000) Conotoxins, in retrospect. Toxicon 39:7–14

    Article  Google Scholar 

  • Olivera BM, Cruz LJ, Rivier J et al (1987) Neuronal Calcium channel antagonists. Discrimination between calcium channel subtypes using ω-conotoxin from Conus magus venom. Biochemistry 26(8):2086–2090

    Article  CAS  PubMed  Google Scholar 

  • Pallanza R, Berti M, Arioli V et al (1984) A-16686, a new antibiotic from Actinoplanes, II: biological properties. J Antibiotics 37(4):318–324

    Article  CAS  Google Scholar 

  • Parenti F, Pagani H, Beretta G (1975) Lipiarmycin, a new antibiotic from Actinoplanes. I: description of the producer strain and fermentation studies. J Antibiotics 28(4):247–252

    Article  CAS  Google Scholar 

  • Park C-M, Bruncko M, Elmore SW (2008) Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem 51:6902–6915

    Article  CAS  PubMed  Google Scholar 

  • Payne DJ, Gwynn MN, Pampliano DL et al (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Disc 6:29–40

    Article  CAS  Google Scholar 

  • Petros AM, Dinges J, Fesik SW et al (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-XL from NMR and parallel synthesis. J Med Chem 49:656–663

    Article  CAS  PubMed  Google Scholar 

  • Rafferty RJ, Hicklin RW, Hergenrother PJ et al (2014) Synthesis of complex and diverse compounds through ring distortion of abietic acid. Angew Chem Int Ed 53:220–224

    Article  CAS  Google Scholar 

  • Richard Hutchinson C (2003) Polyketide and non-ribosomally peptide synthases: falling together by coming apart. Proc Natl Acad Sci U S A 100(6):3010–3012

    Article  CAS  PubMed  Google Scholar 

  • Rinehart KL, Holt TG, Martin DG et al (1990) Ecteinascidin-729, Ecteinascidin-743, Ecteinascidin-745, Ecteinascidin-759a, Ecteinascidin-759b, and Ecteinascidin-770 – potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J. Org Chem 55(15):4512–4515

    Article  CAS  Google Scholar 

  • Rishton GM (1997) Reactive compounds and in vitro false positives in HTS. Drug Disc Today 2(9):382–384

    Article  CAS  Google Scholar 

  • Rizk AM, Hammouda FM, Evans FJ et al (1985) Biologically active diterpene esters from Euphorbia peplus. Phytochemistry 24(7):1605–1606

    Article  CAS  Google Scholar 

  • Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Disc 11(3):191–200

    Article  CAS  Google Scholar 

  • Schinzer D, Limberg A, Cordes M et al (1997) Total synthesis of (−)-epothilone A. Angew Chem Int Ed 36(5):523–524

    Article  CAS  Google Scholar 

  • Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287:1964–1969

    Article  CAS  PubMed  Google Scholar 

  • Scott DE, Coyne AG, Abell C et al (2012) Fragment-based approaches in drug discovery and chemical biology. Biochemistry 51:4990–5003

    Article  CAS  PubMed  Google Scholar 

  • Sigel MM et al (1969) In: Ypimglem HW Jr (ed) Food–drugs from the sea: proceedings. Marine Technology Society, Washington, DC, pp 281–294

    Google Scholar 

  • Siller G, Rosen R, Freeman M et al (2010) PEP005 (ingenol mebutate) gel for the topical treatment of superficial basal cell carcinoma: results of a randomized phase IIa trial. Australas J Dermatol 51(2):99–105

    Article  PubMed  Google Scholar 

  • Silverman JA, Perlmutter NG, Shapiro HM (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47(8):2538–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sin N, Kim KB, Crews CM et al (1999) Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg Med Chem Lett 9(15):2283–2288

    Article  CAS  PubMed  Google Scholar 

  • Somma S, Gastaldo L, Corti A (1984) Teicoplanin, a new antibiotic from Actinoplanes teichomycetius nov. sp. Antimicrob Agents Chemother 26(6):917–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle AA, Stierle DB (2005) Bioprospecting in the Berkeley pit: bio active metabolites from acid mine waste extremophiles. Stud Nat Prod Chem 32(L):1123–1175

    Article  CAS  Google Scholar 

  • Stierle AA, Stierle DB, Kelly K (2006) Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. J Org Chem 71(14):5357–5360

    Article  CAS  PubMed  Google Scholar 

  • Tally FP, DeBruin MF (2000) Development of daptomycin for Gram-positive infections. J Antimicrob Chemother 46(4):523–526

    Article  CAS  PubMed  Google Scholar 

  • Tsai J, Lee JT, Bollag G et al (2011) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A 105:3041–3046

    Article  Google Scholar 

  • Ugi I (1997) Perspektiven von Multikomponentenreaktion und ihren Bibliotheken. J Prakt Chem 339:499–516

    Article  CAS  Google Scholar 

  • Venogupal AA, Johnson S (2012) Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of Clostridium difficile infection. Clin Infect Dis 54:568–574

    Article  CAS  Google Scholar 

  • Verpoorte R (1998) Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Disc Today 3(5):232–238

    Article  CAS  Google Scholar 

  • Völler GH, Krawczyk JW, Süssmuth RD et al (2012) Characterization of new class III lantibiotics – erythreapeptin, avermipeptin and griseopeptin from Saccharpolyspora erythraea, Streptomyces avermitilis and Streptomyces griseus demonstrates stepwise N-terminal leader processing. ChemBioChem 13(8):1174–1183

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhu T, Zhu W et al (2007) Two new cytotoxic quinone type compounds from the halotolerant fungus Aspergillus variecolor. J Antibiot 60(10):603–607

    Article  CAS  PubMed  Google Scholar 

  • Weedon D, Chick J (1976) Home treatment of basal cell carcinoma. Med J Aust 1(24):928

    CAS  PubMed  Google Scholar 

  • Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14(3):347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DH, Stone MJ, Rahman SK et al (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52(6):1189–1208

    Article  CAS  PubMed  Google Scholar 

  • Winkler JD, Rouse MB, Jeon YT et al (2002) The first total synthesis of (±) ingenol. J Am Chem Soc 124:9726–9728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright AE, Forleo DA, McConnell OJ et al (1990) Antitumor tetrahyrodisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata. J Org Chem 55(15):4508–4515

    Article  CAS  Google Scholar 

  • Xiang Z, Luo T, Yang Z et al (2004) Concise synthesis of isoquinoline via the Ugi and Heck reactions. Org Lett 18:3155–3158

    Article  CAS  Google Scholar 

  • Yeung BKS (2011) Natural product discovery: the successful optimization of ISP-1 and halichondrin B. Curr Opin Chem Biol 15(4):523–528

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderich D. Süssmuth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Herwerden, E.F., Süssmuth, R.D. (2015). Sources for Leads: Natural Products and Libraries. In: Nielsch, U., Fuhrmann, U., Jaroch, S. (eds) New Approaches to Drug Discovery. Handbook of Experimental Pharmacology, vol 232. Springer, Cham. https://doi.org/10.1007/164_2015_19

Download citation

Publish with us

Policies and ethics